
An Analysis of Scripting Languages for Research in

Applied Computing

Olugbenga Oluwagbemi, Adewole Adewumi,

Folakemi Majekodunmi

Department of Computer and Information Sciences

Covenant University

Ota, Nigeria

Sanjay Misra

Department of Computer Engineering

Atilim University

Ankara, Turkey

smisra@atilim.edu.tr

Luis Fernandez-Sanz

Department of Computer Science

University of Alcala

Madrid, Spain

Abstract—There are several scripting languages that exist

today. However, some are used more frequently and popular

than others. This is due to certain characteristics and features

that they possess. Particularly in applied computing fields like

software engineering, bioinformatics and computational biology,

scripting languages are gaining popularity. This paper presents a

comparative study of ten popular scripting languages that are

used in the above mentioned fields/area. For making comparison,

we have identified the factors against which these languages are

evaluated. Accordingly, based on selected criteria we determine

their suitability in the fields of software engineering,

bioinformatics and computational biology research. This will

serve as a guide to researchers to choose the appropriate

scripting language in the various fields.

Keywords—applied computing;open source; scripting

languages.

I. INTRODUCTION

Scripting languages are an important tool in present day
applied computing research. There are several reasons why
scripting languages are popular especially in applied
computing research. Scripting languages are object-oriented in
nature, easy to learn and apply, they have flexible syntax, and
powerful string-handling abilities, portable, embeddable,
extensible, rich sets of libraries and some of them also provide
support for concurrent programming [1].

Scripting languages find applications in different applied
computing areas such as software engineering, bioinformatics
and computational biology. Software engineering for instance
being a field that concerns itself with applying systematic and
disciplined approaches to the development of quality software
that meets client/user requirements has stages of software
development [52]. Scripting languages come in handy in the
implementation and testing phases of software development.
Also, scripting languages find applications in bioinformatics –
being a field that involves researching, developing and
applying computational tools and approaches in order to

expand the use of biological, medical, behavioral or health data
[53]. This also includes acquiring, storing, organizing,
archiving, analyzing and visualizing such data. Scripting
languages are crucial in this regard. In addition, scripting
languages play a vital role also in computational biology as this
field involves mining large pools of biological data using
mathematical/computational modeling techniques [53].

Some of the problems associated with developing efficient,
effective and portable software are those related to improper
specifications, error in the design phase, faulty implementation
phase, and lack of a well tested and properly refined product in
the case of software engineering [52]. The major challenge in
bioinformatics and computational biology research has to do
with analyzing large volume of biological data for essential
information. The reason for undertaking a study on the
application of scripting languages to applied computing is to
address these challenges and also specify the most suitable
scripting language applicable to a specific problem domain.

Research in the three fields discussed relies heavily on the
use/development of tools. Scripting languages are often
employed in the development of such tools. The aim of this
paper therefore is to present a comparative study of ten
scripting languages commonly used in academic circles with
the intent of determining their suitability for three applied
computing fields namely: software engineering, bioinformatics
and computational biology. The rest of the paper is organized
as follows: Section 2 discusses the background of scripting
languages. Section 3 presents features, advantages and
limitations of ten popular scripting languages as given by
TIOBE – a company that assesses the quality of software.
Section 4 presents a comparative study of the scripting
languages based on some defined criteria. Section 5 discusses
the outcomes of the comparative study and Section 6 concludes
the paper.

II. BACKGROUND OF SCRIPTING LANGUAGES

In this paper, the limitation is that, we are confining our
study to the applications of scripting languages to software
engineering, bioinformatics and computational biology –related
research. We also provide insight on the various
attributes/features of specific scripting languages considered in
this study.

The term ‘scripting language’ has been defined from two
perspectives namely: the pragmatic perspective and the
philosophical perspective [1]. The two perspectives however
agree on the fact that scripting languages are interpreted [2]
possess automatic memory management and powerful
operations tightly built in, rather than relying on libraries [1].
In recent times, they also possess dynamic and strong typing as
seen in Python, Perl and a host of others.

