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ABSTRACT 

 
This study tackles two concerns of developers of Tourism Information Systems (TIS). First is the 
need for more dependable recommendation services due to the intangible nature of the tourism 
product where it is impossible for customers to physically evaluate the services on offer prior to 
practical experience. Second is the need to manage dynamic user requirements in tourism due to 
the advent of new technologies such as the semantic web and mobile computing such that e-
tourism systems (TIS) can evolve proactively with emerging user needs at minimal time and 
development cost without performance tradeoffs. 
 
However, TIS have very predictable characteristics and are functionally identical in most cases 
with minimal variations which make them attractive for software product line development. The 
Software Product Line Engineering (SPLE) paradigm enables the strategic and systematic reuse 
of common core assets in the development of a family of software products that share some 
degree of commonality in order to realise a significant improvement in the cost and time of 
development. Hence, this thesis introduces a novel and systematic approach, called Product Line 
for Ontology-based Tourism Recommendation (PLONTOREC), a special approach focusing on 
the creation of variants of TIS products within a product line. PLONTOREC tackles the 
aforementioned problems in an engineering-like way by hybridizing concepts from ontology 
engineering and software product line engineering. The approach is a systematic process model 
consisting of product line management, ontology engineering, domain engineering, and 
application engineering. The unique feature of PLONTOREC is that it allows common TIS 
product requirements to be defined, commonalities and differences of content in TIS product 
variants to be planned and limited in advance using a conceptual model, and variant TIS products 
to be created according to a construction specification. We demonstrated the novelty in this 
approach using a case study of product line development of e-tourism systems for three countries 
in the West-African Region of Africa. 
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  CHAPTER ONE 

INTRODUCTION 

 

1.1  BACKGROUND INFORMATION 

 

One critical challenge sequel to the advent of globalization is information explosion, particularly 

with respect to the gamut of information available on the web. This often leads to the 

phenomenon of information overload. A typical scenario is where people get too much irrelevant 

information alongside relevant ones as a response to queries posed on the web. Intelligent search 

agents are a class of software application that has been mostly engaged to solve this problem. 

Notable search agents on the web include google (www.google.com), mama (www.mama.com), 

and altavista (www.altavista.com) to mention just a few. However, in recent times another class 

of intelligent software applications that has gained relevance in addressing the problem of 

information overload when searching for relevant information on the web is recommender 

systems (Konstan et al., 2004).  

 

 Recommender Systems (RS) are a class of intelligent software applications that offer 

suggestions to information-seeking users as a response to user queries or knowledge gained 

during interaction with the user. They mostly leverage in-built logical reasoning capability or 

algorithmic computational schemes to deliver their recommendation functionality. Over the 

years, RS have enjoyed great application in the e-commerce domain because of their ability to 

provide assistance to information-seeking users.  

 

In the tourism domain, recommendation services are particularly important because of the 

information-intensive nature of the tourism industry where access to relevant and useful 

information is advantageous both to the consumer and the marketer of tourism products 

(Henriksson, 2005). Tourism Recommender Systems (TRS) are a class of RS that are usually 

embedded in Tourism Information Systems (TIS) in order to deliver intelligent travel guide and 

planning recommendation functionalities. TIS are software applications that are deployable on 
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the web and on small hand-held devices dedicated to the provision of tourism support services. 

TIS share many attributes in common and generally perform similar functions such as providing 

useful information to prospective tourists and helping in travel planning and management. They 

mainly differ in the nature of local information content they deliver and the scope of tourism 

interest that is being promoted. They can be variously engaged in the promotion of tourism at the 

local and enterprise, provincial, regional, national, and continental levels. This degree of 

observable similarity in TIS makes them good candidates for a product line development 

initiative, which seem not yet a prevalent practice in the e-Tourism domain. However, the fact 

that Tiscover AG (http://www.Tiscover.com) renders tourism support services for eight different 

countries around the world is a clear indication of the viability of Software Product Line 

Engineering (SPLE) in the tourism domain. 

 

SPLE is a software development paradigm that enables the strategic and systematic reuse of core 

assets in the development of a family of software products that share some features in common. 

It leverages the existence of certain core reusable components in order to realise a significant 

improvement in the cost and time of development (Daramola et al., 2009). A Software Product 

Line (SPL) is a set of software intensive systems that share a common, managed set of features 

satisfying the specific needs of a particular market segment or mission and that are developed 

from a set of core assets in a prescribed way (Bass & Kazman, 2003).  

 

Generally, prospective tourists want more intelligence in TIS that can make the quality of service 

more acceptable. One of the core desirable areas is the aspect of tourism recommendations, as it 

relates to travel advisory and planning services. However, literature has revealed that one of the 

fundamental problems of existing recommender systems’ algorithms is the issue of 

trustworthiness of recommendations (Sarwar et al., 2001; Adomavicius & Tuzhilin, 2005; 

Adomavicius, 2005). Customers need recommendations they can trust, one that minimizes false 

positive errors - a scenario in which products are recommended (positive), though the customer 

does not like them (false). The need for trustworthy tourism recommendations is particularly 

compelling because of the intangible nature of the tourism product in which customers cannot 

physically evaluate the services on offer until practically experienced. 
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Also, the advent of new emerging technologies like the semantic web and mobile computing is 

making the modern day tourist to exhibit highly sophisticated, dynamic and increasing complex 

consumer characteristics that is now a concern for the providers of    e-tourism services 

(Werthner & Klein, 1999; Steinbauer, 2005).  What is yet to appear in literature is software 

product development approach through which e-tourism systems can be made to evolve 

intelligently in tandem with dynamic user requirements. These aforementioned scenarios present 

two critical challenges for developers of TRS which are (1) how to boost the quality of tourism 

recommendations and make them more dependable to foster users’ confidence and (2) how to 

respond to the dynamic nature of user requirements whereby variants of TIS products can evolve 

with emerging user needs at minimal time and development cost without performance tradeoffs.  

