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Abstract--  In analogous to classical ordinary differential equations, we study and establish results on converse variational stability of 

solution of quantum stochastic differential equations (QSDEs) associated with the Kurzweil equations. The results here generalize 

analogous results for classical initial value problems. The converse variational stability guaranteed the existence of a Lyapunov function 

when the solution is variationally stable. 
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1.     INTRODUCTION 

Results on kinds of variational stability of solution of the Kurzweil equations associated with quantum stochastic differential 

equations (QSDEs) have been established in [4]. In this work, we establish the converse variational stability of solution of 

equation of the results established in [4]. Because it is difficult to explicitly write the solution to the given equation, we employed 

Lyapunov's method [20] to establish results on converse variational stability of the trivial solution of the Kurzweil equations 

associated with QSDEs. 

Lyapunov's method enables one to investigate stability of solution without explicitly solving the differential equation by making 

use of a real-valued function called the Lyapunov's function that satisfies some conditions such as positive definite, continuity, 

etc. Converse variational stability is more like a search for a Lyapunov's function [7-20]. It guarantees the existence of a 

Lyapunov function. 

This paper is therefore devoted to the converse of results on variational stability established in [4], namely Theorems 5.3.3 and 

5.3.4. The main goal here is to show that the variational stability and asymptotic variational stability imply the existence of 

Lyapunov functions with the properties described in Theorems 5.3.3 and 5.3.4, and hence strengthens our results on variational 

stability. 

The rest of this paper is organized as follows. Section 2 will be devoted to some fundamental concepts, notations and structures of 

variational stability that are employed in subsequent sections. In sections, 3 we establish some concepts of converse variational 

stability within the context of QDES and the associated Kurzweil equation. In this same section we present some auxiliary results 

which will be used to establish the main results. Our main results will be established in section 4. We establish the main results on 

the converse of variational stability and asymptotic variational stability. 

In what follows, as in [1, 2, 4] we employ the locally convex topological state space Ã of noncommutative stochastic processes 

and we adopt the definitions and notations of the spaces Ad(Ã), Ad(Ã)wac ,     
 

    ,     
      , BV(Ã ) and the integrator 

processes       
     for f , g  ∈  L 

∞
γ, loc( +),  𝜋 ∈ L 

∞
B(γ) ,  loc( +),   and E, F, G, H lying in Loc

2
loc(I × Ã). 

We introduce the concept of converse variational stability of quantum stochastic differential equations driven by the Hudson - 

Parthasarathy [8] integrators         
       (t) given by 

 

     dX(t) = E(X(t), t)d       + F(X(t), t)d  
     +G(X(t), t)d  (t) + H(X(t), t)dt 

       X(t0) = X0 , t ∈  [0; T]                                                                                                      (1.1) 

We shall consider the Kurzweil equation associated with the equivalent form of (1.1). As in the reference [4] solutions of (1.1) are 

Ã - valued processes defined in [4]. For arbitrary    ∈      , the equivalent form of (1.1) is given by 

 
 

  
〈       〉                                                                                                     

Where the map                    is as defined by equation (1. 4) in [4]. 

We employ the associated Kurzweil equation introduced in [4, 5] given by 
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〈       〉                                                                                                 

Where 

          F(x, t)( ,  )  = ∫              
 

 
                                                                           (1.4)   

Next we present some fundamental concepts which we shall use in subsequent 

sections. 

                          2.     FUNDAMENTAL CONCEPTS AND DEFINITIONS OF VARIATIONAL STABILITY 

In [4] it has been shown that the trivial process given by X(s) ≡ 0 for 

s∈ [0, T] is a solution of the Kurzweil equation (1.3). 

Next we present some concepts of stability of the trivial solution X(s) ≡ 0, s ∈ [0, T] of equation (1.3). 

 2.1 Definition: The trivial solution X ≡ 0 of equation (1.3) is said to be variationally stable if for every ε > 0, there exists δ(η, ξ, 

ε) := δηξ > 0 such that if Y : [0, T] → Ã  is a stochastic process lying in Ad(Ã)wac ∩ BV (Ã) with 

                            ||Y(0)||ηξ < δηξ 

and 

            〈       〉  ∫                 
 

 
  δηξ 

then we have 

                           ||Y(t)||ηξ < ε 

For all t ∈ [0, T] and for all    ∈      . 