Scripting languages play an indispensable role in
computational and biological research as well as software
engineering. Their significance cannot be underestimated.
Scripting languages originated as a result of the development
of the internet as a tool of communication. Rather than being
compiled, scripting languages are usually being interpreted.
Researchers in computational and biological sciences have
several research problems, and needs. In order to solve these
problems and accelerate the pace of progress in their various
research domains, it is expedient that these scientists
understand, solve these problems and meet these needs. Thus,
the underlying motivation for the development and use of
different scripting languages is the evolution of diverse
problems and the complex need to work with incomplete and
noisy data. Also, in software engineering particularly in the
area software quality, several metrics are being proposed but
there are usually no corresponding tools that can be used for
measurement. In building these tools, scripting languages may
come in handy. Therefore, in the next section we review ten
popular scripting languages by examining their features,
advantages, and limitations.

III. FEATURES, ADVANTAGES AND LIMITATIONS OF

POPULAR SCRIPTING LANGUAGES

This section describes the features, advantages and
limitations of Python, Haskell, Lua, Perl, Scala, PHP,
JavaScript, Erlang, R and Ruby as ten popular scripting
languages. They are popular in the sense that they rank higher
in comparison to other known scripting languages in the
TIOBE programming community index [54]:

A. Python

Python is a general-purpose, high-level programming
language that also provides scripting capability [3]. It first
appeared in 1991 and was designed by Guido van Rossum. The
language was influenced by ABC, ALGOL 68, C, Haskell,
Lisp, Modula-3, Perl, and Java. It has also influenced the
design of other languages namely: Boo, Cobra, D, Falcon,
Groovy, Ruby, and JavaScript.

B. Haskell

It is an advanced, purely-functional programming language
that supports scripting capabilities [55]. It first appeared in
1990 and is an open-source product of more than twenty years
of cutting-edge research which allows rapid development of
robust, concise, correct software. The language was influenced
by languages like: Standard ML, Lisp, and Scheme. It has in
turn also influenced several other languages like: Python and
Scala

C. Lua

Lua is a powerful, fast, lightweight, embeddable language
that first appeared in 1993. “Lua” (pronounced LOO-ah) means
“Moon” in Portuguese [56]. Roberto et al. [57] designed the
language. The language was inspired by C++, CLU, Modula,
Scheme and SNOBOL. It has in turn inspired languages like:
Io, GameMonkey, Squirrel, Falcon and MiniD.

D. Perl

Perl is a highly capable, feature-rich programming language
that first appeared in 1987 [58]. It was developed by Larry
Wall and can be used in mission critical projects. The language
was influenced by languages like: AWK, Smalltalk 80, Lisp, C,
C++, sed, UNIX shell, and Pascal. It has in turn influenced the
creation of Python, PHP, Ruby, JavaScript, and Falcon.

E. Scala

It is a general purpose programming language designed to
express common programming patterns in a concise, elegant,
and type-safe way. It was designed by Martin Odersky and first
appeared in 2003 [59]. The language was inspired by languages
like Eiffel, Erlang, Haskell, Java, Lisp, Pizza, Standard ML,
OCaml, Scheme and Smalltalk. It has in turn influenced the
following languages namely: Fantom, Ceylon, and Kotlin.

F. PHP

It is a widely used general purpose scripting language that
is especially suited for Web development and can be embedded
into HTML. It was designed by Rasmus Lerdorf [60] using the
C programming language and first appeared in 1995. PHP was
influenced by Perl, C, C++, Java and Tcl.

G. JavaScript

JavaScript is a lightweight programming language that first
appeared in 1994 and was designed by Brendan Eich [61]. The
language was influenced by C, Java, Perl, Python, Scheme,
Self. It has in turn influenced ActionScript, CoffeeScript, Dart,
Jscript .NET, Objective-J, QML, TIScript, and TypeScript.

H. Erlang

Erlang is a programming language designed at the Ericsson
Computer Science Laboratory. It first appeared in 1986. The
language was influenced by Prolog and ML. It has in turn
influenced F#, Clojure, Rust, Scala, Opa and Reia [62].