 

In this thesis, we address these two concerns. First, we have adopted an ontology-based approach 

in tackling the challenge of improving the dependability (trustworthiness) of tourism 

recommendations. Ontology has been used to introduce multi-dimensionality into tourism 

recommendations with the use of contextual information in order to eliminate the limitations of 

existing tourism recommendation formalisms which are strictly two dimensional.  

 

 Secondly, we have adopted SPLE-based approach, which explores the similarity in the 

functionalities of TIS in tackling the problem of dynamic user requirements in tourism. In this 

thesis, SPLE is considered viable and promising in the tourism domain because it enables the 

definition of system instances dictated by marketing and product plan specifications from 

prospective users and make dynamic software evolution a part of its core practice which tallies 

with the dynamism of the e-tourism domain. SPLE is expected to (1) engender the development 

of adaptable core reusable components that will deliver desirable tourism recommendation 

services; and (2) provide a way to effectively manage emerging user requirements variations 

with respect to specific tourism promotion scenarios.  
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1.2  STATEMENT OF THE PROBLEM  

 

Tourism is an information-intensive industry with a long value chain of stakeholders. The 

tourism product has an intangible nature which makes it impossible for prospective travellers to 

touch the product before the trip. These two factors make the need for dependable 

recommendations in tourism most compelling. However, one of the fundamental concerns of 

existing recommender systems is the need to improve the trustworthiness of recommendations 

(Adomavicius & Tuzhilin, 2005; Adomavicius, 2005). Therefore, in order to obtain dependable 

tourism recommendations, the recommender systems that are employed in tourism must 

necessarily tackle the issue of trustworthiness of recommendations.  The advent of new 

technologies such as the semantic web and mobile computing has introduced additional dynamic 

challenges to e-tourism requirements and increased the sophistication and complexity of 

consumer behavior in tourism (Werthner & Klein, 1999; Steinbauer, 2005). These dynamic 

challenges must be addressed by next generation TIS if they are to outperform existing TIS 

platforms (Staab et al., 2002; Steiner, 2002). Next generation TIS are those that are equipped 

with semantic web, context-aware and content-sharing capabilities that can cater for the dynamic 

challenges of the e-tourism domain. (Staab et al., 2002; Daramola et al., 2008). 

 

The research presented in this thesis is intended to address the challenge of improving the 

dependability of tourism recommendations and providing timely response to dynamic user 

requirements in e-tourism. Concisely, the research questions investigated in this thesis are: 

• How do we improve the dependability of tourism recommendations in a way that foster 

users’ confidence? And 

• How can a TIS developer organization build such intelligent TIS in tandem with the 

dynamic nature of user requirements in e-tourism? 

 

1.3.  AIM AND OBJECTIVES OF THE STUDY 

 

The aim of this research work is to evolve a new product line approach that will engender 

improved dependability of tourism recommendations and dynamic software evolution of TIS.  

To achieve this aim, the following objectives were formulated: 
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• To  create a theoretical and product-oriented framework from which credible African-

based tourism promotion initiatives can evolve in tandem with state-of-the-art practices 

in the global e-tourism domain; 

• To demonstrate the potential of the software product line engineering paradigm in 

responding to the dynamism of the e-tourism industry, by evolving a generic reference 

architecture for intelligent component services in e-tourism;   

• To build an infrastructural asset-base of intelligent components for tourism 

recommendations. This will include a suite of tourism ontologies and tourism 

recommender system components; 

• To investigate the possibility of improving the quality and dependability of tourism 

recommendations by using an ontology-based approach;  and 

• To validate the plausibility of the novel approach by using a case study of product line 

development for a west-African tourism context. 

 

1.4  METHODOLOGY 

 

In setting out to achieve the stated objectives of this thesis, first we selected to pursue a PL 

approach as a candidate solution model to realizing improved intelligence in TIS and proactive 

management of dynamic user requirements in e-tourism. This was aimed at creating a 

foundational platform for developing reusable components with intrinsic intelligent attributes 

that can be leveraged in the development of next generation TIS. To realize this, we analysed the 

state-of-the-art in the tourism domain, through an extensive review of literature, a study of many 

existing TIS, and identification of the base requirements for TIS. This culminated in the creation 

of generic reference Tourism Product Line Architecture (TPLA) that is proposed as a potential 

platform for the evolution of intelligent component services in e-tourism, and particularly next 

generation TIS.  

 

Secondly, using the proposed TPLA as a platform, this thesis introduces a novel unified solution 

approach called Product Line for Ontology-based Tourism Recommendations (PLONTOREC) 

in order to facilitate improved dependability of tourism recommendations from TIS and 
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proactive evolution of such TIS in response to dynamic user requirements in tourism. The 

PLONTOREC approach is a hybrid of software product line engineering and ontology 

engineering that is dedicated to the production of recommendation-intensive TIS. The 

PLONTOREC development lifecycle (discussed in Chapter 3), which consists of Product line 

management, Ontology engineering, Domain engineering and Application engineering was 

systematically demonstrated to realize the objectives of this thesis.  