2.2 Definition: The trivial solution X ≡ 0 of equation (1.3)  is said to be variationally attracting if there exists δ0 > 0 and for every 

ε > 0, there exists A = A(ε),  

 0 ≤ A(ε) < T and B(η, ξ, ε) = B > 0 such that if  

 Y ∈ Ad(Ã)wac ∩ BV (Ã) with ||Y(0)||ηξ < δ0   and  

                         〈       〉  ∫                 
 

 
   

Then  

                      ||Y(t)||ηξ < ε   for all  t ∈ [A, T]. 

2.3 Definition: The trivial solution X ≡ 0 of equation (1.3) is called variationally 

asymptotically stable if it is variationally stable and variationally attracting. 

Together with (1.1) we consider the perturbed QSDE 

  dX(t) = E(X(t), t)d       + F(X(t), t)d  
     +G(X(t), t)d  (t) +( H(X(t), t) + p(t))dt 

       X(t0) = X0 , t ∈  [0, T]                                                                                                      (2.1) 

where p ∈ Ad(Ã)wac ∩ BV (Ã).  The perturbed equivalent form of (2.1) is given 

by 

        

 

  
〈       〉              〈       〉                                                                                 

The Kurzweil equation associated with the perturbed QSDE (2.2) then becomes 

 
 

  
〈       〉                                                                                                            

Where Q : [0,T] → Ã belongs to Ad(Ã)wac ∩ BV (Ã) as well. 

We remark here that the map given by equation (1.4) is of class C(Ã×[a, b], W) where 

  

                                 F(x, t)( ,  )+Q(t)( ,  )  = ∫              〈       〉   
 

 
   

and 
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                                    〈       〉             

 

In [4], it has been shown that the right hand side                       of 

equation (2.3) is of class  (Ã × [a, b],     , W) where      

                                 

and all fundamental results in [4] (e.g. the existence of solution) hold for 

equation (2.2) and hence (2.3). 

 

2.4 Definition: The trivial solution X ≡ 0 of equation (1.3) is said to 

be variationally stable with respect to perturbations if for every ε > 0 there exists a  δ = δηξ > 0 such that if ||Y0||ηξ < δηξ  , Y0 ∈ Ã 

and the stochastic process Q belongs to the set Ad(Ã)wac ∩ BV(Ã) such that  

                  Var(                  then  ||Y(t)||ηξ < ε    

for t ∈ [0, T] where Y(t) is a solution of (2.3) with Y(0) = Y0. 

2.5 Definition: The solution X ≡ 0 of (1.3) is called attracting with respect to perturbations if there exists δ0  > 0 and for every ε > 

0, there is a 

A = A(ε) ≥ 0 and B(η, ξ, ε) = B > 0 such that if 

                   ||Y0||ηξ < δ0 , Y0 ∈  Ã 

and Q ∈ Ad(Ã)wac ∩ BV(Ã), satisfying Var(               
then 

                          ||Y(t)||ηξ < ε ,    

for all t ∈ [A, T], where Y(t) is a solution of (2.3). 

2.6 Definition: The trivial solution X ≡ 0 of equation (1.3) is called asymptotically stable with respect to perturbations if it is 

stable and attracting with respect to perturbations. 

2.7 Notation: Denote by Ad(Ã)wac ∩ BV(Ã) := A  the set of all adapted 

stochastic processes 𝜑 : [0; T] → Ã that are weakly absolutely continuous 

and of bounded variation on [t0, T]. 

Next we establish some auxiliary results and definitions which we adopted from 

[4]. 

  

                       3.   AUXILIARY RESULTS, NOTATIONS AND DEFINITIONS 

We introduce a modified notion of the variation of a stochastic process to 

suit the concept of converse variational stability. 

 

3.1 Definition: Assume that Ф : [a, b] → Ã  is a given stochastic process. 

For a given decomposition 

                                D : a = 𝛼0 < 𝛼1 < . . . < 𝛼k = b 

  of the interval [a, b] ⊂ [0, T] and for every λ ≥ 0 define 

                 ∑    (      )‖  𝛼     𝛼    ‖  

 
    

And set  

                                          

where the supremum is taken over all decompositions D of the interval [a, b]. 

