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ABSTRACT 

 
In this paper, an implicit one step method for the numerical solution of second order initial value problems of ordinary differential 
equations has been developed by collocation and interpolation technique. The introduction of an o step point guaranteed the zero 
stability and consistency of the method. The implicit method developed was implemented as a block which gave simultaneous 
solutions, as well as their rst derivatives, at both o step and the step point. A comparison of our method to the predictor-corrector 
method after solving some sample problems reveals that our method performs better. 
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1. INTRODUCTION 
 

The general second order initial value problem of 
ordinary differential equations (ODE) of the form 
 

             
( ) ( )

( ) [ ]{ 0 1

, , ' ,
  ,
y f x y y x a b
y a y aζ ζ
′′= ∈

′= =
,                (1) 

 

where f  is continuous in [ ],a b , is often encountered in 
areas such control theory chemical kinetics, circuit theory and 
biology.  

The fact that most often, this class of equations 
cannot be solved analytically has led to the development of 
several numerical methods to approximate the solution of 
problem (1). A conventional approach of solving problem (1) 
is to reduce it to an equivalent system of first order equations 
which are then solved by existing first order methods, [1, 2]. 
This approach has been reported to increase the dimension of 
the problem and  therefore results in more computation, [3, 
4]. The alternative is to solve (1) directly. Some approaches 
to this alternative method include the Nystrom type methods, 
[4]; the self-starting Runge-Kutta type methods which 
involve several function evaluations per step, [1, 2] and the 
linear multistep methods, particularly the implicit meth-ods, 
which though not self-starting, re-quire fewer function 
evaluations per step, [5, 6, 7]. 

Conventionally, implicit linear multistep methods 
are implemented in the predictor-corrector mode which is 
prone to error propagation as the integration process 
progresses. Indeed, [8] noted that this method is cumbersome 
and results in longer computer time. 

The disadvantages associated with the predictor-
corrector method led to the development of block methods 
from linear multistep method. Apart from being being self-
starting, the method does not re-quire the development of 

predictors separately, and evaluates fewer functions per step 
when compared to the Runge-Kutta type methods. 
Furthermore, it can be applied as simultaneous integrators 
over non-overlapping subintervals of integration, (see [9, 
11]). 

We note that all of these methods are governed by 
the Dahlquist's barrier conditions [12]. However, this barrier 
conditions have been circumvented in [13, 1, 14, 5], by the 
application of hybrid methods in which collocation could be 
done at o step points. 

Our aim in this paper is to construct a zero stable, 
continuous implicit one-step method for the solution of initial 
value problems of general second order ordinary differential 
equations. To achieve this, we will collocate and interpolate a 
power series approximate solution at both the step points and 
the off step points which are incorporated to augment the 
procedure. The implementation will be by a simultaneous 
application of the method to pro-vide approximations to the 
solutions of (1) at a block of points

1
2

1, , ; 0,1, , 1n nnx x x n N++ = −
 on a partition of [ ],a b . 

 
In section two, we will discuss the development of 

our method. Block method is discussed in section three and in 
section three, the analysis of our method for ac-curacy and 
stability is done in section four and the efficiency of our 
method is tested with some sample problems in section ve. 
Finally, the results obtained are discussed in section six and 
conclusions are made. 
 
2. ONE-STEP METHOD 
 

In this section, we intend to derive a continuous 
representation of a one-step method which will be used to 
generate the main method and other methods required to set 
up the block method. We set out by approximating the 
analytical solution of problem (1) with a power series 
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polynomial of the form 
 

( ) ( )
0

2
m

i
i

j
Y x a t

=

= ∑  

 
on the partition   
 

0 1 1:N n n Na x x x x x b+∆ = < < < < < < =  of the  
integration interval [a, b], with a constant step size h, given 
by 1 ; 0,1, , 1n nh x x n N+= − = −  . 