 

During the product line management phase, the feasibility and risk assessment of the PL-based 

approach was attended to. Also, issues of configuration management, organization, evaluation, 

and control of product line process were considered based on established product line practice 

models. Next, ontology engineering was undertaken. Our approach to improving the quality of 

tourism recommendation favoured the use of ontology, so as to engender the leveraging of deep 

concrete knowledge of tourism objects for the purpose of generating intelligent and dependable 

recommendations. The use of ontology was also intended to engender knowledge reuse and 

semantic interoperability within specific tourism value chains. Hence a suite of relevant 

ontologies for the tourism domain was developed using the methontology approach (Gomez-

Perez et al., 2004). Specifically two Knowledge Representation (KR) ontologies were 

implemented in the Web Ontology Language (OWL) using the Protégé 3.3.1 Ontology 

development tool (http://www.3WC.org).  These are: 1) The Destination Context Ontology 

(DCO): in which probable tourist locations were represented using city, town, and village 

abstractions. The ontology is a semantic model of the social context information of specific 

destination types and the concrete semantic relationships that exist among them; 2) The 

Accommodation Ontology (AO): which contained the semantic descriptions of services, 

facilities, attractions, gastro outfits and location of all category of accommodation types relevant 

to tourism. This includes hotel categories (1-star, 2-star, 3-star, 4-star, 5-star), guesthouses, and 

rented apartments. 

 

In domain engineering, the core components of the product line were constructed. Specifically, 

two tourism recommender systems were constructed, which are notably a Destination 

Recommender Systems (DRS) component and an Accommodation Recommender Systems 

(ARS) component. Detailed domain requirements about these two aspects of tourism 
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recommendations were obtained from literature and the prominent existing commercial products, 

in order to formulate appropriate design for the systems and establish a basis for possible 

extensions.  During domain realization, the recommender system components were implemented 

as parameterized components that can be instantiated with different tourism information contents 

and contextual information (as captured in specific knowledge-bases) to suit different tourism 

promotion scenarios. The recommender components were implemented using a combination of 

Java Servlet technology, Enterprise JavaBeans (EJB) component technology, and Java Protégé 

ontology API. The DRS is based on a hybrid architecture that combines content-based and case-

based reasoning techniques for its recommendations (Vozalis & Margaritis, 2003; Konstan et al., 

2004). The DRS makes use of the destination context ontology and a database of national 

tourism assets (http://www.nigeriatourism.net) to deliver its recommendations. The ARS does 

ontological filtering of information contained in the accommodation ontology to generate its 

recommendations. Other components such as reusable web layout templates and content 

management components were also constructed during domain realization.  Additionally, the 

constructed core components and particularly the tourism recommender components were tested 

and evaluated.  Empirically evaluation was undertaken using usability metrics to certify their 

efficiency and fitness for product line compositions. The content evaluation of the two ontologies 

was also undertaken. 

  

Also, application engineering was undertaken, during which time the tourism recommendation 

component infrastructures were instantiated with application-specific requirements and used in 

generating three variant TIS prototypes (for: Nigeria, Ghana and Ivory Coast).  

Lastly, an evaluation of the PLONTOREC approach and its products was undertaken in order to 

access how well it fulfils its set objectives. Thereafter, the result of the evaluation experiments 

were analysed in order to establish a basis for the generalization of our results.  A schematic 

model of the methodology of this thesis using a UML activity diagram is shown in figure 1.1. 
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Figure 1.1: A model conceptualization of the methodology of this thesis 
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1.5  SIGNIFICANCE OF THE STUDY 

 

This research work has direct bearing on the tourism industry and particularly e-tourism because 

of the following: 

• The creation of a reusable asset base of intelligent tourism recommendation components 

offers a response to the quest for reasonably improved intelligence and dependability of 

recommendations by TIS;  

• The study demonstrates the feasibility of PL approach to engineering TIS as none is 

known to have been reported in literature as yet. Also, PL approach provides a better way 

to manage the dynamic nature of user requirements in the e-tourism domain; and 

• An ontology-based approach will provide a platform for data interoperability, knowledge 

reuse, and business model standardization within a specific tourism value chain 

community;  

• A novel software research effort in the area of e-tourism will provide the quality boost 

needed especially in most parts of Africa where tourism is largely undeveloped;  

• The study provides a platform for increased publicity and promotion of tourism as a 

veritable tool for economic development in developing countries. 

 

1.6 MOTIVATION FOR THE STUDY 

 

The tourism industry has emerged as a veritable tool for economic advancement in many parts of 

the world, especially in Europe, the Caribbean Islands and Far East Asia. In Western Europe, 

tourism is indeed a big industry contributing significantly to the annual GDP (Staab et al., 2002) 

and is also perceived as a viable tool for continental integration. This further justifies the huge 

funds being expended by the EU on tourism-based research.  However, tourism is still largely 

undeveloped in most parts of Africa despite the enormous tourism potentials of most African 

countries. Drawing from the scenario presented above, the motivation for this work is two-fold. 

The first stems from trends in the global e-tourism domain, while the second is derived from 

events in the local African tourism context.  
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In recent years, e-tourism, which entails the promotion of tourism interest through the electronic 

media, particularly the web, has become a very popular and convenient medium for tourism 

business transactions. The requirements and expectations of users have become very dynamic 

and getting increasingly complex due to the advent of new emerging technologies particularly 

the semantic web. Prospective users of TIS wants more advanced functionalities in tourism 

support systems that can possibly eliminate the need for human travel agents, in order words 

there is a quest for smarter and more intelligent systems. One of the areas where improvement is 

desired is tour recommendations, and travel advisory and planning services, which is still an 

open issue to which this thesis is making a contribution (Steiner, 2002).  

 

Secondly, there is a dearth of e-tourism research-focused activities geared at advancing the cause 

of tourism from an African-based context. This thesis seeks to create both a theoretical and 

product-oriented framework from which credible African-based tourism promotion initiatives 

can evolve in tandem with state-of-the-art practices in the global e-tourism domain. This desire 

informed our decision to adopt a software product line-based approach to engineering e-tourism 

systems in this thesis.  

 

1.7    CONTRIBUTIONS TO KNOWLEDGE 

 

The specific contributions of this work apply to the e-tourism domain at the local and global 

levels.  