I. R

R is a language and environment for statistical computing
and graphics. It was designed by Ihaka and Gentleman and first
appeared in 1993 [63]. It was influenced by S, Scheme, and
XLispStat.

J. Ruby

It is a dynamic open source programming language with a
focus on simplicity and productivity. It was designed by
Yukihiro Matsumoto [64] and first appeared in 1995. The
language was influenced by Ada, C++, CLU, Dylan, Eiffel,
Lisp, Perl, Python, and Smalltalk. It has also in turn influenced
Falcon, Fancy, Groovy, loke, Mirah, Nu, and Reia.

Table 1 summarizes the features, advantages and
limitations of these scripting languages.

TABLE I. SCRIPTING LANGUAGES’ FEATURES, ADVANTAGES AND

LIMITATIONS

Scripting

Language

Features and

advantages
Limitations References

Python

-Object-oriented
-Clear and readable

syntax

-Imperative
-Functional

-Procedural
-Reflective

-Strong and dynamic

typing
-Simple and easy to

learn

-Free and Open
Source

-Portable

-Extensible

-Embeddable

-Extensive Libraries

-Rapid development
-General purpose

language

-The indentation

style of Python

may put
programmers off

who have been
exposed to other

languages before

Python.
-Python 3 which

is an

improvement
over Python 2 is

different from

Python 2. Not all

the libraries in

Python 2

currently work in
Python 3

[4] [5]

Haskell

-Object-oriented
-Pure functional

language

-Multi-platform
-Derives the best

features from other

languages
-It is innovative by

constantly

incorporating new
language features

-It is a general

purpose language
-Open source

-Extensible

-Encourages literate
programming

-Flexible syntax

-Powerful string
handling

-A few keywords

are not reserved

-Learning curve
is high

-Code refactoring

is difficult to
perform

-Weak

debugging tools

[6] [7]

Lua

-Proven and robust

language
-Faster when

compared to other

interpreted scripting
languages

-Limited error

handling support
-No Unicode

support

-Limited pattern-
matching support

[8]

Scripting

Language

Features and

advantages
Limitations References

-Portable

-Embeddable

-Powerful yet simple
-Small in size

-Free and Open

source
-Proto-typical

Perl

-Functional

-Imperative

-Object-oriented
-Reflective

-Procedural
-Generic

-Portability

-String processing
and especially regular

expression support

-CPAN
(Comprehensive Perl

Archive Network)

comes with a range
of useful third party

modules

-Prototype based

-Slow execution
-You cannot

easily create a

binary image
(“exe”) from a

Perl file.

-Error handling
is often

challenging

[9] [10]

[11]

Scala

-Seamless integration

with Java

-It is compiled, not
interpreted

-Object-oriented

-Functional
-Extensible

-Statically typed

-Interoperates with
Java and .NET

-New but

growing steadily
[12]

PHP

-Imperative

-Object-oriented

-Procedural
-Reflective

-Weak typing

-Open source

-Best suited for

web applications
-Insecure

[13]

JavaScript

-Prototype-based

-Weakly-typed

-Possesses first-class
function

-Multi-paradigm

-Object-oriented
-Imperative

programming style

-Functional
programming style

-Supports structured
programming

-Easy learning curve

-Simplicity
-Speed

-Versatile and plays

nicely with other
languages

-Security issues

-JavaScript
rendering varies

since different
layout engines

render JavaScript

differently

[14] [15]

[16] [17]
[18] [19]

[20] [21]

Erlang

-Functional

programming

-Supports concurrent
programming

-Support for
distributed, fault-

tolerant, soft-real-

time, non-stop
applications

-Support for hot

swapping so that
code can be changed

- Learning curve

is high at the
beginning

[22]

Scripting

Language

Features and

advantages
Limitations References

without stopping a

system

-General purpose
language

R

-Object-oriented

-Imperative

-Functional
-Dynamic typing

-Procedural

-Cross-platform
-Extensible

-Provides a wide
variety of statistical

and graphical

techniques
-Visualization

-Open source

-Library support
-Proto-typical

-Steep learning
curve

[23]

Ruby

-Object-oriented

-Multi-platform

-Derives the best
features from other

languages
-Open source

-Low learning curve

-Extensible
-Encourages literate

programming

-Flexible syntax
-Rich set of libraries

-Powerful string

handling

-Slower

compared to
other scripting

languages like

PHP

[24] [25]

IV. COMPARATIVE STUDY OF POPULAR SCRIPTING

LANGUAGES

In the previous section, we explored the features,
advantages and limitations of ten scripting languages. After
exhaustive survey, we identified the following attributes
against which the scripting languages will be evaluated and
compared.