Conventionally, we need to interpolate at atleast two 
points to be able to approximate (1); this is obviously not 
possible with a one step method. To make this happen, we 
proceed by arbitrarily selecting an offstep point, 

( ), 0,1nx ν ν+ ∈ , in { }1,n nx x +  in such a manner that the zero 
stability of the main method is guaranteed. Then, (2) is 
interpolated at , 0,n ix i ν+ =  and collocated at , 0, ,1n ix i ν+ = , 
so that we obtain a system of six equations each of degree 
four, i.e m = 4, as follows:  
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∑
  

 
In what follows, let us arbitrarily set 1

2ν = . Then 
solving the system of equations (3) – (4) yields values for the 
unknown parameters ; 0,1, , 4ja j =   which when 
substituted into (2) gives our continuous implicit hybrid one-
step method in the form  
 
( ) ( ) ( )1 1

2 2
0 n nY x x y x yα α += +             

                    ( ) 1 1
2 2

1
2

0
j n j n

j
h x f fβ β+ +

=

 
+ + 

 
∑    (5)           

 
where ( )j xα and ( )j xβ are continuous coefficients, 

( )n j ny y x jh+ = +  is the numerical approximation of the 

analytical solution at n jx + and ( ), ,n j n j n j n jf f x y y+ + + +′= . 

Indeed, by evaluating (5) at n jx + , the main method is 
obtained as follows: 
 

( )1 1
2 2

2

1 12 10 6
48n n n nn n

hy y y f f f+ ++ +
 − + = + + 

 

 
To derive our block method, additional equations are 

needed since (6) alone will not be sufficient if the solution at 

1
2

1, nnx x ++ are to be obtained simultaneously. The additional 

methods can be obtained from evaluating the first derivative 
of (5):  

( ) ( ) ( )( )1 1
2 2

0
1

n nY x x y x y
h
α α +

′ = +             

                    ( ) 1 1
2 2

1

0
j n j n

j
h x f fβ β+ +

=

 
′ ′+ + 

 
∑         (7) 

 
at  1

2
1, ,  and n nnx x x ++ respectively. This yields the following 

discrete derivative schemes: 
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2 2 2

1 1
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2
1

2
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48 96 96 6 7 8

48 96 96 10 3 9

48 96 96 9 26 10

n n n nn n

n n nn n n

n n n nn n

hy y y h f f f

hy y y h f f f

hy y y h f f f

++ +

++ + +

+ ++ +

 ′ − + = − − 
 ′ − + = − + + 
 ′ − + = + + 

 

 
3. BLOCK METHOD 
 

Block method, (see [16,11]), is adopted with 
modification for the implementation of our scheme. The 
modified definition is given in vector notation, as: 
 

( ) ( ) ( )11m m m mh AY h Ey h DF y BF Yλ λ µ λ−  = + +  where 

, , ,A B C D are constant coefficient matrices; 
 

( )1 1
2 2

1 1, , ,
T

m n nn nY y y y y+ ++ +
′ ′= , 

( )1 1, , , T
m n n n ny y y y y− −′ ′= , 

( ) ( )1 1
2 2

1 1, , ,
T

m n nn nF Y f f f f− +− +
= , 

( ) ( )m nF y f= , 
 
λ is the power of the derivative in (7) and µ is the order of 

problem (1). 
 

To set up our block method, (6) is combined with 
equations (8) – (10) to form a block from where the constant 
coefficient matrices , , ,A B C D are obtained as follows: 
 

71
962
1
6
5
24
1
6

0 1 0
0 1 0 1
0 0 0 1
0 0 0 1

E D

  
  
  = =
  
  
    

and  

1 1
16 96
1
3
1 1
3 24
2 1
3 6

0
B

− 
 
 =
 −
 
  

 

 
A single application of the formula guarantees 

simultaneously, the approximate solutions and their 
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derivatives, { }1 1
2 2

1 1, , ,n nn ny y y y+ ++ +
′ ′ , at the points 1

2
1, nnx x ++  

respectively, as the following discrete schemes: 
 

1 1
2 2

2

1 6 7
2 96n n n nn n

h hy y y f f f++ +
 ′= + + − + +
 

 

1
2

2

1 2
6n n n nn

hy y hy f f+ +
 ′= + + +
 

 

1 1
2 2

1 8 5
24n n nn n

hy y f f f++ +
 ′ ′= + − + +
 

 

( )1
2

1 1 4 12
6n n n nn

hy y f f f+ + +
 ′ ′= + + + 

 

 
The one-step block method is implemented as a 

simultaneous integrator, without requiring other methods to 
supply starting values or for the development of predictors, 
over the subintervals, [ ] [ ]0 1 1, , , ,N Nx x x x− of the partition

0 1 1:N N Na x x x x b−∆ = < < < < = . This way, the initial 
conditions are obtained at 1, 0,1, , 1.nx n N+ = −  
 
4. ANALYSIS OF THE BLOCK METHOD 
 

In this section, fundamental properties of the one-
step block method are discussed. 
 