 

Firstly, although the demand imposed on TIS by the advent of new technologies and user 

dynamism has received significant attention in the areas of personalized and context-based 

services, mobility and embedded intelligence, and semantic interoperability, relatively minimal 

efforts have been made in other areas (Staab, 2002; Steinbauer, 2005). What is missing in 

literature is a viable product development model that can cause TIS products to evolve 

intelligently. The traditional software engineering approaches will not suffice because of the 

heavy intelligence requirements that must be fulfilled by next generation TIS. Also conventional 

artificial intelligence approaches cannot achieve much without being complemented by core 

technologies of the Internet architecture, the web, telecommunication, and software engineering. 
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The predictable functional characteristics of TIS and their context specific nature make them 

attractive for a SPLE development approach. The existence of organization such Tiscover AG 

(http://www.Tiscover.com) and Ectrl Solutions (http://www.etrlsolutions.com) that has 

successfully deployed TIS in different national contexts allude to the fact that substantial 

software reuse exist in the e-tourism industry, though the degree or mode of such reuse remain 

very obscure. To the best of our knowledge the use of SPL as a potential product development 

approach for solving the problem of dynamic user requirements in e-tourism is being attempted 

for the first time. Hence, this study presents software product line engineering as a viable 

solution approach to solving the problem of dynamic user requirements in e-tourism.  

 

Secondly, thus far traditional recommendation formalisms have followed a strictly two-

dimensional approach which is based on the user’s preferences and the products description. This 

thesis introduces a third dimension that engages the use of contextual information about the 

social attributes of destinations as an integral factor in destination recommendation. The value of 

this approach is that it allows the use of domain specific knowledge relative to specific tourism 

contexts for destination recommendations which have the potential to improve the dependability 

and utility of destination recommendation. By doing this, intelligence and semantic web 

capabilities easily become incorporated into destination recommendation by using the concept of 

ontology. This is indeed an innovation in destination recommendation relative to existing 

approaches. 

 

Thirdly, domain specific knowledge where available can be reused and shared and this might 

enhance interoperability. To the best of our knowledge this work provides within the West 

African tourism value chain the first suite of tourism ontologies for generating semantic web 

content.  

 

Lastly and notably, this thesis presents a first attempt to create a product line of 

recommendation-intensive TIS products. To do this, the Product Line for Ontology-based 

Tourism Recommendations (PLONTOREC) approach was introduced.  PLONTOREC is a novel 

software product line approach that enables the creation of dependable and intelligent 
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recommendation-intensive TIS products and also facilitates the proactive evolution of such TIS 

products in tandem with dynamic user requirements. 

 

The interdependency between the core subject components and the contributions of this thesis 

are shown in Figure 1.2 using a dependency graph (Ziegler, 2005). The graph consists of six 

nodes (four subject component nodes and two contribution nodes marked with concentric 

circles). Edges point from nodes exerting an impact on those they influence. Hence, our 

approach of building a suite of tourism ontologies, affects the quality of recommendations of the 

tourism recommender systems. Similarly, the ontologies and tourism recommender systems 

become valuable reusable assets for the pursuit of a PL initiative using PLONTOREC. 

PLONTOREC is used to produce variant TIS products, through the customization and 

integration of existing reusable infrastructures in the asset base such as tourism recommender 

systems and ontologies. TIS developers that adopt the PLONTOREC approach leveraging the 

infrastructures available in the asset base can evolve TIS products that can proactively evolve 

with emerging user needs at minimum time and cost. Also, users can have access to more 

dependable recommendations from TIS because of improved intelligent behaviour due to 

ontological enabling of such systems with specific domain knowledge that is based on contextual 

information about real world scenarios and phenomena.  
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1.8   DELIMITATION OF THE SCOPE OF THE STUDY 

 

The main focus of this thesis is to demonstrate the feasibility of a PL approach to engineering 

TIS and the creation of a platform for intelligent and dependable tourism recommendations. 

However, although the theoretical concepts canvassed in this study are applicable to both the 

mobile and the web-based TIS, the prototype implementations in this work are limited to the 

web-based TIS.  

 

 

 

 

Figure 1.2: Dependency graph modelling of the components and contributions of this thesis. 
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1.9  THESIS ORGANIZATION 

 

Chapter One of this thesis presents a general introduction, highlighting the motivation for the 

research, the aim and objectives of the work and its contributions. 

  

Chapter Two undertakes a critical review of the domain of e-tourism systems and challenges of 

dynamic user requirements in tourism. The chapter presents a review of related work and defines 

the context of the research undertaken in this work by indentifying the gaps that exist in 

literature. The chapter concludes with the proposal of a generic product line architecture for next 

generation TIS in response to the dynamic challenges of e-tourism systems. 

 

Chapter Three, introduces the Product Line for Ontology-based Tourism Recommendations 

(PLONTOREC) approach a unified solution platform to solving the research questions raised in 

this thesis.  

 

Chapter Four presents the details of a case study of product line development that was 

undertaken to validate the PLONTOREC approach. Specifically, the description of the product 

line management, ontology engineering, domain engineering, and application engineering 

activities in PLONTOREC are discussed.  

 

In Chapter Five, the details of the evaluation procedure for the PLONTOREC process and its 

products are discussed.  

 

Finally, in Chapter Six, we give the summary, conclusion and a discussion of the future research 

outlook of this thesis. 
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CHAPTER TWO 

 E-TOURISM SYSTEMS AND DYNAMIC USER 

REQUIREMENTS  

2.1 INTRODUCTION 

 

The issue of intelligent-enabling of TIS is one that has continued to attract interest in         e-

tourism research because of the increasing potentials for new intelligent possibilities as a result 

of the advent of new technologies, such as the semantic web and mobile computing.    This is 

further amplified by the growing complex nature of user requirements, which is evolving rapidly 

with new emerging technologies that place a heavy demand on TIS developer organizations. 

