IMPACT: International Journal of Research in Applied, Natural and Social Sciences (IMPACT: IJRANSS)

ISSN(E): 2321-8851; ISSN(P): 2347-4580

Vol. 2, Issue 1, Jan 2014, 51-60

© Impact Journals



ON EXISTENCE OF SOLUTION FOR IMPULSIVE PERTURBED QUANTUM STOCHASTIC DIFFERENTIAL EQUATIONS AND THE ASSOCIATED KURZWEIL EQUATIONS

S. A. BISHOP & O. O. AGBOOLA

Department of Mathematics Covenant University, Ota, Ogun State, Nigeria

**ABSTRACT** 

Existence of solution of impulsive Lipschitzian quantum stochastic differential equations (QSDEs) associated with the Kurzweil equations are introduced and studied. This is accomplished within the framework of the Hudson-Parthasarathy formulation of quantum stochastic calculus and the associated Kurzweil equations. Here again, the solutions of a QSDE are functions of bounded variation, that is they have the same properties as the Kurzweil equations associated with QSDEs introduced in [1, 4]. This generalizes similar results for classical initial value problems to the noncommutative quantum setting.

**KEYWORDS:** Impulsive, Kurzweil Equations, Bounded Variation, Noncommutative Stochastic Processes

**INTRODUCTION** 

Impulsive effects exist widely in many evolution processes in which states are changed abruptly at certain moments of time, involving such fields as biology, medicine, economics, mechanics, electronics, Physics, etc [2, 3, 8, 9, 12, 13, 15, 18]. Thus the qualitative properties of the mathematical theory of impulsive differential systems are very important. A lot of dynamical systems have variable structure subject to stochastic abrupt changes, which may result from abrupt phenomena such as stochastic failures and repairs of components, sudden environmental changes, etc [8, 10, 20-22].

Recently, stochastic differential equations have attracted a great attention, since they have been used extensively in many areas of application including finance and social science [8-10, 12, 13, 20-22] The existence, uniqueness and asymptotic behavior of solutions of stochastic differential equations have been considered by many authors [2, 3, 8, 9, 13]. However, within the framework of the Hudson and Parthasarathy [11] formulation of QSDE not much has been done. In [15] the existence of QSDE that exhibit impulsive effects was established using fixed point theorem.

In [1], the equivalence of the non classical ODE (QSDE) and the associated Kurzweil equation was established along side with some numerical examples. It is worth mentioning that the results in [1] have proved to be very efficient when compared with results obtained from other schemes. Again using this method in [4], we studied Measure quantum stochastic differential systems (systems that exhibit discontinuous solutions) with examples. We established such results by considering the associated Kurzweil equations [4, 9, 17]. The motivation for studying the existence of solution for impulsive QSDE associated with Kurzweil equations is so that we can subsequently use the method in [1] to obtain similar approximate results for this class of QSDEs.

In this paper we describe another approach to systems that exhibit impulsive behaviour. We rely on the formulations of [1] concerning the equivalent QSDE and the associated Kurzweil equation. The methods are simple extension of the methods applied in [14, 16-19] to this non commutative quantum setting involving unbounded linear

operators in locally convex spaces. Hence the results obtained here are generalizations of similar results obtained in [16, 17] concerning classical initial value problems. The rest of this paper is organized as follows.

In section 2 we present some definitions, preliminary results and notations. In section 3, we establish the main results.

All through the remaining sections, as in [1, 4, 6, 7] we employ the locally convex topological space  $\tilde{A}$  of non commutative stochastic processes. We also adopt the definitions and notations of the following spaces  $Ad(\tilde{A})$ ,  $Ad(\tilde{A})_{wac}$ ,  $L_{loc}^p(\tilde{A})$ ,  $L_{loc}^\infty(\mathbb{R}_+)$ ,  $C(\tilde{A}\times[a, b], W)$ ,  $\mathcal{F}(\tilde{A}\times[a, b], h_{\eta\xi}$ , W) and the integrator processes  $\Lambda_\Pi$ ,  $A_f^+$ ,  $A_g$ . We consider the quantum stochastic differential equation in integral form given by

$$X(t) = X_0 + \int_0^t (E(t, X(s)) d\Lambda_{\pi}(s) + F(s, X(s)) dA_f^+(s) + G(s, X(s)) dA_g(s) + H(s, X(s)) ds), t \in [t_0, T]$$
(1.1)