TABLE II. COMPARISON OF THE SCRIPTING LANGUAGES

Langu

age

Comparison Criteria

Applicab

ility

Ranking

/Popula

rity

Prominent

Users

Learning

Curve

Length of

existence

Python

General

Purpose
8

Google,
NASA,

Yahoo,

Red Hat

Low 21years

Haskell
General

Purpose
32

Alcatel-

Lucent,

AT&T,
Bank of

America

Merril
Lynch,

Ericsson

AB,
Facebook,

Google

High 22years

Lua
General

Purpose
18

Firefox
Web

browser,

Low 19years

Langu

age

Comparison Criteria

Applicab

ility

Ranking

/Popula

rity

Prominent

Users

Learning

Curve

Length of

existence

MediaWi

ki

Perl
General

Purpose
9

Amazon.c

om
Low 25years

Scala
General
Purpose

33
Twitter,
LinkedIn

Low 9years

PHP

Web

Applicat
ions

6 Facebook Low 17years

JavaScr

ipt

Web

Applicat
ions

10
Apache

Cordova
Low 18years

Erlang
General

Purpose
31

Facebook,

Ericsson
High 26years

R

Statistic
al

Computi

ng

26

New York
Times,

Google,

Facebook,

Mozilla,

TechCrun

ch

High 19years

Ruby
General

Purpose
11

NASA

Langley

Research
Center,

Motorola

Low 17years

 Applicability: Can the language be used in different
contexts or specific contexts?

 Ranking/Popularity: What is its position in TIOBE
language rankings – TIOBE is a company specialized in
assessing and tracking the quality of software

 Prominent Users – Which prominent company is using
the software?

 Learning Curve: Difficulty for new entrants

 Length of existence: Time span since its development.

The comparison is given in Table 2 and in Figure 1 we
show the language rankings based on the popularity as given
by TIOBE. It is important to note that in Figure 1, the
languages with the lower rankings are better in terms of
popularity.

Fig. 1. Popularity ranking (lower is better)

V. DISCUSSION

Based the findings in previous sections, in this section, we
discuss the suitability of the scripting languages considered for
research in the fields of software engineering, bioinformatics
and computational biology.

A. Software Engineering

The central theme of software engineering research is
coming up with quality software that meets user requirements
and is completed on time and within a specified budget [26].
This brings four stages of the software development process to
bear. First, the requirements engineering phase, and since user
requirements are always evolving there is need for a language
that can also adapt to the changing requirements hence the need
for scripting languages. Such a scripting language must allow
for the creation of prototypes as a way of gathering
requirements. Among the languages considered, JavaScript,
Lua, Perl, and R have this feature. The implementation or
coding phase is another stage where scripting languages are
needed. This is to ensure speedy completion and delivery of
software. The scripting language must be one that promotes
programmer productivity while also ensuring code reuse [2].
Python, Ruby, PHP, Haskell, Lua, Scala, Perl, JavaScript and
Erlang all come in handy in this regard. Testing is crucial
before any software can be delivered to a client hence testing is
a third stage where scripting languages come into play during
the software development lifecycle. With the advent of Test
Driven Development [28] and its adoption by academia [29]
particularly its integration into the computing curriculum [30],
automated unit tests [27] can be created that define code
requirements before writing the actual code. Software
engineers often use testing frameworks for this and these
testing frameworks are written in languages like Ruby, Python,
Perl and PHP. In situations where reliability of an application
cannot be compromised, Erlang should be used as it is
designed for writing reliable and fault-tolerant applications.