 

3.2 Definition: The number               is called the   -variation of the 

map t → 〈       〉 over the interval [a, b]. 

 

3.3 Definition: The real valued map                    (x; t) is said to 

be positive definite if 

(i) There exists a continuous nondecreasing function b : [0, ∞) →   such 

that b(0) = 0 and 

(ii)               || ||
  

  for all (x , t) ∈ Ã × [0, T] 

(iii)                for all (x , t) ∈ Ã × [0, T]. 

 

3.1 Lemma: If -∞ < a < b < +∞   and   Ф : [a, b] → Ã is a stochastic 

process, then for every λ ≥ 0 we have 

                                                                               (3.1) 
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If a ≤ c ≤ b, λ ≥ 0 then the identity 

                                                                             (3.2) 

holds. 

Proof. For every λ ≥ 0 and every decomposition D of [a, b] we have 

                                     

Therefore 

                                                

                              ∑ |  𝛼 )        𝛼        | 
    

and passing to the supremum over all finite decomposition D of [a, b] we 

obtain the inequality (3.1) 

                                                                

The second statement can be established by restricting ourselves to the 

case of decomposition D which contain the point c as a node, i.e. 

D : a = 𝛼0 < 𝛼1 < . . . < 𝛼l-1 < 𝛼l = c < 𝛼l+1  < . . . < 𝛼k = b 

 

Then 

             ∑           |  𝛼 )        𝛼        |

 

   

 

                  

                               

 ∑           |  𝛼 )        𝛼        |

 

   

 

           

 ∑            |  𝛼 )        𝛼        |

 

     

 

 

    

         ∑            |  𝛼 )        𝛼        |

 

   

 

       

 ∑            |  𝛼 )        𝛼        |

 

     

 

        

                                                                  
 

where 

                            D1 : a = 𝛼0 < 𝛼1 < . . . < 𝛼l-1 < 𝛼l = c  

And   

                                           D2 :  c = 𝛼l < 𝛼l+1  < . . . < 𝛼k = b 

are decompositions of [a, c] and [c, b], respectively. On the other hand, any 

two such decompositions D1 and D2 form a decomposition D of the interval 

[a, b]. 

The equality 

                                                                        

now easily follows from (3.3) when we pass the corresponding suprema. 

3.2 Corollary: Assume that the following hold. 

(i) If a ≤ c ≤ b, and λ ≥ 0  then 
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(ii) Let (0) = 0,  (t) = x and set      ∈     ||𝜑   ||    , for a > 0, t > 0,  𝜑 ∈ A. 

(iii) For λ ≥ 0, s ≥ 0 and x ∈ Ã   set                     

                                           〈  𝜑    〉  ∫    𝜑           
 

 
   

if s > 0 and 

                                              || ||     if s = 0                                        (3.5) 

Note that the definition of              makes sense because for 𝜑 ∈ A 

the integral ∫    𝜑           
 

 
 is a function of bounded variation in the variable   and therefore the function 

                                        〈  𝜑    〉  ∫    𝜑           
 

 
 

is of bounded variation on [0, s] as well and the   -variation of this function 

is bounded. The trivial process 𝜑 ≡ 0 evidently belongs to A for x = 0 and therefore we 

have 

                                                                                                   

for every s ≥ 0 and λ ≥ 0 because 

                                        〈  𝜑    〉  ∫    𝜑           
 

 
    

for   > 0. Since 

           〈  𝜑    〉  ∫    𝜑           
 

 

    

for every 𝜑 ∈ A, we have by the definition (3.5) also the inequality 

                      |            |                                                                         

for every s ≥ 0 and x ∈ Ã. 

3.3 Lemma: For x, y ∈ Ã , s ∈ [0, T] and λ ≥ 0, the inequality 

    |                         |  ||   ||
  

                                                    

holds. 

Proof. Assume that s > 0 and 0 < β < s. 