In equation (1.1), the coefficients E, F, G, and H lie in a certain class of stochastic processes for which quantum stochastic integrals against the gauge, creation, annihilation processes  $\Lambda_{\pi}$ ,  $A_f^+$ ,  $A_g$  and the Lebesgue measure t are defined in [7]. In the work of [7], the Hudson and Parthasarathy [11] quantum stochastic calculus was employed to establish the equivalent form of quantum stochastic differential equation (1.1) given by

$$\frac{d}{dt}\langle \eta, X(t)\xi \rangle = P(X(t), t)(\eta, \xi)$$

$$X(t_0) = X_0, t \in [t_0, T], \tag{1.2}$$

where  $\eta, \xi$  lie in some dense subspaces of some Hilbert spaces which has been defined in [7]. For the explicit form of the map  $P(x,t) \to P(x,t)(\eta,\xi)$  appearing in equation (1.2), see [1, 7]. Equation (1.2) is a first order non-classical ordinary differential equation with a sesquilinear form valued map P as the right hand side. In [1], the equivalence of the non-classical ordinary differential equation (1.2) with the associated Kurzweil equation

$$\frac{d}{d\tau}\langle \eta, X(\tau)\xi \rangle = DF(X(\tau), t)(\eta, \xi) , t \in [t_0, T]$$
(1.3)

was established along with some numerical examples. The map F in (1.3) is given by

$$F(x,t)(\eta,\xi) = \int_0^t P(x,s)(\eta,\xi)ds \tag{1.4}$$

# 2. NOTATIONS, DEFINITIONS AND PRELIMINARY RESULTS

We shall employ certain spaces of maps (introduced above) whose values are sesquilinear forms on ( $\mathbb{D} \otimes \mathbb{E}$ ).

## 2.1 Definition

A member  $z \in L^0(I, \mathbb{D} \otimes \mathbb{E})$  is:

- Absolutely continuous if the map  $t \to z(t)(\eta, \xi)$  is absolutely continuous for arbitrary  $\eta, \xi \in \mathbb{D} \otimes \mathbb{E}$
- of bounded variation if over all partition  $\{t_j\}_{j=0}^n$  of I,

$$\operatorname{Sup}_{I}(\sum_{i=1}^{n} \left| Z(t_{i})(\eta, \xi) - Z(t_{i-1})(\eta, \xi) \right|) < \infty.$$

- of essentially bounded variation if z is equal almost everywhere to some member of  $L^0(I, \mathbb{D} \otimes \mathbb{E})$  of bounded variation.
- A stochastic process  $X : [t_0, T] \to \hat{\mathcal{A}}$  is of bounded variation if

On Existence of Solution for Impulsive Perturbed Quantum Stochastic Differentia Equations and the Associated Kurzweil Equations

$$\operatorname{Sup}\left(\sum_{j=1}^{n}\left|\langle \eta, X(t_{j})\xi \rangle - \langle \eta, X(t_{j-1})\xi \rangle\right|\right) < \infty.$$

for arbitrary  $\eta, \xi \in \mathbb{D} \otimes \mathbb{E}$  and where supremum is taken over all partitions

$$\{t_j\}_{j=0}^n \text{ of I.}$$

## 2.2 Notation

We denote by  $BV(\tilde{A})$  the set of all stochastic processes of bounded variation on I.

### 2.3 Definition

For  $x \in BV(\tilde{A})$ , define for arbitrary  $\eta, \xi \in \mathbb{D} \otimes \mathbb{E}$ ,

$$\operatorname{Var}_{[a,b]} X_{\eta\xi} = \operatorname{Sup}_{\tau} (\sum_{j=1}^{n} ||X(t_{j}) - X(t_{j-1})||_{\eta\xi})$$

where  $\tau$  is the collection of all partitions of the interval  $[a, b] \subset I$ . If [a, b] = I, we simply write  $\text{Var}_{I}X_{\eta\xi} = \text{Var}X_{\eta\xi}$ . Then  $\{\text{Var}X_{\eta\xi}, \, \eta, \xi \in \mathbb{D} \otimes \mathbb{E} \}$  is a family of seminorms which generates a locally convex topology on  $\text{BV}(\tilde{A})$ .

## 2.4 Notation

- We denote by  $\overline{BV}(\tilde{A})$  the completion of  $BV(\tilde{A})$  in the said topology.
- For any member Z of  $L^0(I, \mathbb{D} \ \underline{\otimes} \ \mathbb{E})$  of bounded variation, we write  $\operatorname{Var} Z_{\eta\xi}$  for its variation on  $[a, b] \subseteq I$ .
- We denote by A:= BV( $\tilde{A}$ ) $\cap$  Ad( $\tilde{A}$ )<sub>wac</sub> the stochastic process that are weakly, absolutely continuous and of bounded variation on [ $t_0$ ,T].
- We denote by  $C(\hat{\mathcal{A}} \times [t_0, T], W)$  the class of sesquilinear form valued maps which are Lipschitzian and satisfy the Caratheodory conditions as defined below.
- We denote by  $\mathcal{F}(\hat{\mathcal{A}} \times [t_0, T], h_{\eta\xi}, W)$  the class of sesquilinear form valued maps that are Kurzweil integrable as defined below.