B. Bioinformatics

Bioinformaticians constantly mine large volumes of gene
data, perform DNA analysis which involves the comparative
analysis of sequences, processing of plant and animal
sequences with respect to infectious disease research. Some
well suited scripting languages currently used in bioinformatics
for this purpose include Python, Perl, and R as is currently
being used. High level programming languages like C++, Java
have been used in previous works to develop bioinformatics
tools Some useful Bioinformatics toolkits have been developed
using Java, Perl and Python programming languages [31];
Other Bioinformatics-related tools have been developed and
written in diverse programming languages [32], the
Bioconductor (a bioinformatics and computational biology
software project), was developed using R programming
language and environment [33], another bioinformatics tool
was partly developed using XML and Java [34]; High-level
programming language like C++ was used in developing libcov
(a bioinformatics tool for manipulating protein structures) [35];
MACBenAbim, a bioinformatics and computational biology
application was developed using JavaScript and HTML 5 [36];
BengaSavex, a computational biology extraction tool for

identical DNA sequences was developed using C++
programming language [37]; 13CFLUX2, a high-performance
bioinformatics software suite was developed using C++, Java
and python add-ons[38]. Of recent, some of the several
bioinformatics tools are now been developed using prominent
scripting languages such as Perl, Python and JavaScript. Prova
is an example of a Java-based bioinformatics tool developed
using JavaScript programming language [39]; The Gaggle is
another Java-based software, developed with the aim of
resolving problems associated with software-database
integration[40]; Kumar and Dudley jointly conducted an
extensive review about various software used by
bioinformaticians [41]; Fourment and Gillings [42], conducted
a comparative analysis among programming languages (C,
C++, C#, Java, Perl and Python), used by bioinformaticians
[42]; Easyfig is a python-based application used to analyze
genetic loci in bioinformatics [43]; SurreyFBA is a C++-based
bioinformatics application developed for use by scientists [44];
FASIMU is also another bioinformatics application that was
developed using some programming languages [45]. These
tools span various application areas of bioinformatics.
Researchers in this field can also explore functional scripting
languages such as Haskell, Lua, Scala and Erlang, as they also
hold great promise because, they have been previously used to
develop useful applications in bioinformatics..

According to the results of our analysis in this paper (as
shown in Figure 1), we discovered that Python had the best
ranking, which was closely followed by Perl and then the R
scripting language. Python must have ranked the best for
developing bioinformatics tools and applications partly because
it is easier to learn and gain mastery of it, than the other two
scripting languages.

C. Computational Biology

The nature of work done in computational biology requires
the use of scripting languages that are either functional in
nature or support functional programming hence the following
languages can suffice for and has been applied in some
computational biology research: Python, Haskell, Perl, Scala,
JavaScript, Lua, Ruby, Erlang, and R BioPython, a useful tool
for Computational biologists was developed using Python
programming language [46]; Bioshell, another computational
biology tool, consists of a combination of scripting programs,
mostly python and Perl [47]; AnnotationSketch, a
computational biology tool was implemented using ANSI C
with provision for bindings with scripting languages such as
Ruby, Python and Lua [48]; SHOGUN is a machine learning
software implemented in C++ with the capability of interfacing
to MATLAB, R, Python and Octave. It is a very useful
computational biology tool useful for mastering large-scale
learning problems for analyzing biological sequences [49]; Fiji,
a computational biology tool, was implemented using a broad
range of scripting languages [50]; finally, a toxic genomic data
analysis system, useful for computational biologists, was
implemented using programming languages [51] [38]. Thus
scripting languages find expression in the computational
biology-related research.

VI. CONCLUSION

In conclusion, this paper has reviewed ten popular scripting
languages according to the TIOBE language ranking. The
review presented the features, advantages and limitations of
each language. A comparative study is also carried out on the
languages based on five criteria which include: applicability,
ranking/popularity, prominent users, the learning curve and the
length of existence of the language. Based on the results from
the analysis we were able to deduce which language was
suitable for software engineering, bioinformatics and
computational biology research. We believe that the analysis
will serve as a guide to researchers in the fields of software
engineering, bioinformatics and computational biology who are
trying to select a suitable scripting language or change from an
existing language.