Let 𝜑 ∈ A be arbitrary. Let 𝜑β( ) = 𝜑( ) for   ∈ [0, s-β], and set 

                         𝜑β( ) = 𝜑( -β)+
 

 
(  𝜑     )        

For   ∈        . 
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The process 𝜑β coincides with 𝜑 on [0, s-β] and is linear with 𝜑β(s) = y on 

[      . By definition 𝜑β  ∈ A and by (3.2) from Lemma 3.1 we obtain 

                        〈  𝜑     〉  ∫    𝜑           
 

 

  

                                                              〈  𝜑    〉  ∫    𝜑           
 

 
  

                                                          〈  𝜑    〉  ∫    𝜑            
 

 
 

                                                               〈  𝜑    〉  ∫    𝜑           
 

 
 

                                                              〈  𝜑    〉             ∫    𝜑            
 

 
 

                                                               〈  𝜑    〉  ∫    𝜑           
 

 
 

                                                 ‖  𝜑     ‖                   𝜑                                

               Since for every β > 0 we have 

                                                              〈  𝜑    〉  ∫    𝜑           
 

 
  

                                                        〈  𝜑    〉  ∫    𝜑           
 

 
  

                                                          〈  𝜑    〉  ∫    𝜑           
 

 
  

            〈  𝜑    〉  ∫    𝜑           
 

 

  

         by (3.6), we obtain for every β > 0 the inequality 

                        〈  𝜑    〉  ∫    𝜑           
 

 

  

 ‖  𝜑     ‖                   

The function     is assumed continuous on [0, T] and the stochastic process 

𝜑 is such that t → 〈  𝜑    〉 is continuous on [0, T] and therefore we have 

                             〈  𝜑    〉   〈  𝜑    〉  〈    〉, 

moreover the last inequality is valid for every β > 0 and consequently we can 

pass to the limit β→ 0 in order to obtain 

                       (〈  𝜑    〉  ∫    𝜑           
 

 

)  ‖   ‖   
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for every 𝜑 ∈ A. Taking the infimum for all 𝜑 ∈ A on the right hand side of 

the last inequality we arrive at 

                            ‖   ‖                                    

Since this reasoning is fully symmetric with respect to x and y we similarly 

obtain also 

                            ‖   ‖                 

 

and this together with (3.9) yield (3.8) for s > 0. 

If s = 0, then we have by definition 

|                           | |‖ ‖    ‖ ‖  |   ‖   ‖                          

this proves the Lemma. 

 

3.4 Corollary: Since                 for every s > 0, we have by (3.6) 

and (3.8) 

                 ‖ ‖                                                   

3.5 Lemma: For y ∈ Ã, s, r ∈ [0, T] and λ ≥ 0, the inequality 

|                           |  (     |   |)  |             |                                                    

holds. 

Proof. Suppose that 0 ≤ s ≤ r and 𝜑 ∈ A is given. Set ‖ ‖      Then by 

Lemma 3.1 we have 

          (〈  𝜑    〉  ∫    𝜑           
 

 

) 

                   (〈  𝜑    〉  ∫    𝜑           
 

 

) 

           (〈  𝜑    〉  ∫    𝜑           
 

 

) 

             𝜑                      (〈  𝜑    〉  ∫    𝜑           
 

 

) 

         *   𝜑                    〈  𝜑    〉          (∫    𝜑           
 

 

)+ 
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             𝜑            ‖  𝜑   ‖                  

         [                          ]                                              

The inequality (3.9) from Lemma 3.3 leads to 

                                                     𝜑            ‖  𝜑   ‖                 

Taking the infimum over 𝜑 ∈ A on the left hand side of (3.12) we have 

                     [                          ] 

                      (             )                                 

Now let 𝜑 ∈ A be arbitrary. We define 

𝜑                ∈      
            ∈      

 

We then have  𝜑     𝜑      𝜑 ∈     and by (3.1), (3.6) we obtain         

               

                                           (〈  𝜑     〉  ∫    𝜑            
 

 
)        

                   (〈  𝜑     〉  ∫    𝜑            
 

 

)   

           (〈  𝜑     〉  ∫    𝜑            
 

 

) 

                   (〈  𝜑    〉  ∫    𝜑           
 

 

)   

        〈  𝜑     〉          (∫    𝜑            
 

 

)   

                   (〈  𝜑    〉  ∫    𝜑           
 

 

)                 

Taking the infimum over all 𝜑 ∈ A on the right hand side of this inequality 

we obtain 

                                                 

Together with (3.13) we have 

                                                |                                 |                              

Hence, by (3.10) we get the inequality 

|                         |   

|                                 |  |          |              

 |             |              ‖ ‖    

 |             |                

because  ‖ ‖     . In this way we have obtained (3.11). 