#### 2.5 Definition

For each  $\eta, \xi \in \mathbb{D} \ \underline{\otimes} \ \mathbb{E}$  let  $h_{\eta\xi} \colon [t_0, T] \to \mathbb{R}$  be a family of non decreasing function defined on  $[t_0, T]$  and  $W \colon [0, \infty) \to \mathbb{R}$  be a continuous and increasing function such that W(0) = 0. Then we say that the map  $F \colon \hat{\mathcal{A}} \times [t_0, T] \to sesq(\mathbb{D} \ \underline{\otimes} \ \mathbb{E})$  belongs to the class  $\mathcal{F}(\hat{\mathcal{A}} \times [t_0, T], h_{\eta\xi}, W)$  for each  $\eta, \xi \in \mathbb{D} \ \underline{\otimes} \ \mathbb{E}$  if for all  $x, y \in \hat{\mathcal{A}}, t_2t_1 \in [t_0, T]$ 

• 
$$|F(x,t_2)(\eta,\xi) - F(x,t_1)(\eta,\xi)| \le |h_{n\xi}(t_2) - h_{n\xi}(t_1)|$$
 (2.1)

•  $|F(x,t_2)(\eta,\xi) - F(x,t_1)(\eta,\xi) + F(y,t_2)(\eta,\xi) - F(y,t_1)(\eta,\xi)|$ 

$$\leq W(\|x - y\|_{\eta\xi}) |h_{\eta\xi}(t_2) - h_{\eta\xi}(t_1)| \tag{2.2}$$

Next we give a result that connects the class  $C(\hat{A} \times [t_0, T], W)$  with the class  $F(\hat{A} \times [t_0, T], h_{\eta\xi}, W)$ .

# 2.6 Definition

A map  $P: \hat{\mathcal{A}} \times [t_0, T] \longrightarrow sesq(\mathbb{D} \otimes \mathbb{E})$  is of the class  $\mathcal{C}(\hat{\mathcal{A}} \times [t_0, T], W)$  if for arbitrary  $\eta, \xi \in \mathbb{D} \otimes \mathbb{E}$ .

•  $P(x, ...)(\eta, \xi)$  is measurable for each  $x \in \hat{\mathcal{A}}$ .

• There exists a family of measurable functions  $M_{\eta\xi}$ :  $[t_0, T] \to \mathbb{R}_+$  such that

$$\int_{t_0}^T M_{\eta\xi}(s)ds < \infty \text{ and } |P(x,s)(\eta,\xi)| \le M_{\eta\xi}(s), (x,s) \in \hat{\mathcal{A}} \times [t_0,T]$$

$$\tag{2.3}$$

• There exists a family of measurable functions  $K_{\eta\xi}^p:[t_0,T]\to\mathbb{R}_+$  such that for each  $t\in[t_0,T],\int_{t_0}^TK_{\eta\xi}(s)ds<\infty$ ,

$$|P(x,s)(\eta,\xi) - P(x,s)(\eta,\xi)| \le K_{n\xi}^{p}(s)W(||x-y||_{\eta\xi})$$
(2.4)

For  $(x, s), (y, s) \in \hat{\mathcal{A}} \times [t_0, T]$  and all through W(t) = t.

# **MAJOR RESULTS**

Assume that the set  $A(\eta, \xi)$  defined in [6] is compact in  $\mathbb{C}$ ,  $[t_0, T] \subseteq I$ . Let  $P : \hat{\mathcal{A}} \times [t_0, T] \to sesq(\mathbb{D} \boxtimes \mathbb{E})$  satisfy the conditions (2.3) and (2.4). Further let a finite set of points  $t_i \in [t_0, T]$ , i = 1, 2, ..., k be given with  $t_i < t_{i+1}$  for i = 1, 2, ..., k-1 and a system of k continuous maps

$$z_i: A \to sesq(\mathbb{D} \otimes \mathbb{E}), i = 1, 2, ..., k$$

The QSDE with impulsive action at the fixed points  $t_1, t_2, ..., t_k$  is of the form

