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Abstract
In this paper, the Power Spectral Density of encoded Gaussian Minimum Shift Keying
(GMSK) which is the Signaling Scheme of the Global System for Mobile Communication
(GSM) is derived by a combined approach of the autocorrelation method and Markov
Process. In the analysis, the Amplitude Modulated Pulse decomposition proposed by P.
Laurent is employed to ease computation. Encoding of the message data utilizes
Convolutional Code of rate1/2. Results are for both the uncoded and coded waveform
comparing variation in power spread over a range of frequency.

I Introduction
The ever increasing demand for digital wireless communication system presents a serious
difficulty of spectral congestion that obviously causes severe adjacent and co channel
interference problems. This has led to the investigations of a wide variety of techniques for
solving the endemic problems that result from spectral congestion. Among the solutions to
this problem are the use of frequency–reuse techniques, efficient source encoding
techniques, spectral efficient modulation schemes and/or spectral efficient multiple access
scheme.
The main objective of spectral efficient modulation format is to maximize the bandwidth
usage at a prescribed bit error rate with minimum expenditure of signal (minimum signal
power lay off). For GSM extra constraint is placed on the modulation scheme by the fact
that non-linear amplifiers which operate near saturation are incorporated in the general
architecture of the system. These nonlinear devices produce extraneous signal regrowth
(sidebands) when passing a signal with amplitude fluctuations through them. So a
modulation scheme for this must in addition be characterized by constant amplitude to
combat such signal impairments. Thus at increased data rate, for low power consumption,
and under the influence of nonlinear channel, we require a modulation format that balances
the respective parameter requirements. This is a typical scenario in the GSM
communication system.

A modulation technique which can offer this trade-off of complexity versus spectral
efficiency is GMSK. This is a type of Continuous Phase Modulation (CPM), a class of
nonlinear signaling scheme that are efficient in power and bandwidth. It also generates
constant envelop waveform and therefore is very useful in radio channels employing non
linear amplifiers like Traveling Wave Tube (TWT). GMSK has since been adopted as the
modulation scheme for the GSM digital cellular system. The performance and analysis of
CPM has been reported by several researchers. However, performance of encoding GMSK
has not been examined fully. The analysis of coded some classes of CPM is reported in [2],
[4], [7], [10], and [16]. It is obvious that channel encoding increases the required
transmission bandwidth when considered independent of modulation and thus affect the
power/bandwidth trade off of system. [1], [6], and [12] presented the Power spectrum
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analysis of uncoded CPM with some references to GMSK. The Power spectral density
analysis of some type of encoded CPM is presented in [8], and [13].

In this paper, we present the Power Spectral Density of convolutionally encoded GMSK
scheme. For ease of computation, the idea of decomposition of CPM signal presented in [3]
is employed where the first two Laurent pulses [3] are used as the basic GMSK signal in
power spectrum computation. The method of Spectral computation of Digital FM using
Autocorrelation method is presented in [9]. In this report, the combine approach of
autocorrelation/Markov method as discussed in [6] and [13] is used to model the encoding
process of the GMSK signal in the course of power spectrum analysis.

II GMSK Representation
GMSK modulation is a modified form of Minimum Shift Keying (MSK), and a special
case of binary CPFSK in which the modulation index h is set at 0.5. In this case, the
rectangular shaping pulse used in conventional MSK is replaced by a special type of non
linear pulse shaping filter called Gaussian filter. This scheme ensures a narrower spectrum
than that of MSK [8]. Gaussian filter has an ideal impulse response given by
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For the case of GMSK analysis, this pulse can be modified thus
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The primary parameter here is the )( bBT product (-3db) of the Gaussian filter. In order to
reduce the sidelobes and produce a compact spectrum, the appropriate value of

)( bBT should be used. In GSM the value of the BT parameter is 0.3. If the )( bBT product
is sufficiently large, then data sequence }{ Ka which often is None-Return-to-Zero (NRZ)
will pass unfiltered. Smaller values of )( bBT product will give a good compact spectrum

where B is the half power bandwidth at symbol period bT as shown in fig. 1.0
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Figure 1: The frequency pulses of GMSK for BT= (0.2,0.3,0.5,0.9).