4.1 Order and Error Constant 
 

In what follows, we will define, in the spirit of 
Awoyemi, et al [19], the linear difference operator associated 
with the one-step block method with some modifications. We 
will proceed by first of all, recasting (12) as: 
 

            ( )2 13
ij ijn j n j

ij ij
y h fλ λ λα β+ +=∑ ∑    

 
where , 0, ,1 and i j ν λ= is the degree of the derivative in (7). 
 
Definition 1: The linear difference operator L associated 
with (13) is defined as: 
 

( ) ( ) ( ) ( )2; 14
i j n i j n

i j
L y x h y x jh h y x jhλ λα β ′′= + − +    ∑ where 

( ), 0, ,1;i j y xν=  is an arbitrary test function which is 
continuously differentiable on [a,b]. 
 
Expanding ( ) ( ) and n ny x jh y x jh′′+ + in Taylor’s series and 
collecting like terms in powers of h yields the linear 
equation: 
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1
0 1

1 21 2
1 2

[ ; ]

15

pp
p

p pp p
p p

L y x h C y x C hy x C h y x

C h y x C h y x+ ++ +
+ +

= + + +

+ + +




where 

the ; 0,1,iC i =   are vectors. 

Definition 2: The one-step block method (11) and the 
associated linear difference operator (14) are said to have 
order p if 0 1 1 0pC C C += = = = and 2 0pC + ≠ . 

Definition 3: The term 2pC + called the error constant implies 
that the one-step block method (13) has local truncation error 
given by 

      ( ) ( ) ( ) ( )22 3
2 16pp p

n k pt C h y x O h++ +
+ += +  

From our calculation, our block method has order of accuracy 
( )4,4,4,4 Tp = and error term given as 

( )3 13 171
2 10240 1920 11520 8640, , , T

pC + = . 

4.2 Zero Stability, Consistency and Convergence 

Definition 4: The one-step block method (11) is said to be 
zero stable as 0h → if its first characteristic polynomial 
( )zρ  satisfies 

                

( )
( )

det

1
0

r

z zA E

z z µµ

ρ
−

 = − 

= −

=

                 (17) 

 
where r is the order of the matrices ,A E and the roots 

, 1, , 4sz s =  of (18v) satisfies the condition 1.sz ≤

Furthermore, those roots with 1sz = have multiplicity not 
exceeding two. 
  
By definition 4, our one-step block method with 4 r = and 

2µ = yields  
 
                  ( ) ( )22 1 0z z zρ = − =  
 
Clearly, the conditions of (18) are satisfied hence, the method 
is zero stable. 
The consistency of the method follows from the fact that the 
order of the block is greater than one. 
Following [20], our method is also convergent. 
 
4.3 Region of Absolute Stability of the Block    
       Method 
 
The stability polynomial of our one-step block method is 
obtained by applying the scalar test problem 
 
             ( )2 18y yλ′′ = −  
 
to the block formula (11), in the spirit of [2], such that 
 
                 ( ) ( )19m mY W h y=   
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where 2 2h hλ=  and ( ) ( ) ( )1
W h A hB E hD

−
= − +  is called the 

amplification matrix. 
 
Definition 5: The interval ( )00,h of the real line is said to be 

the interval of absolute stability if in this interval ( ) 1hφ < , 

where ( )hφ is the spectral radius of ( )W h , (see [5]). 
 
Our block method is found to satisfy the condition ( ) 1hφ <  

if  ( )0,16128h ∈ . 
 