$$X(t) = X_0 + \int_0^t (E(t, X(s)) d\Lambda_{\pi}(s) + F(s, X(s)) dA_f^+(s) + G(s, X(s)) dA_g(s) + H(s, X(s)) ds)$$

$$+ \sum_{0 < t_i < t} z_i(x) H_{t_i}(t) , t \neq t_i$$
(3.1)

$$\Delta x|_{t=t_i} = x(t_i^+) - x(t_i^-) = z_i(x(t_i)) \tag{3.2}$$

The equivalent form of (3.1) and (3.2) is given by

$$\frac{d}{dt}\langle \eta, x(t)\xi \rangle = P(x, t)(\eta, \xi) + \sum_{0 < t_i < t} z_i (x_{\eta\xi}) H_{\eta\xi, t_i}(t) , \quad t \neq t_i$$
(3.3)

$$\langle \eta, \Delta x \xi \rangle |_{t=t_i} = \langle \eta, x(t_i^+) \xi \rangle - \langle \eta, x(t_i) \xi \rangle = \langle \eta, z_i(x(t_i)) \xi \rangle$$
(3.4)

The equation (3.3) describes the behaviour of the state at the points different from  $t_i$ , i = 1, 2, ..., k and (3.4) represents the discontinuity from the right of the solution for  $t = t_i$  and satisfy the Lipschitz conditions defined in 2.6. Equation (3.3) is given in integral form as

$$\langle \eta, x(t)\xi \rangle - \langle \eta, x(0)\xi \rangle = \int_0^t P(x,s)(\eta,\xi)ds + \sum_{0 \le s_i \le s} z_i (x_{\eta\xi}) H_{\eta\xi,s_i}(t)$$

The Kurzweil equation associated with equation (3.3) is given by

$$\frac{d}{dt}\langle \eta, x(\tau)\xi \rangle = D[F(x(\tau), t)(\eta, \xi) + \sum_{0 < t_i < t} z_i (x_{\eta\xi}) H_{\eta\xi, t_i}(t)], \quad t \neq t_i$$
(3.5)

The differential system with impulses (3.3) and (3.4) is best described by its solution as follows:

### 3.1 Definition

A stochastic process  $x:[a,b] \subset [t_0,T] \to \tilde{A}$  is called a solution of the quantum stochastic differential

equation (3.3) and (3.4) if  $(x(t), t) \in A \times [t_0, T]$  for  $t \in [a, b]$ ,  $x \in Ad(\tilde{A})_{wac}$  on every interval  $[t_0, t_1] \cap [a, b]$ ,  $(t_i, t_{i+1}] \cap [a, b]$ , i = 1, 2, ..., k - 1,  $(t_k, b] \cap [a, b]$  and

$$\langle \eta, x(t_2)\xi \rangle - \langle \eta, x(t_1)\xi \rangle = \int_0^t P(x, s)(\eta, \xi) ds + \sum_{0 < t_i < t} z_i (x_{\eta \xi}) H_{\eta \xi, t_i}(t), t_1, t_2 \in [t_0, T].$$

For a given  $d \in [t_0, b)$  define  $H_{\eta \xi, d}(t) = 0$  for  $t \le d$ ,  $H_{\eta \xi, d}(t) = 1$  for t > d.

Where the relationship between the maps P and F is as defined below in definition 3.2.

#### 3.2 Definition

$$F(x,t)(\eta,\xi) = \int_0^t P(x,s)(\eta,\xi)ds + \sum_{0 < t_i < t} z_i (x_{\eta\xi}) H_{\eta\xi,t_i}(t) , t_0 = 0$$
 (3.6)

Where  $F: \hat{\mathcal{A}} \times [t_0, T] \longrightarrow sesq(\mathbb{D} \ \underline{\otimes} \ \mathbb{E} \ )$  belongs to the class  $\mathcal{F}(\hat{\mathcal{A}} \times [t_0, T], h_{\eta \xi}, W)$  for each  $\eta, \xi \in \mathbb{D} \ \underline{\otimes} \ \mathbb{E}$ .

The following result is a consequence of definition 3.1.

#### 3.2 Theorem

A stochastic process :  $[a,b] \to \tilde{A}$ ,  $[a,b] \subset [t_0,T]$  is a solution of the nonclassical differential equation (3.3) with impulses (3.4) on [a,b] if and only if x satisfies definition (3.1).