REFERENCES

[1] L. Prechelt, "Are scripting languages any good? A validation of Perl,

Python, Rexx, and Tcl against C, C++ and Java," Advances in
Computers, vol. 57, pp. 205-270, 2003.

[2] J. K. Ousterhout, "Scripting: Higher level programming for the 21st
century," Computer, vol. 31, pp. 23-30, 1998.

[3] J. Python, "Python programming language," USENIX Annual Technical
Conference, 2007.

[4] T. A. Budd, Exploring Python, Burr Ridge, IL: McGraw-Hill, 2009.

[5] A. Downey, Think Python - How to think like a computer scientist,
Needham, MA: Green Tea, 2012.

[6] C. J. Sampson, "Experience report: Haskell in the real world: writing a
commercial application in a lazy functional language," ACM SIGPLAN
Notices, pp. 185-190, 2009.

[7] I. Pop, "Experience Report: Haskell as a reagent," ACM SIGPLAN
International Conference on Funtional Programming, 2010.

[8] R. Ierusalimschy, Programming in Lua, 2nd ed., Rio de Janeiro, Brazil:
Lua, 2006.

[9] M. J. Dominus, Higher Order Perl. Burlington, MA: Morgan Kaufmann,
2005.

[10] R. L. Schwartz, B. D. Foy and T. Phoenix, Learning Perl. Sebastopol,
CA: O'Reilly, 2011.

[11] Chromatic, Modern Perl. Hillsboro, OR: Onyx Neon, 2011.

[12] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud,
N. Mihaylov, M. Schinz, E. Stenman and M. Zenger, "An overview of
Scala programming language," Technical Report IC/2004/64, 2004.

[13] V. Dwarampudi, S. S. Dhillon, J. Shah, N. J. Sebastian and N.
Kanigicharla, "Comparative study of the Pros and Cons of Programming
languages Java, Scala, C++, Haskell, VB.NET, AspectJ, Perl, Ruby,
PHP & Scheme-a Team 11," arXiv preprint, 2010.

[14] S. Maffeis, J. C. Mitchell and A. Taly, "Language-based Isolation of
Untrusted JavaScript," in 22nd IEEE Computer Security Foundations
Symposium, 2009.

[15] M. Dhawan and V. Ganapathy, "Analyzing Information Flow in
JavaScript-based Browser Extensions," IEEE Computer Security
Applications Conference, pp. 382-391, 2009.

[16] S. Maffeis, J. C. Mitchell and A. Taly, "An Operational Semantics for
JavaScript," in Programming languages and systems, Springer, pp. 307-
325, 2008.

[17] L. Wilkens, "Objects with prototype-based mechanisms," Journal of
Computing Sciences in Colleges, vol. 17, pp. 131-140, 2002.

[18] S. Maffeis, J. C. Mitchell and A. Taly, "Isolating JavaScript with Filters,
Rewriting and Wrappers," in Computer Security, Springer, pp. 505-522,
2009.

[19] P. Thiemann, "Towards a Type System for Analyzing JavaScript
Programs," in Programming Languages and Systems, Springer, pp. 408-
422, 2005.

[20] C. Anderson and S. Drossopoulou, "BabyJ: From Object Based to Class
Based Programming via Types," Electronic Notes in Theoretical
Computer Science, vol. 82, pp. 53-81, 2003.

[21] A. E. Hassan and R. C. Holt, "Migrating Web Frameworks using Water
Transformations," in 27th Annual International Computer Software and
Applications Conference, pp. 296-303, 2003.

[22] F. Cesarini and S. Thompson, Erlang progrmming: a concurrent
approach to software development. Sebastopol, CA: O’Reilly, 2009.

[23] W. N. Venables and D. M. Smith, "An Introduction to R," 2012.

[24] D. Thomas and D. H. Hansson, Agile Web development with Rails: a
Pragmatic Guide, Raleigh, NC: The Pragmatic Programmers, 2006.