Assume that s = 0 and r > 0. Then by (3.10) and by the definition given in 
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(3.5) we get 

                                                     

               ‖ ‖                                              

We derive an estimate from below. Assume that 𝜑 ∈ A. By (3.1) in Lemma 

3.1 and Lemma 1.9.9 in [4], we have 

          (〈  𝜑    〉  ∫    𝜑           
 

 

) 

           〈  𝜑    〉            (∫    𝜑           
 

 

) 

             〈  𝜑    〉          (∫    𝜑           
 

 

) 

                                      |〈  𝜑    〉  〈  𝜑    〉|  (               

                                      ‖ ‖    (               

By Lemma 3.1, Lemma 1.9.10 in [4] and (3.1). Passing again to the infimum for 𝜑 ∈ A on the left hand side of this inequality we 

get 

                                                           ‖ ‖    (               

and 

                                        ‖ ‖   

                                                 ‖ ‖    (               

                                                 ‖ ‖    (               

This together with (3.14) yields 

              |                         |              (               

and this means that the inequality (3.11) holds in this case too. The remaining 

case of r = s = 0 is evident because 

|                         |             ‖ ‖   (               

For the case when r < s we obtain 

|                         |           ‖ ‖   (              , 

because the situation is symmetric in s and r. We have thus established results 

for the case when s ≥ 0, s and r. 

By the previous Lemmas 3.1, 3.3 and (iii) of definition 3.3, we immediately conclude 

that the following holds. 

3.6 Corollary: For x, y ∈ Ã, r, s ∈ [0,T] and λ ≥ 0 the inequality  
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          |                         |   ‖   ‖   

                                     |   |   |             |                                                             

holds. 

Next, we shall discuss the behaviour of the function              defined by 

(3.5) along the solutions of the Kurzweil equation 

 

  
〈       〉                                                                                                 

We still assume that the assumptions given at the beginning of this section 

are satisfied for the right hand side F(x, t)(η, ξ). The next result will be employed in what follows. 

3.7 Lemma: Assume that  : [s, s + β(s)] → Ã is a solution of (1.3), 

s ≥ 0, β(s) > 0, then for every λ the inequality 

   
   

   
                                    

 
                   

                                                                                                                                                (3.16) 

Holds. 

 

Proof: Let s ∈ [0, T] and x ∈ Ã be given. Let us choose a > 0 such that  

    ‖ ‖                   . Assume that 𝜑 ∈ A is given and let  

 : [s, s + β(s)] → Ã be a solution of (1.3) on [s, s + β(s)] with  (s) = x 

where  0 < β(s) < 1. The existence of such a solution is guaranteed by the 

existence theorem in [4]. 

For 0 < β < β(s) define 

                        𝜑          𝜑         for   ∈ [0, s] 

and  

                        𝜑                    for   ∈ [s, s+β]. 

we have 𝜑     =       = 𝜑        

Then  𝜑      , for β ∈ [s, s+β] and since   is weakly absolutely continuous and by the definition of a solution we have 

|〈       〉|  |〈       〉  ∫                
 

 

 

             ‖ ‖   (                ‖ ‖   (                  

For   ∈ [s, s+β] and 

                      

             (〈  𝜑    〉  ∫    𝜑           
 

 

) 

               (〈  𝜑    〉  ∫    𝜑           
 

 

) 

             (〈       〉  ∫    𝜑           
 

 

∫                
 

 

 ) 

               (〈  𝜑    〉  ∫    𝜑           
 

 

) 



                                        International Journal of Basic & Applied Sciences IJBAS-IJENS Vol:13 No:02                                   80   

                                                                                                    130802-2727- IJBAS-IJENS @ April  2013 IJENS                                                   I J E N S 

             (〈    〉  ∫    𝜑           
 

 

) 

               (〈  𝜑    〉  ∫    𝜑           
 

 

) 

Taking the infimum for all 𝜑 ∈ A on the right hand side of this inequality 

we obtain 

                                                          

This inequality yields 

                                                               

and also 

                                    

 
  

      

 
                

for every 0 < β < β(s). 