#### **Proof**

Assume that the stochastic process  $x: [t_0, T] \to \tilde{A}$  is a solution of equation (3.3), then for  $t \in (t_i, t_{i+1}]$ ,

$$\begin{split} &\int_0^t P(x(s),s)(\eta,\xi)ds = \int_0^t \frac{d}{ds} \langle \eta, x(s)\xi \rangle ds \\ &\int_0^{t_1} \frac{d}{ds} \langle \eta, x(s)\xi \rangle ds + \int_{t_1}^{t_2} \frac{d}{ds} \langle \eta, x(s)\xi \rangle ds + \dots + \int_{t_i}^t \frac{d}{ds} \langle \eta, x(s)\xi \rangle ds \\ &= [\langle \eta, x(t_1^-)\xi \rangle - \langle \eta, x(0^+)\xi \rangle] + [\langle \eta, x(t_2^-)\xi \rangle - \langle \eta, x(t_1^+)\xi \rangle] + \dots + \\ &\quad + [\langle \eta, x(t^-)\xi \rangle - \langle \eta, x(t_i^+)\xi \rangle] \\ &= [\langle \eta, x(t_1^-)\xi \rangle - \langle \eta, x(0)\xi \rangle] + [\langle \eta, x(t_2^-)\xi \rangle - \langle \eta, x(t_1^+)\xi \rangle] + \dots + \\ &\quad + [\langle \eta, x(t)\xi \rangle - \langle \eta, x(t_i^+)\xi \rangle] \\ &= \langle \eta, x(0)\xi \rangle - [\langle \eta, x(t_1^+)\xi \rangle - \langle \eta, x(t_1^-)\xi \rangle] - [\langle \eta, x(t_2^+)\xi \rangle - \langle \eta, x(t_2^-)\xi \rangle] - \dots - \\ &\quad - [\langle \eta, x(t_i^+)\xi \rangle - \langle \eta, x(t_i^-)\xi \rangle] + \langle \eta, x(t)\xi \rangle \end{split}$$

 $\langle \eta, x(t)\xi \rangle - \langle \eta, x(0)\xi \rangle = \int_0^t P(x(s), s)(\eta, \xi)ds + [\langle \eta, x(t_1^+)\xi \rangle - \langle \eta, x(t_1^-)\xi \rangle] +$ 

Hence

$$+[\langle \eta, x(t_{2}^{+})\xi \rangle - \langle \eta, x(t_{2}^{-})\xi \rangle] + \dots + [\langle \eta, x(t_{i}^{+})\xi \rangle - \langle \eta, x(t_{i}^{-})\xi \rangle]$$

$$= \langle \eta, x(0)\xi \rangle + \int_{0}^{t} P(x(s), s)(\eta, \xi)ds + \sum_{0 < t_{i} < t} \Delta x_{\eta\xi}(t_{i})$$

$$= \langle \eta, x(0)\xi \rangle + \int_{0}^{t} P(x(s), s)(\eta, \xi)ds + \sum_{0 < t_{i} < t} z_{i}(x_{\eta\xi}(t_{i})) H_{\eta\xi, t_{i}}(t)$$
(3.7)

Conversely, if  $x(.) \in A$  satisfies (3.7) for  $t \in (t_i, t_{i+1})$ , since  $\sum_{0 < t_i < t} z_i(x_{\eta \xi}(t_i))$  is a constant and its derivative is zero for  $t \neq t_i$ , i = 1, 2, ..., k. Hence, we deduce that

$$\frac{d}{dt}\langle\eta,x(t)\xi\rangle = P(x,t)(\eta,\xi),t \neq t_{i}$$

$$\langle\eta,x(0)\xi\rangle = \langle\eta,x_{0}\xi\rangle,\text{ and}$$

$$\langle\eta,x(t_{i})\xi\rangle = \langle\eta,x(t_{i}^{+})\xi\rangle - \langle\eta,x(t_{i}^{-})\xi\rangle$$

$$= [\langle\eta,x(0)\xi\rangle + \int_{0}^{t_{i}} P(x(s),s)(\eta,\xi)ds + \sum_{i=1}^{k} z_{i} \left(x_{\eta\xi}(t_{i})\right) H_{\eta\xi,t_{i}}(t)]$$

$$= [\langle\eta,x(0)\xi\rangle + \int_{0}^{t_{i}} P(x(s),s)(\eta,\xi)ds + \sum_{i=1}^{k-1} z_{i} \left(x_{\eta\xi}(t_{i})\right) H_{\eta\xi,t_{i}}(t)]$$

$$= z_{i} \left(x_{\eta\xi}(t_{i})\right) = \langle\eta,z_{i}(x(t_{i}))\xi\rangle.$$

We have the following results that connect the two classes of maps *F* and *P* together.