[25] B. M. Ren, J. Toman, T. S. Strickland and J. S. Foster, "The Ruby type
checker," Proceedings of the 28th Annual ACM Symposium on Applied
Computing, pp. 1565-1572, 2013.

[26] M. V. Zelkowitz, "Perspectives on software engineering," ACM
Computing Surveys, vol. 10, pp. 197-216, 1978.

[27] E. G. Barriocanal, M. A. S. Urban, I. A. Cuevas and P. D. Perez, "An
experience in integrating automated unit testing practices in an
introductory programming course," ACM SIGCSE Bulletin, vol. 34, pp.
125-128, 2002.

[28] C. G. Jones, "Test-driven development goes to school," Journal of
Computing Sciences in Colleges, vol. 20, pp. 220-231, 2004.

[29] C. Desai, D. Janzen and K. Savage, "A survey of evidence for test-
driven development in academia," ACM SIGCSE Bulletin, vol. 40, pp.
97-101, 2008.

[30] C. Desai, D. S. Janzen and J. Clements, "Implications of integrating test-
driven development into CS1/CS2 curricula," ACM SIGCSE Bulletin,
vol. 41, pp. 148-152, 2009.

[31] H. Mangalam, "The Bio* toolkits - a brief overview," Brief Bioinform,
vol. 3, pp. 296-302, 2002.

[32] H. M. Sauro, M. Hucka, A. Finney, C. Wellock, H. Bolouri, J. Doyle
and H. Kitano, "Next generation simulation tools: the Systems Biology
workbench and BioSPICE integration OMICS," Journal of Integrative
Biology, vol. 7, no. 4, pp. 355-372, December 2003.

[33] R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S.
Dudoit, B. Ellis, L. Gautier, Y. Ge, J. Gentry, K. Homik, T. Hothom, W.
Huber, S. Iacua, R. Irizarry, F. Leisch, C. Li, M. Maechler, A. J. Rossini,
G. Sawitzki, C. Smith, G. Smyth, L. Tiemey, J. Y. H. Yang and J.
Zhang, "Bioconductor: open software development for computational
biology and bioinformatics," Genome Biology, vol. 5, no. R80, 2004.

[34] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senge, M. Greenwood, T.
Carver, K. Glover, M. R. Pocock, A. Wipat and P. Li, "Tavema: a tool
for the composition and enactment of bioinformatics workflows,"
Bioinformatics, vol. 20, no. 17, pp. 3045-3054, 2004.

[35] D. Butt, A. J. Roger and C. Blouin, "libcov: A C++ bioinformatics
library to manipulate protein structures, sequence alignments and
phylogeny," BMC Bioinformatics, vol. 6, p. 138, 2005.

[36] O. Oluwagbemi, A. Adewumi and A. Esuruoso, "MACbenabim: A
multi-platform mobile application for searching keyterms in
Computational Biology and Bioinformatics," Bioinformation, vol. 8, no.
16, 2012.

[37] O. Oluwagbemi, S. Imolorhe and V. Agozie, "BengaSavex: a new
computational genetic sequence extraction tool for DNA repeats,"
African Journal of Biotechnology, 2013.

[38] M. Weitzel, K. Noh, T. Dalman, S. Niedenfuhr, B. Stute and W.
Wiechert, "13CFLUX2-high performance software suite for 13C-
metabolic flux analysis," Bioinformatics, vol. 29, no. 1, pp. 143-145,
2013.

[39] A. Kozlenkov and M. Schroeder, "PROVA: Rule-based Java-scripting
for a bioinformatics semantic web," Lecture Notes in Computer Science,
vol. 2994, pp. 17-30, 2004.

[40] P. T. Shannon, D. J. Reiss, R. Bonneau and N. S. Baliga, "The Gaggle:
an open-source software system for integrating bioinformatics software
and data sources," BMC Bioinformatics, vol. 7, pp. 176, 2006.

[41] S. Kumar and J. Dudley, "Bioinformatics software for biologists in the
genomic era," Bioinformatics, vol. 23, no. 14, pp. 1713-1717, 2007.