Since       
      

 
    we immediately obtain (3.16). 

                         4.    CONVERSE THEOREMS 

Now we establish the converse of Theorems 5.3.3 and 5.3.4 established in [4]. 

4.1 Theorem: Assume that the trivial solution x ≡ 0 of equation (1.3) is variationally stable then for every 0 < a < c, there exists a 

real-valued map                 satisfying the following conditions: 

 

(i) for every x ∈ Ã the function t →                is of bounded variation in t and continuous in t, 

 

(ii)                   and |                       |   ‖   ‖    for x, y ∈ Ã t ∈ [0, T], 

 

(iii) the function             is non-increasing along the solutions of the 

equation (1.3), 

 

(iv) the function             is positive definite if there is a continuous 

nondecreasing real-valued function b : [0,+∞) → R such that b( ) = 0 

if and only if ρ = 0 and 

 (‖ ‖  )               

for every x ∈ Ã,  t ∈ [0, T]. 

Proof: The candidate for the function             is the function              

defined by (3.5) in section 3. 

For λ = 0, i.e. we take                                       . Hypothesis (i) is established by Corollary 3.6. Hypothesis 

(ii) follow from (3.6) and from Lemma 3.3 i.e. The trivial process  

x ≡ 0 evidently belongs to A for x = 0 and therefore we have                                                               

 

                                                                                        
  for every s ≥ 0 and λ ≥ 0, because   

〈  𝜑    〉  ∫    𝜑           
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for   > 0. The inequality |                       |   ‖   ‖   follows 

from the proof of Lemma 3.3. 

By Lemma 3.7 for every solution    : [s, s +  ] → Ã of equation (1.3) we have 

   
   

   
                                    

 
   

and therefore (iii) is also satisfied. 

It remains to show that the function             given in this way is positive 

definite. This is the only point where the variational stability of the solution 

 x ≡ 0 of equation (1.3) is used. 

Assume that there is an ε, 0 < ε < a and a sequence          , k = 1, 2, . . . , 

   ‖   ‖      ,      for     such that                  for 

k →∞. Let δ(ε) > 0 correspond to ε by Definition 2.4 of stability with respect to perturbations (the variational stability of x ≡ 0 is 

equivalent to the stability with respect to perturbations of this solution by Theorem 5.2.1 in [4]). Assume that k ∈ ℕ is such that 

for k > 0 we have                   .Then there exists 𝜑 ∈   such that for every   ∈        

         (〈  𝜑     〉  ∫    𝜑            
 

 

)       

We set 

            〈       〉  〈  𝜑     〉  ∫    𝜑            
 

 
  for  ∈        

          〈       〉  〈        〉  ∫    𝜑            
  
 

  for  ∈             

 We then have 

        〈       〉           (〈  𝜑     〉  ∫    𝜑            
 

 

)        

and the function 〈       〉 is continuous on [0, T]. for  ∈        we have 

〈  𝜑     〉  ∫    𝜑            
 

 

 〈  𝜑     〉  ∫    𝜑            
 

 

 

 ∫    𝜑            
 

 

 〈       〉  〈       〉 

〈  𝜑     〉  ∫     𝜑            
 

 

 〈       〉  

because 𝜑      . Hence, 𝜑  is a solution of the equation  

 

  
〈       〉                〈       〉         

and therefore, by the variational stability we have ‖𝜑    ‖      for every 

s ∈ [0, tk]. Hence we also have ‖𝜑     ‖    ‖  ‖       and this contradicts 

our assumption. In this way we obtain that the function             is positive definite and (iv) is also satisfied. 