#### 3.2 Theorem

For each  $\eta, \xi \in \mathbb{D} \ \underline{\otimes} \ \mathbb{E}$  Assume that the map  $F : \hat{\mathcal{A}} \times [t_0, T] \to sesq(\mathbb{D} \ \underline{\otimes} \ \mathbb{E})$  belongs to the class  $\mathcal{F}(\hat{\mathcal{A}} \times [t_0, T], h_{\eta\xi}, W)$  and  $P : \hat{\mathcal{A}} \times [t_0, T] \to sesq(\mathbb{D} \ \underline{\otimes} \ \mathbb{E})$  belongs to the class  $(\hat{\mathcal{A}} \times [t_0, T], W)$ . Then for every  $x, y \in \hat{\mathcal{A}}, t_2, t_1 \in [t_0, T], F(x, t)(\eta, \xi)$  defined by (3.6) satisfies

• 
$$|F(x,t_2)(\eta,\xi) - F(x,t_1)(\eta,\xi)| \le \int_{t_1}^{t_2} M_{\eta\xi}^1(s) ds + C_{\eta\xi} \int_{t_1}^{t_2} M_{\eta\xi}^2(s) ds$$

• 
$$|F(x,t_2)(\eta,\xi) - F(x,t_1)(\eta,\xi) + F(y,t_2)(\eta,\xi) - F(y,t_1)(\eta,\xi)|$$
  
 $\leq W(||x-y||_{\eta\xi}) \int_{t_0}^T K_{\eta\xi}^p(s) ds$ 

The map  $F(x,t)(\eta,\xi)$  is of class  $\mathcal{F}(\hat{\mathcal{A}}\times[t_0,T],h_{\eta\xi},W)$  for each  $\eta,\xi\in\mathbb{D}\otimes\mathbb{E}$ , where

$$h_{\eta\xi}(t) = \int_{t_0}^t M_{\eta\xi}(s)ds + \int_{t_0}^t K_{\eta\xi}^p(s)ds$$

## Proof

Since  $A(\eta, \xi)$  is compact and the maps are continuous, there exists a constant  $C_{\eta\xi} \geq 0$  such that  $|\langle \eta, z_i(x)\xi \rangle| \leq C_{\eta\xi}$  for all  $x_{\eta\xi} \in A(\eta, \xi)$  and i = 1, 2, ..., k. Therefore since (2.3) holds we have by (3.6) and for all  $x \in A(\eta, \xi), t_2, t_1 \in [t_0, T]$ 

$$\begin{split} &|F(x,t_{2})(\eta,\xi) - F(x,t_{1})(\eta,\xi)| \leq \\ &\leq \left| \int_{t_{1}}^{t_{2}} P(x,s)(\eta,\xi) ds \right| + C_{\eta\xi} \left| \sum_{i=1}^{k} H_{\eta\xi,t_{i}}(t_{2}) - H_{\eta\xi,t_{i}}(t_{1}) \right| \\ &\leq \int_{t_{1}}^{t_{2}} M_{\eta\xi}^{1}(s) ds + C_{\eta\xi} \int_{t_{1}}^{t_{2}} M_{\eta\xi}^{2}(s) ds \\ &\leq \left| h_{\eta\xi}^{1}(t_{2}) - h_{\eta\xi}^{1}(t_{1}) \right| + C_{\eta\xi} \left| h_{\eta\xi}^{2}(t_{2}) - h_{\eta\xi}^{2}(t_{1}) \right| \end{split}$$

where  $h_{\eta\xi}^1:[t_0,b]\to\mathbb{R}$  is as defined in [4] where  $F_1(x,t)(\eta,\xi)=\int_0^t P(x,s)(\eta,\xi)ds$  belongs to the class  $\mathcal{F}(\hat{\mathcal{A}}\times[t_0,T],h_{\eta\xi}^1,W_1)$  and

$$h_{\eta\xi}^2(t) = \sum_{i=1}^k H_{\eta\xi,t_i}(t), t \in [t_0,T].$$

Clearly  $h_{\eta\xi}^2$  is nondecreasing and continuous from the left on  $[t_0, T]$ . If  $W_2$  is the common modulus of continuity of the finite systems of mappings  $z_i$ , i = 1, 2, ..., k then

$$||z_i(x) - z_i(y)||_{\eta\xi} \le W_2(||x - y||_{\eta\xi})$$

for  $x, y \in A$ . Using the information from [1, 4] on the Caratheodory equations, we obtain