[42] M. Fourment and M. R. Gillings, "A comparison of common
programming languages used in bioinformatics," BMC Bioinformatics,
vol. 9, p. 82, 2008.

[43] M. J. Sullivan, N. K. Petty and S. A. Beatson, "Easyfig: a genome
comparison visualizer," Bioinformatics, vol. 27, no. 7, pp. 1009-1010,
2011.

[44] A. Gevorgyan, M. E. Bushell, C. Avignone-Rossa and A. M. Kierzek,
"SurreyFBA: a command line tool and graphics user interface for
constraint-based modeling of genome-scale metabolic reaction
networks," Bioinformatics, vol. 27, no. 3, pp. 433-434, 2011.

[45] A. Hoppe, S. Hoffmann, A. Gerasch, C. Gille and H. Holzhutter,
"FASIMU: flexible software for flux-balance computation series in large
metabolic networks," BMC Bioinformatics, vol. 12, pp. 28, 2011.

[46] B. Chapman and J. Chang, "Biopython: Python tools for computational
biology," ACM SIGBIO Newsletter, 2000.

[47] D. Gront and A. Kolinski, "Bioshell- a package of tools for structural
biology computations," Bioinformatics, vol. 22, no. 5, pp. 621-622,
2006.

[48] S. Steinbiss, G. Gremme, C. Scharfer, M. Mader and S. Kurtz,
"AnnotationSketch: a genome annotation drawing library,"
Bioinformatics, vol. 25, no. 4, pp. 533-534, 2009.

[49] S. Sonnenburg, G. Ratsch, S. Hensche, C. Widmer, J. Behr, A. Zien, F.
de Bona, A. Binder, C. Gehl and V. Franc, "The SHOGUN machine
learning toolbox," The Journal of machine Learning Research archive,
vol. 11, pp. 1799-1802, 2010.

[50] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T.
Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Tinevez, D.

J. White, V. Hartenstein, K. Eliceiri, P. Tomancak and A. Cardona, "Fiji:
an open-source platform for biological-image analysis," Nature
Methods, vol. 9, pp. 676-682, 2012.

[51] T. Hirai and N. Kiyosawa, "Developing a Practical Toxicogenomics
Data Analysis System Utilizing Open-Source Software," Computational
Toxicology Methods in Molecular Biology, vol. 930, pp. 357-374, 2013.

[52] R. S. Pressman, Software Engineering – A Practitioner’s Approach, 7th
ed., New York: McGraw-Hill, 2010, pp. 120-145.

[53] M. Huerta, “NIH Working Definition of Bioinformatics and
Biotechnology”, Accessible at:
http://www.bisti.nih.gov/docs/CompuBioDef.pdf. Date accessed: 29th
July, 2013

[54] http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html. Date
accessed: 29th July, 2013

[55] http://www.haskell.org/haskellwiki/Haskell. Date accessed: 29th July,
2013

[56] http://www.lua.org/about.html Date accessed: 29th July, 2013

[57] http://www.lua.org/authors.html Date accessed: 29th July, 2013

[58] http://www.perl.org/about.html Date accessed: 29th July, 2013

[59] http://www.scala-lang.org/node/241 Date accessed: 29th July, 2013

[60] R. Lerdorf and K. Tatroe, “Programming PHP”, O’ Reilly, pp. 5, 2002

[61] http://www.aminutewithbrendan.com/ Date accessed: 29th July, 2013.

[62] www.erlang.org/about.html Date accessed: 29 July, 2013

[63] http://en.wikipedia.org/wiki/R_%28programming_language%29 Date
accessed: 29th July, 2013

[64] http://www.ruby-lang.org/en/about/ Date accessed: 29th July, 2013

http://www.bisti.nih.gov/docs/CompuBioDef.pdf
http://www.lua.org/about.html
http://www.lua.org/authors.html
http://www.scala-lang.org/node/241
http://www.aminutewithbrendan.com/
http://www.erlang.org/about.html
http://en.wikipedia.org/wiki/R_%28programming_language%29
http://www.ruby-lang.org/en/about/