The next statement is the converse of Theorem 5.3.4 in [4] on variational asymptotic 

stability. 
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4.2 Theorem: Assume that the trivial solution x ≡ 0 of equation (1.3) is variationally asymptotically stable then for every 0 < a < 

c there exists a real-valued map 

                         satisfying the following conditions: 

 

(i) For every x ∈ Ã the map               is continuous on [0, T] and is locally of bounded variation on [0, T], 

 

(ii)               and 

 

|                       |  ‖   ‖    for x, y ∈ Ã, t ∈ [0, T], 

 

(iii) For every solution ( ) of the equation (1.3) defined for   ≥ t, where 

 ( ) = x ∈ Ã, the relation 

   
   

   
                               

 
               

holds, 

 

(iv) the function             is positive definite. 

 

Proof: For x ∈ Ã, s ≥ 0 we set 

                        

Where              is the function defined by (3.5) for λ = 1. In the same way as in the proof of Theorem 4.1 the map 

            satisfies (i), (ii) and (iii). (The item (iii) is exactly the statement given in Lemma 3.7). It remains to show that (iv) is 

satisfied for this choice of the function             . Since the solution x ≡ 0 of equation (1.3) is assumed to be variationally 

attracting and by Theorem 5.2.1 in [4] it is also attracting with respect to perturbations and therefore there exists δ0 > 0 and for 

every ε > 0 there is a A = A(ε) ≥ 0 and B = B(ε) > 0 such that if ‖  ‖         ∈     and 

 ∈               on [t0,t1] ⊂ [0,T], and  

                                                                                  

Then 

‖    ‖     

for all t ∈ [t0, t1] ∩ [t0 + A(ε), T] and t0 ≥ 0 where y(t) is a solution of 

 

  
〈       〉                〈       〉                 

with                                                       

Assume that the map U is not positive definite then there exists ε, 0 < ε < a = δ0,  

a > 0  and a sequence          k = 1, 2, . . . , assume also that    ‖  ‖            for 

  t → ∞ such that              for t → ∞. Choose k0 ∈ ℕ such that for k ∈ ℕ , k > k0  we have  

tk > A(ε) + 1 and 

                                ∈    

According to the definition of the map U we choose 𝜑⊂ A such that 

           (〈  𝜑    〉  ∫    𝜑           
 

 

)                   

Define t0 = tk − (A(ε) + 1). Then t0 > 0 because tk > A(ε) + 1 and also tk = t0 + A(ε) + 1 > t0 + A(ε). 
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Therefore, 

            (〈  𝜑    〉  ∫    𝜑           
 

 

)                    

by inequality (3.1) in Lemma 3.1 also 

                     (〈  𝜑    〉  ∫    𝜑           
 

 

) 

                    (〈  𝜑    〉  ∫    𝜑           
 

 

)                  

and therefore, we get 

          (〈  𝜑    〉  ∫    𝜑           
 

 

)                 

For   ∈ [t0, tk] define 

〈       〉  〈  𝜑    〉  ∫    𝜑           
 

 

 

The function Q : [t0, tk] → Ã evidently lie in                 and by the inequality (3.17) we have 

          〈       〉            (〈  𝜑    〉  ∫    𝜑           
 

 

)            

and 

          〈       〉        

Moreover, 

〈  𝜑    〉  ∫    𝜑           
 

 

 〈  𝜑    〉  ∫    𝜑           
 

 

 

 ∫    𝜑           
 

 

 〈       〉 

and also 

〈  𝜑    〉  〈  𝜑     〉  ∫    𝜑           
 

  

 〈       〉  〈        〉 

 ∫     𝜑           
 

  

 〈       〉  

and this means that the function 𝜑 : [t0, tk] → Ã is a solution of the equations 

(2.8) and (2.7) with  

‖𝜑    ‖        

because 𝜑 ∈ A for each tk ∈ [0, T]. By the definition of variational attracting the inequality ‖𝜑    ‖     holds for every t > t0 

+ A(ε). This is of course valid also for the value  

t = tk > t0 + A(ε), i.e. ‖𝜑    ‖   = ‖  ‖     and this contradicts the assumption ‖  ‖      . This yields the positive 

definiteness of the real-valued map U. And the result is established. 
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