$$|F(x,t_2)(\eta,\xi) - F(x,t_1)(\eta,\xi) + F(y,t_2)(\eta,\xi) - F(y,t_1)(\eta,\xi)|$$

$$\leq W_1(\|x-y\|_{\eta\xi}) \left| h_{\eta\xi}^1(t_2) - h_{\eta\xi}^1(t_1) \right| + W_2(\|x-y\|_{\eta\xi}) \left| h_{\eta\xi}^2(t_2) - h_{\eta\xi}^2(t_1) \right|$$

for  $x, y \in A(\eta, \xi)$  and  $t_2, t_1 \in [t_0, T]$ . The first term correspond to P and for the second term in (3.6) we have the following estimate

$$\left| \sum_{i=1}^{k} \left( z_{i}(x_{\eta\xi}) - z_{i}(y_{\eta\xi}) \right) (H_{\eta\xi,t_{i}}(t_{2}) - H_{\eta\xi,t_{i}}(t_{1})) \right|$$

$$\leq W_2(\|x-y\|_{\eta\xi})\sum_{i=1}^k (H_{\eta\xi,t_i}(t_2) - H_{\eta\xi,t_i}(t_1))$$

$$\leq W_2(\|x-y\|_{\eta\xi}) |h_{\eta\xi}^2(t_2) - h_{\eta\xi}^2(t_1)|$$

where If we take  $h_{\eta\xi}(t) = h_{\eta\xi}^1(t) + h_{\eta\xi}^2(t)$  for  $t \in [t_0, T]$  and  $W(r) = W_1(r) + W_2(r)$  then we obtain that the map  $F(x, t)(\eta, \xi)$  defined by (3.6) belongs to the class  $\mathcal{F}(\tilde{A} \times [a, b], h_{\eta\xi}, W)$ .

We now present the major result in this section.

# 3.3 Theorem

A stochastic process :  $[a, b] \to \tilde{A}$ ,  $[a, b] \subset [t_0, T]$  is a solution of the nonclassical differential equation (3.3) with impulses (3.4) on [a, b] if and only if x is a solution of (3.5).

## Proof

That a stochastic process  $x: [a, b] \to \tilde{A}$  is a solution of the nonclassical differential equation (3.3) with impulses (3.4) on [a, b]. By theorems 3.2 and 4.4 in [1], the integral  $\int_{t_1}^{t_2} DF(x(\tau), t)(\eta, \xi)$  exists and

$$\langle \eta, x(t_2)\xi \rangle - \langle \eta, x(t_1)\xi \rangle = \int_{t_1}^{t_2} P(x(t), t)(\eta, \xi) ds + \sum_{i=1}^{k-1} z_i (x_{\eta\xi}(t_i)) H_{\eta\xi, t_i}(t)$$

$$= \int_{t_1}^{t_2} D[F(x(\tau), t)(\eta, \xi) + \sum_{i=1}^{k-1} z_i (x_{\eta\xi}(t_i)) H_{\eta\xi, t_i}(t)]$$
(3.8)

for all  $t_1, t_2 \in [a, b]$ . Hence x is a solution of (3.5).

Conversely, if x is a solution of (3.5), then by theorem 3.2 x satisfies eq. (3.3). Since  $F(x(\tau), t)(\eta, \xi)$  is of class  $\mathcal{F}(\tilde{A} \times [a, b], h_{\eta\xi}, W)$ , we have

$$\langle \eta, x(t_2)\xi \rangle - \langle \eta, x(t_1)\xi \rangle = \left| \int_{t_1}^{t_2} D[F(x(\tau), t)(\eta, \xi) + \sum_{i=1}^{k-1} z_i (x_{\eta\xi}(t_i)) H_{\eta\xi, t_i}(t)] \right|$$

$$\leq \left| h_{\eta\xi}^1(t_2) - h_{\eta\xi}^1(t_1) \right| + C_{\eta\xi} \left| h_{\eta\xi}^2(t_2) - h_{\eta\xi}^2(t_1) \right|$$
(3.9)

Hence by theorem 5.1 in [1], we have

$$\int_{t_1}^{t_2} P(x(t), t)(\eta, \xi) ds + \sum_{i=1}^{k-1} z_i(x_{\eta\xi}(t_i)) H_{\eta\xi, t_i}(t) = \int_{t_1}^{t_2} D[F(x(\tau), t)(\eta, \xi) + \sum_{i=1}^{k-1} z_i(x_{\eta\xi}(t_i)) H_{\eta\xi, t_i}(t)].$$

The theorem has established the fact that x is a solution of (3.5) if and only if (3.8) holds by equation (3.9). This follows if and only if equation (3.3) and (3.4) hold, and the theorem is established.