Today, most users will readily jettison the services of human-agents for their travel transactions 

in preference for a software agent-oriented approach, if the recommendations available on e-

tourism platforms become more dependable.  

 

Our approach in this thesis explores the ontological enabling of TIS as a basis for intelligent 

recommendations in a SPL development context. This is to engender the generation of 

dependable tourism recommendations and the evolution of relevant TIS products in tandem with 

dynamic user requirements in the e-tourism domain. In this section, we discuss relevant research 

issues that define the context of this thesis and the basis for its contributions.  

 

2.2 WHY INTELLIGENT SYSTEMS FOR TOURISM?  

 

Tourism is a global information-intensive industry that has a long chain of stakeholders 

including service providers, marketers, managers, and consumers. The information-driven nature 

of the tourism industry and the advent of the World Wide Web make e-Tourism the most 

convenient platform for the advancement of the tourism business industry. This has also brought 

about the advent of TIS that are offering various tourism support services on the web and mobile 

computing platform.  
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However, the active human-machine interaction afforded by the e-tourism platform compels TIS 

to exhibit increasingly high level of intelligence to earn the required level of acceptability in 

terms of performance. This has also made the need for improved intelligent behaviour in TIS 

more compelling. The notion of intelligent TIS is a highly attractive area of e-tourism research, 

as lots of potentials are not yet fully exploited (Felfernig et al., 2006).  A survey of literature 

reveals some of the areas where a greater measure of intelligence is required or currently non-

existent in e-tourism. These include semantic interoperability and medicated architectures; e-

business frameworks supporting processes across virtual organizations; mobility and embedded 

intelligence; natural multi-lingual interfaces; personalization and context-based services; data 

mining and knowledge management (Staab et al., 2002). Evidence from literature reveals that the 

most significant research efforts have been in the areas of personalization and context-based 

services, mobility and embedded intelligence while relatively minimal efforts have been made in 

other areas.   

 

Some of the research projects on intelligent systems for tourism include AMBIESENSE (Lech et 

al., 2005), which entails the development of ambient intelligence application systems for mobile 

users in travel and tourism. AMBIESENSE technology provides travel and tourism support 

services to mobile users that are ambient, ubiquitous, personalised, and sensitive to individual 

user’s context. The system leverages a system architecture that enables ambient information 

services to be delivered to mobile users. CAPITALS ITTS 

(http://cordis.europa.eu/data/PROJ_FP5/ACTIONeqDndSESSIONeq112422005919ndDOCeq40

5ndTBLeqEN_PROJ.htm) is an acronym for Capitals Providing Integrated Travel and Tourism 

Services. It was designed as a ubiquitous and intelligent info-mobility and geo-information 

systems. The CAPITALS ITTS Project provided a platform for Integrated Travel and Tourism 

Services (ITTS) for users in five EU capitals (Brussels, Berlin, Madrid, Paris and Rome) with 

well-developed mobility service platforms. CRUMPET (http://www.eml-

development.de/english/research/crumpet/index.php) is an acronym for Creation of User-friendly 

Mobile services Personalised for Tourism. The CRUMPET project was implemented to validate, 

and trial tourism related value-added services for nomadic users (across mobile and fixed 

networks) using agent technology. The implementation was based on FIPA-OS: a standards-
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compliant open source agent framework, extended to support nomadic applications, devices and 

networks. DIETORECS (Pühretmair et al., 2002) is the project code for Intelligent 

Recommendation for Tourist Destination Decision Making. It is an Intelligent System for 

Improved Tourism and Travel Services that implements a recommendation system for 

destination decision-making. The system is web-based and integrates data managed by two 

existing tourist portals. DIETORECS provides personalized recommendations based on user 

profile and contextual information. It is a conversational system adapting the dialogue process as 

it learns more about the user. CATIS (Pashtan et al., 2004) is a context-aware tourist information 

system on mobile devices that leverages Web Services and XML technologies for its 

implementation. The CATIS incorporates a number of context variables relating to mobility, 

such as time and location, and type of device. The profile of other tourism-centred EU projects 

can be found in (ftp://ftp.cordis.europa.eu/pub/ist/docs/transport 

environment/intelligentsystems_for_tourism_en.pdf).  

 

In (Henriksson, 2005) the profile of some ontology-based EU projects that were aimed at 

enabling semantic web capabilities and semantic interoperability between e-tourism services and 

resources are given. This includes the following: The HARMONISE project (Dell’Erba et al., 

2002), which is a prominent ontology-based solution for the interoperability problems in the 

European travel and tourism market. The Harmonise project is aimed at providing a knowledge 

sharing and ontology mediation platform for the diverse e-commerce applications within the 

European e-tourism market sphere. The ontology used focussed specifically on the events and 

accommodation sub-domains of tourism. HI-TOUCH 

(http://icadc.cordis.lu/fepcgi/srchidadb?CALLER=PROJ_IST& 

ACTION=D&RCN=63604&DOC=20&QUERY=3) is the acronym for e-organisational 

metHodology and tools for Intra-European sustainable Tourism. The aim of the Hi-Touch project 

is to develop software tools to be used by travel agency sales assistants for providing a tourist 

prospect with the best-adapted offer. The developed tools leverage ontological databases and 

semantic descriptors, and multi-lingual thesaurus to deliver their functionalities. SATINE 

(http://www.srdc.metu.edu.tr/webpage/projects/satine/) is an acronym for Semantic-based 

Interoperability Infrastructure for Integrating Web Service Platforms to Peer-to-Peer Networks. 