The GMSK waveform can be expressed as
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where
bT
E2

is the signal amplitude, cf is the carrier frequency, ka is the input data, bT is

the bit interval. The function )(tqGMSK is called the phase shaping pulse and is a continuous,
monotonic function that determines the overall spectral characteristics of the modulated
signal. It is defined as














































t

LT
q

LT
q

LT
tq

dgtq

2

22
2
1

)()(

0

00

 (4.0)

where

 




  CBABerfBAerfA
C

tq )exp(
1

)exp(
1

)()(.
4
1 22

0 

)2ln(
2

BTC  ; 





  5.0

T
t

CA ; 





  5.0

T
t

CB



V.O. Matthews and U.A.K. Okonkwo / On The Power Spectral Density Of The Gsm Signaling Scheme

3GSM & Mobile Computing: An Emerging Growth Engine for National Development
157

and 



0

2)exp(
2

)( dyyxerf


.

The information carrying phase is given by
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It can be shown that the unit amplitude complex envelope of (3.0) is of the form [11]
)2exp(),()( tfjattS cGMSK  (7.0)

III Laurent Decomposition
The continuity imposed on the phase of GMSK signal depicts a kind of memory inherently
built into it. The signal is best viewed as having a coded pattern directly imposed on the
phase. This sought of encoding system employs an integrated approach to modulation and
coding in which case, the encoding can take place in signal space as part of the modulation
process. This approach offers the attractive possibility of achieving performance
improvement without the bandwidth expansion which accompanies the usual concatenation
of coding and modulation. The analysis of the inherent coding of CPM was shown to be
achievable if one can decompose the CPM [3], [15], and [17].
In [3], P. Laurent showed that any constant amplitude binary phase modulation can be
expressed as a sum of a finite number of time limited amplitude modulated pulses (AMP
decomposition). This is the baseband signal that can be written as a sum of 12 L PAM
signals expressed as
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and the parameter ika , is the message bit that takes on the value 0 or 1.
For binary GMSK for GSM application, L = 3, thus we have 4 distinct pulse shapes made
up of 3-fold distinct products of the )(tSn corresponding to 12 L . Thus [2, eqn (11)],
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In [5], it was asserted that )(0 tC and )(1 tC are the most significant pulse durations and
carry most of the signal energy. Assuming ergodic process, we can thus express (8.0) as
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where na ,0 and na ,1 are equivalent complex data symbols.
The major advantage of this decomposition approach is that it allows us to study the coding
operation independent of the modulation operation. The scheme decomposes the inherent
nonlinear characteristic of the CPM into finite number of linear models. Once the memory
is made explicit it becomes possible to design trellis and Convolutionally encoded system
for CPM. Such decomposition tends to reduce the complexity associated with calculating
the Power Spectral Density.

IV Convolutional Encoding
Convolutional Coding applied to the source sequence is design to add more bits to the final

bit sequence. In general, the Convolutional code is characterized as having rate
n
k

R  and

constraint length K, where k and n are the number of inputs and outputs respectively, in the
encoder. Fig: 2.0 shows a general model for convolutional encoding of GMSK, where

2
1

R , and K=5.

Figure 2.0: Block model of convolutionally encoded GMSK modulator.

The Convolutional polynomials for this system are respectively 1)( 34
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we assume there are n bits mapped onto an M-ary modulation set where nM 2 or we
deem it that the output of the encoder is serially fed into the modulator using an XOR gate.
The basic action of encoding/mapping affects only the input into the GMSK modulator.
The channel coding invariably affects both the bit interval and energy per bit. This is so
since for the uncoded bit interval bT , the coded bit interval cT should be such that the same
bandwidth is maintained, thus, bc RTT  . In the case of the energy per bit E, to maintain the
same signal energy level, bc REE  . So the energy of the uncoded bits is spread among the
more numerous coded bits.
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Hence we can express the output of the encoder as
]~.,..........,.........~,~,~[

~
1,,2,,1,,0,,  niiiin mmmm

aaaa  (14.0)

m depends on the state of the encoder memory. Thus, the state vector for the system can
be expresses as
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is the transmitted bit at time n.
Thus eqn (12.0) becomes
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where n,0
~
 and n,1

~
 are equivalent encoded complex data symbols. The superscript e

denotes encoded signal.