## REMARK

The above result holds since the equivalence of the two equations have been established in [1]. This work would have applications in the theory of quantum continuous measurements and in areas such as mechanics, electrical engineering, medicine biology, and ecology.

## **CONCLUSIONS**

We have established existence of solutions for a class of impulsive quantum stochastic differential equations associated with the Kurzweil equations, which generalizes analogous results due to the references [15, 17-19].

## REFERENCES

- 1. Ayoola, E.O. (2001) Lipschitzian Quantum Stochastic Differential Equations and the Associated Kurzweil Equations, Stochastic analysis and applications, 19 (4), 581-603.
- 2. Ballinger, G, Liu, X. (1999) Existence and uniqueness results for impulsive delay differential equations, Dynam. contin. discrete impuls. systems (5) 579–591.
- 3. Benchohra, M, Henderson, J and Ntouyas, S.K. (2002), Existence results for impulsive semilinear neutral functional differential equations in Banach spaces, Memoirs on Diff. Equ. Math. Phys., 25, 105-120.
- 4. Bishop, S. A. (2012) 'Discontinuous quantum stochastic differential equations and the associated kurzweil equations', IJBAS, 12(4), 25-31.
- 5. Bishop, S. A and Ayoola, E. O. (2013) 'Variational Stability for Kurzweil Equations associated with Quantum Stochastic Differential Equations', Australian J. of basic and applied sciences, May issue,787-798.
- 6. Da Prato, G and Zabczyk, J. (1992), Stochastic equations in infinite dimensions, Vol 44 Encyclopedia of Mathematics and its Applications, Cambridge university Press, Cambridge, Mass, USA.
- 7. Ekhaguere, G. O. S. (1992), 'Lipschitzian Quantum Stochastic Differential Inclusions. Int. journal of theoretical physics'. 31(11), 2003 2034.
- 8. Guendouzi, T and Mehdi, K. (2013), 'Existence of mild solutions for impulsive fractional stochastic equations with infinite delay'. Malaya journal of matematik 4(1), 30–43.

- 9. Hern'andez, E, Pierri, M, and Goncalves, G.(2006). 'Existence results for an impulsive abstract partial Differential equation with state-dependent delay'. Computers & mathematics with applications, 52(3-4), 411-420.
- 10. Hespanhaa, J. P., Daniel, L. and Andrew R. T. (2008), 'Lyapunov conditions for input-to-state stability of impulsive systems'. Automatica 44, 2735-2744.
- 11. Hudson, R. L. and Parthasarathy, K. R. (1984), 'Quantum Ito's formulae and stochastic evolutions'. Comm. math. phys., 93, 301-324.
- 12. Lakshmikantham, V, Ba'ınov, D and Simeonov, P. (1989), 'Theory of Impulsive Differential Equations', World scientific publishing.
- 13. Lin, A and Hu, L. (2010), 'Existence results for impulsive neutral stochastic functional integro-differential inclusions with nonlocal initial conditions', Computers & mathematics with applications, 59, 64-73.
- 14. Milman, V. D. and Myskis, A. D. (1960), 'On the stability of motion in the presence of impulses'. S.mat. Zur. 1, 233 237(Russian).
- 15. Ogundiran, M.O. and Payne, V.F.(2013), 'On the Existence and Uniqueness of solution of Impulsive Quantum Stochastic Differential Equation'. Differential equations and control processes, 2.
- 16. Pandit, S. G. (1977), 'On Stability of impulsively perturbed differential systems'. Bull. austral: math.soc., 17 (20), 423-432.
- 17. Schwabik, S. (1992) Generalized ordinary differential equations. World Scientific.
- 18. Robert, K. (2002-03) Impulsive differential equations with non-local conditions. Morehead electronic journal of applicable mathematics. Issue 3 MATH.
- 19. Samojilenko, A. M. and Perestjuk, N.A. (1987), 'Differential equations with impulsive action', Golovnocizd., Kiev, (Russian).
- 20. Jun Liu, Xinzhi Liu, and Wei-Chau, X. (2011), 'Impulsive stabilization of stochastic functional differential equations'. Applied mathematics letters, 24, 264–269.
- 21. Jun Liu, Xinzhi Liu, and Wei-Chau X. (2011), 'Input-to-state stability of impulsive and switching hybrid systems with time-delay'. Automatica 47, 899–908.
- 22. Yang, Z, Xu, D and Xiang, L. (2006), 'Exponential p-stability of impulsive stochastic differential equations with delays'. Elsevier, 359, 129-137.