The ongoing project will be used to create a semantic based infrastructure that will enable the 
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Web Services on well-established service registries like UDDI or ebXML to seamlessly 

interoperate with Web Services on P2P Networks. Relevant travel ontologies will be developed 

and the semantics of the Web Services will be based on standard specifications like the one 

produced by Open Travel Alliance. The semantic infrastructure will be used to develop an 

innovative business pilot application in the tourism industry. IM@GINE IT 

(http://dbs.cordis.lu/fepcgi/srchidadb?ACTION=D& 

SESSION=296320041126&DOC=53&TBL=EN_PROJ&RCN=EP_RPG:508008& 

CALLER=PROJ_IST) is the acronym for Intelligent Mobility AGents, Advanced Positioning 

and Mapping Technologies INtEgration Interoperable MulTimodal, location based services. The 

IM@GINE IT project aims to develop one and single access point, through which the end user 

can obtain location-based, intermodal transport information, mapping and routing, navigation 

and other related ubiquitous services in Europe, at anytime, and in a personalized way. The 

technology will rely on a common transport and tourism ontologies for semantic web 

applications to be developed. 

 

The inference that can be drawn from the survey of intelligent systems in tourism is that the 

growing complexity of user requirements as a result of the advents of new technologies like the 

semantic web and mobile technologies has brought about new dynamic challenges in e-tourism. 

Therefore, providers of e-tourism support services must evolve new approaches for developing 

intelligent e-tourism systems that can cater for these dynamic challenges.   

 

2.3  A CASE FOR RECOMMENDATION-INTENSIVE TIS 
 

The dilemma that a typical user go through during the process of products selection from diverse 

alternatives in travel and tourism domain could be minimized if many more of the existing e-

tourism support platforms are equipped with intelligent recommendation services. The inclusion 

of tourism recommender systems functionalities in Tourism Information Systems would ensure 

that users receive intelligent guides when making decisions on important tourism and travel 

concerns such as accommodation, destinations, and travel plan packages.  Current statistics 

revealed that not many of the existing TIS platforms go beyond just providing tourism related 

information and booking services (Felfernig et al., 2005). Tiscover AG 



19 
 

(http://www.Tiscover.com) and Expedia (http://wwww.expedia.com) are prominent among the 

relatively few and popular e-tourism platforms where such recommendation services are 

available. This scenario makes it very compelling for many more of the existing e-tourism 

supports platforms to provide recommendations on various tourism objects of interest, in order 

words become more recommendation-intensive. Hence, the challenge of producing 

recommendation-intensive Tourism Information Systems that is capable of enhancing users’ 

decision-making process and gaining their trust is one to which developers of TIS must respond. 

 

2.4 AN OVERVIEW OF RECOMMENDER SYSTEM TYPES AND 

TECHNIQUES 

 

Recommender systems (RS) are a class of information filtering systems that act as a personalized 

decision guide for users, aiding them in decision making about matters related to personal taste.  

RS generally rely on in-built logical reasoning capability or algorithmic computational schemes 

to deliver their recommendation functionality. RS (Resnick et al., 1997) have found a great deal 

of significance in a variety of applications. These include music, online communities, web stores 

and general e-commerce. In most cases, people tend to associate recommender systems with e-

commerce sites, where recommender systems are extensively used to suggest products to the 

customers and to provide customers with information to help them decide which products to 

purchase.   

 

The two fundamental algorithmic techniques for computing recommendation are Content-based 

Filtering (CBF) and Collaborative Filtering (CF). A CBF system selects items based on the 

correlation between the content description and the user's preference, while a CF system chooses 

items by correlating the similarity in the rating of an item by several people. The hybrid 

approach is a third technique that tries to alleviate the limitations of the content-based and 

collaborative filtering approaches. 

 

2.4.1 Content-based Filtering (CBF) 

Content-based filtering (CBF) correlates the content description of items with the preferences 

selected by the user for generating recommendations. It allows automatic categorization and 
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recommendation of information to a user based on the user's personal preferences (Herlocker, 

2000). To achieve this, the content descriptions of candidate items are compared with the 

specified user preferences and the best-matching items are recommended.  

 

The two most prominent content-based filtering techniques were derived from information 

retrieval and information filtering. The first is by computing nearest-neighbor vector-space 

similarity between the items vector and vector containing information about the user.  An 

example is Term Frequency Indexing (Salton & Buckley, 1998), which is used in document 

retrieval, where vectors are used to represent the documents and user preferences. A one-

dimensional vector space is used to represent each word in the database with each part of the 

vector containing the frequency of occurrence of the respective word in the document or the user 

query. The document vectors that are found to be the closest to the query vectors are considered 

most relevant to the user's query.  The similarity is computed using the cosine similarity metric 

(Balabanovi´c & Shoham, 1997; Baeza-Yates & Ribeiro-Neto, 1999) based on the Term 

Frequency/Inverse Document Frequency (TF-IDF) weights obtained. In order words a document 

D is represented as an m dimensional vector, where each dimension corresponds to a distinct 

term and m is the total number of terms used in the collection of documents. The document 

vector is written as D = (w1,…,wm), where wi is the weight of term  ti indicating its importance. If 

document D does not contain term ti then weight wi is zero. Using the TF-IDF scheme the term 

weights of each ti can be determined. In this case the weight of a term depends on how often a 

term appears in a particular document and how frequently it occurs in the entire document 

collection. This is computed as: 

   
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tfw log.   (2.1) 

 

where  tfi is the number of occurrences of term  ti in document D, n is the total number of 

documents in the collection and  dfi is the number of documents in which term  ti appears at least 

once. The assumptions behind TF-IDF are based on two characteristics of text documents. First, 

the more times a term appears in a document, the more relevant it is to the topic of the document. 