5. NUMERICAL EXAMPLES 
 

In this section, the efficiency and accuracy of our 
one-step method implemented as a block method is tested on 
some numerical examples. The absolute errors computed are 
compared with those obtained in [18], which used a 
numerical scheme implemented in the predictor corrector 
mode. Each of the following examples is tested using step 
size 1

320h = . The tables of results for the problems are given 
in Tables 1, 2 and 3 respectively. 
 
Problem 1: 

( ) ( ) ( )2 10, 0 1, 0
2

:
1 21 ln
2 2

y x y y y

Theoretical Solution
xy
x

′′ ′ ′− = = =

+ = +  − 

 

 
Problem 2: 
 

( )2

2

1 32 0, ,
2 6 4 6 2

:
sin

y
y y y y

y
Theoretical Solution
y x

π π′    ′′ ′− + = = =   
   

=

 

 
Problem 3: 
 

( ) ( )2 2

2

2 21 0,

18 , 4 2
2 4 2 4

:
12 cos 4 sin
2

x

x

yy y xe
x x

y e y e

Theoretical Solution

y x x x x xe

π ππ π π π π

′  ′′ − + + − = 
 

   ′= + = − + +   
   

= + +

 

 
6. DISCUSSION 
 

In this paper, a continuous one-step method of order 
four is developed by the interpolation and collocation 

technique with the incorporation of an o step point for the 
approximation of the solutions of initial value problems of 
general second order ordinary differential equations of the 
form (1). The method is implemented as a block method and 
therefore has the capacity to generate simultaneous solutions 
at different gird points in a single application of the method. 

Three test problems, previously solved by Awoyemi 
[18] using a numerical scheme developed in the predictor 
corrector mode, have been solved to test the efficiency and 
accuracy of our new method. The absolute errors obtained 
from the computed solutions of these problems using our new 
method, with three function evaluations per iteration, are 
compared with those obtained by the four-step sixth or-der 
predictor-corrector method in [18]. 

It is obvious from Tables 1, 2 and 3 that our new 
method is more efficient and accurate, especially when one 
considers the error term and interval of absolute stability of 
our new method as reported in section 4. 

Notice that our method has not been compared to 
Jator's three-step seventh order hybrid linear multistep 
method [5], because it performs better. However our 
consolation is in the fact that our investigation reveals the 
viability of this approach adopted to solve higher order 
problems. In view of this, we intend to extend the research in 
order to improve our result. 

In conclusion, the approach is viable for the solution 
of higher order initial value problems of ordinary differential 
equations. It is interesting and can be implemented as a block 
method. We there-fore recommend it for the numerical 
approximation of solutions of problems in the class of (1) and 
possibly for higher orders after a little extension. 
 

Table 1: Comparing Absolute Errors in the New 
Method to Errors in [18] for Problem 1 

 
X Error in new method, Error in [18], 

 p=4, k=1 p=6, k=4 
0.1 0.49827253E-10 0.26075253E-09 
0.2 0.41043058E-09 0.19816704E-08 
0.3 0.14285815E-08 0.65074122E-08 
0.4 0.35242687E-08 0.15592381E-07 
0.5 0.72435324E-08 0.31504477E-07 
0.6 0.13335597E-07 0.56374577E-07 
0.7 0.22872871E-07 0.96164046E-07 
0.8 0.37447019E-07 0.15686801E-06 
0.9 0.59503708E-07 0.24869769E-06 
1.0 0.92940412E-07 0.38798389E-06 

 
Table 2: Comparing Absolute Errors in the New 

Method to Errors in [18] for Problem 2 
 

X Error in new method, Error in [18], 
 p=4, k=1 p=6, k=4 

1.1 0.66348841E-07 0.46921462E-06 
1.2 0.61995628E-07 0.40802869E-06 
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1.3 0.31135350E-07 0.22897376E-06 
1.4 0.30572108E-07 0.81287181E-07 
1.5 0.12473207E-06 0.52447217E-06 
1.6 0.24989906E-06 0.10897438E-05 
1.7 0.40149404E-06 0.17537254E-05 
1.8 0.57196191E-06 0.24814807E-05 
1.9 0.75116343E-06 0.32284155E-05 
2.0 0.92698387E-06 0.39430146E-05 

 
Table 3: Comparing Absolute Errors in the New 

Method to errors in [18] for Problem 3 
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