V Power Spectral Density
The encoded envelop signal has a generic expression of a complex signal with Real and
Imaginary parts. The real part would be given as
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The autocorrelation function is given by
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Then for a random signal, the Hermitian symmetric property shows that
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It can easily be shown that the Fourier transform of the time average is given by
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Where )(* S denotes the power spectrum of the equivalent encoded complex base band
modulation. If we assume data symbol uncorrelation, then it can easily be deduced that the
Power Spectrum is given by [13]
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where 2 and are the variance and mean of the stationary random process. )(tQi is the
Fourier transform of the Laurent pulses )(tCi . If the effect of discrete spectrum which in
itself carries no information is neglected due to the effect of differential encoding
associated with the source coding, and it is assumed that no spectrum is created by the filter
actions (advantage of CPM) then equation is reduced to
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In a situation where encoding process induces memory effect on the data symbol ensuring
data correlation, the Fourier transform of the correlation among data symbols is related to
the variance by [13]
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By the nature of convolutional encoding process, the probability of observing any
particular value in the sequence can be deemed to depend on the preceding values. In most
practical cases, this dependency is often on the immediate preceding (Previous) sample. A
procedure so described is called Markov Process. In using the Markov method, the
convolutional encoder can be modeled as a Markov source characterized by a transition
matrix
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Then the autocorrelation function can be expressed in terms of the transition matrix and the
matrix of the correlation between the basic baseband pulses. If we assume binary sequence
and let }1,0{);1,1(

~
,  ini , then the correlation function can be given for the first
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And for the second Laurent pulse [6]
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Where the transitional probability tP is given by
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From eqn (29.0)
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Thus for the first Laurent pulse )(0 tC












 2

2
0

00

4)4sin1)(21(2
)1(4

)(
2
1

);(
tct

tt

c
t PfTP

PP
fQ

T
PfS

 (35.0)

And for the second pulse )(1 tC
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The cross correlation between complex data stream induced by the memory effect that
characterizes the convolutional encoding process is accounted for by the expression

c
tct

tt
c

t fT
PfTP

PPfQfQ
T

PfS 
 4cos1

4)4sin1)(21(2
1

)1(8)(*)(
2
1

);( 2

2
10

10














(37.0)
Finally, the Power spectral density of the encoded GMSK is given by
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VI Result and Discussion
The power spectral densities of both the uncoded and encoded GMSK are evaluated for
BT=0.3 and Pt =0.543 and simulated using MATLAB software program. We have
demonstrated that for rate ½ and constraint length K=5 the spectrum of the coded system
has side lobes that are smoother but elevated than that of the uncoded system.
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Figure 3.0: The Power Spectral Density of Uncoded GMSK
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Figure 4.0: Power Spectral Density of Convolutionally Coded GMSK.

VII Conclusion
In this paper, we have derived the Power Spectral Density of Convolutionally Encoded
Gaussian Minimum Shift Keying a Modulation technique adopted by the GSM Standard.
The result of the MATLAB simulation of both uncoded and coded GMSK depicts variation
in the Power Spectrum. . Peak-to-peak values measured from the average peak of the side-
lobes to the peak of the main lobe for the uncoded and coded system are 41.91872dB and
42.39764dB respectively, showing a 0.47892dB deviation. The better performance of ½
rate encoded GMSK as compared to that of the uncoded systemis due to the ‘Spectral
gain’ provided by the memory effect (inducing data correlation) of the  convolutional 
encoding process employed, modeled as Markov process, which supposedly suppressed
the spectral requirement from the added bit in the encoding process.
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