Second, the more times a term occurs in all documents in the collection, the more poorly it 

discriminates between documents. Also, user profiles can be represented just like documents by 
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one or more profile vectors. The degree of similarity between a profile vector P, where P = 

(u1,…,uk) and the Document D can be determined by using the cosine measure: 
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Consequently, given a user whose profile indicates a preference for reading software engineering 

articles, a recommender system using the cosine similarity measure will assign higher similarity 

score cos(D.P) to documents that  that have high-weighted software engineering terms in wk and 

lower similarity score to the articles where software engineering terms  are weighted less. 

Examples of content-based recommender systems that are based on nearest-neighbour vector 

space techniques include: Fab (Balabanovi´c & Shoham, 1997; Baeza-Yates & Ribeiro-Neto, 

1999) and the systems reported in (Alspector et al., 1998; Pazzani, 1999; Ferman et al., 2000; 

Mukherjee et al., 2001). 

 

Another prominent content-based approach is the use of Bayesian classifiers where 

recommendation is seen as a classification task.  A Bayesian classifier learns content features to 

classify unseen items into a positive class c1 (relevant to the user) or a negative class c2 

(irrelevant to the user) (Pazzani & Billsus, 1997). Bayesian classifiers use Bayes’ theorem of 

conditional probability: 
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They also make the naive assumption that product description features are independent, which is 

usually not the case. For a particular class Qi, the probability of a product pk belonging to class 

Qi, given its n feature values M1, . . . , Mn, is defined as follows: 
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Variable Ω represents a scaling factor only dependent on M1, . . . , Mn. Probabilities P(Qi) and 

P(Mj |Qi) can be estimated from training data. Examples of approaches based on Bayesian 

classifiers include: (Lang, 1995; Lam et al., 1996; Sollenborn & Funk, 2002; Ghani & Fano, 

2002; Lam & Riedl, 2004).  
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Other content-based techniques that have their root in IR systems include Boolean search 

indexes, where keywords in a query are combined with Boolean operators (Cleverdon, 1967; 

Herlocker, 2002); and natural language query interfaces, where queries are specified in natural 

sentences (Lewis & Sparck-Jones, 1996). Examples of content-based filtering recommender 

systems include: Letizia (Lieberman, 1995), which is a user interface that assists users browsing 

the web. The system tracks the browsing behaviour of a user and tries to anticipate what pages a 

particular user may find interesting. Syskill & Webert (Pazzani et al., 1996) is a system that 

predicts web pages that a user will find interesting based on a user's rating of web pages over 

time. Higuchi (Jennings & Higuchi, 1992) recommends news items to users using a neural 

network model.   

 

 

2.4.2 Collaborative Filtering 

 

Collaborative Filtering (CF) uses the ratings of an item by several other users to generate 

recommendation for a new user after sufficient similarity has been established (Goldberg et al., 

1992). Therefore CF uses valuation instead of analysis, by categorizing information based on the 

user's opinion instead of the information itself. CF algorithms typically operate on a set of users 

U = {u1, u2, . . . , un}, a set of products P = {p1, p2, . . . , pm}, and partial rating functions    ri: P → 

[−1, +1] Ψ for each user ui ∈ U. Negative values ri(pk) denote dislike, while positive values 

express ui’s liking of product pk. When ri(pk) = Ψ it means that ui has not rated pk.  With this 

characteristic CF offers some comparative advantages over CBF. First, it is possible to generate 

recommendations that are independent of the content itself. Second, it is possible to filter and 

recommend information based on social attributes of the user, such as taste or quality, and 

thirdly, it is possible to receive useful but unexpected recommendations that are relevant to the 

user. Lastly, CF helps to create user communities, which is not possible with CBF. 

 

However, CF systems have two drawbacks, first is the fact that recommendations are made to 

users based on the approximations of other humans, which means that they cannot always be 

accurate and objective, especially when dealing with non-commodity items, where human 

preference are very personal (e.g. services, tourism etc.). Another problem is the issue of 



23 
 

sparsity, in which calculations are based on sparse and incomplete data, which means the 

recommendation cannot be trusted because it is based on too few data. These two reasons explain 

why the recommendations given by CF systems are generally correct, but sometimes very 

wrong. Due to this fact, CF recommendations are not usually engaged in domains where a higher 

risk is associated with the acceptance of a recommendation.  CF and CBF are combined in many 

cases into an integrated hybrid filtering solution in order to override the limitations of the 

individual approaches. Examples of CF implementation projects reported in literature include 

GroupLens (Resnick et al., 1994; Konstan et al., 1997), Ringo (Shardanand & Maes, 1995), 

Video Recommender (Hill et al., 1995) and MovieLens (Dahlen et al., 1998). Commercial 

websites such as: Amazon (www.amazon.com), CDNow (www.cdnow.com), MovieFinder 

(www.moviefinder.com) and Launch (www.launch.com) make use of collaborative filtering 

approaches for recommendation.  

 

The two main approaches to achieving collaborative filtering are the memory-based (user-based) 

collaborative filtering and the model-based (item-based) collaborative filtering.   

i) Memory-based CF approach  

This is also known as the nearest-neighbor approach (Goldberg et al., 1992; Lang, 1995; Pazzani 

& Billsus, 1997; Linden et al., 2003). It predicts a user's interest in an item based on the ratings 

for that item by other users who have similar profiles. It is an implementation of the “Word of 

Mouth" phenomenon, because a database of all known preferences of all users is kept and some 

computation carried out on the stored users’ preferences to generate the prediction.  

 

To implement this, the rating function obtained after a user di has rated all items of interest is 

denoted by the vector ri. Thereafter, the similarities c(di, dj) between all pairs (di, dj) ∈ D×D are 

computed using either the Pearson Correlation Similarity (Konstan et al., 1997) or the 

Cosine/Vector Similarity metrics (Baeza-Yates & Ribeiro-Neto, 1997), which are the main 

proximity metrics employed in the recommender systems literature. The cosine similarity 

measure is widely used in information retrieval to quantify the similarity between two vectors by 

estimating the cosine of their angles (See equation 2.2 in section 2.3.1). 
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Pearson correlation is a common statistical correlation coefficients derived from a linear 

regression model (Konstan et al., 1997), it is similar to cosine similarity, but measures the degree 

to which a linear relationship exists between two variables. If symbols ūi, ūj denote the averages 

of vectors ui, uj, then the Pearson correlation metric between ui and uj is given as: 
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After using the cosine similarity measure or Pearson correlation to compute similarities c(di, dj) 

between all user pairs (di, dj) ∈ D×D, neighborhoods prox(di) of top-M most similar neighbors 

are built for every peer di ∈ D. After this, predictions are computed for all products bk that di’s 

neighbors have rated, but which are yet unknown to di, i.e, predictions wi(bk) for bk ∈ { b ∈ B | Ǝ 

dj ∈ prox(di) : rj(b) ≠ Ψ (no rating) }: 

           ( )
∑

∑

∈

∈
⋅−

+=
)(

)(

),(

),())((

ij

ij

dproxd ji

dproxd jijkj

iki
ddc

ddcrbr
rbw     (2.6) 

 

Predictions are thus based upon weighted averages of deviations from di’s neighbors’ means. For 

top-N recommendations, a recommendation list of items Pwi:{1, 2, . . . ,N} → B is computed, 

based upon predictions wi.  Pwi is a ranked list of recommendations in descending order, giving 

highest predictions first.  Examples of memory-based CF systems include:  The Tapestry system 

(Goldberg et al., 1992), GroupLens (Konstan et al., 1997) and Ringo (Shardanand & Maes, 

1995). Some of the shortcomings of memory-based CF are (Sarwar et al., 2001; Hofmann, 

2004): 

 

• Sparsity: This is a scenario where the active users have purchased or rated very limited 

products out of the available total. This leads to the problem of insufficient ratings for 

such items i.e. sparse user-item matrices, inability to locate sufficiently close neighbors 

and ultimately weak recommendations. 

• Scalability: The nature of a user-based approach to CF is such that the number of users 

and items will grow over time, which is bound to increase the complexity of computation. 

Because of this, a typical memory-based CF system with millions of users and items will 
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suffer from serious scalability problems as the number of user and items continue to 

grow. 

• Learning: The memory-based CF is not based on any explicit statistical model, and as 

such nothing is learned about users or items that can provide a basis for generalization for 

future predictions.  

 

ii) Model-based collaborative filtering 

The shortcomings of memory-based CF systems, especially the lack of scalability and learning 

have led to the emergence of the concept of model-based CF approach  (Sarwar et al., 2001; 

Karypis, 2001; Deshpande & Karypis, 2004) Model-based CF has the advantage of improved 

computational complexity characteristics and the ability to separate the model building process 

from actual computation of recommendation. Particularly, in instances where there are far 

greater number of users than products i.e. |U| >> |P|, the model-based CF has been shown to have 

better computational performance compared to user-based CF (Sarwar et al., 2001). Just like the 

memory-based CF, recommendation computation is based on the ratings ri(pk) that users ui ∈ U 

provide for products pk∈ P, but, unlike memory-based CF, similarity values sim are computed 

for products rather than users, hence sim: P × P → [−1, +1]. In this wise, two products pk and pn 

are considered similar, i.e., have large sim (pk, pn), if they get identical ratings from many users 

or user who rate one of them tend to also rate the other. This is followed by the computation of 

the neighbourhood of pk using the Cosine similarity metrics or the Pearson correlation similarity 

metrics i.e. prox(pk) ⊆ P of top-M for each pk. Predictions wi(pk) are computed as follows: 
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where 

P’k := {pn ∈ P | pn ∈ prox(pk) Λ ri(pn) ≠ Ψ} 

 

This approach emulates the real-life behaviour of users, whereby a user ui judges the value of an 

unknown product pk by comparing pk to known, similar items pn and considering how much ui 

appreciated items pn. Finally, a top-N recommendation list Lwi is generated by arranging 
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recommendations according to wi in descending order. Typical examples of commercial systems 

that are based on model-based CF are:  success Amazon.com (Linden et al., 2003) and TiVO 

(Ali, K. & van Stam, 2004). 

 

2.4.3  Hybrid Approach 

 

The hybrid approach is a combination of CBF and CF techniques in order to eliminate certain 

limitations of both techniques (Adomavicius & Tuzhilin, 2005).  There are four main approaches 

for combining the two techniques into a hybrid recommender system. These are: 

• Combining separate recommender systems 

In this approach predictions from separate implementations of content-based and 

collaborative techniques are combined within a single system framework (Pazzani, 1999; 

Claypool et al., 1999). To give a final result, the ratings obtained from the individual 

recommender systems are combined into a final recommendation, or the best 

recommendation chosen after a quality assessment of recommendations from both 

systems have been carried out. 

• Adding content-based characteristics to the collaborative approach 

In this approach some content-based characteristics are integrated into the collaborative 

approach. Content attributes and not the commonly rated items are used to calculate the 

similarity between two users. This innovation helps to overcome some of the sparsity-

related problems of a purely collaborative approach, since in most cases it is not common 

for two users to have a significant number of commonly rated items between them 

(Pazzani, 1999). Another benefit is that accurate recommendation can be obtained 

directly when the content attributes of an item match the user’s profile and not until when 

an item gets rated by a similar user. 

• Adding collaborative characteristics to the content-based approach 

In this approach some collaborative characteristics are integrated into the content-based 

approach. One way to achieve this is to create a collaborative view of a collection of user 

profiles represented by term vectors (Soboroff & Nicholas, 1999). This will result in 

performance improvement when compared to a purely content-based approach. 
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• Developing a single unifying recommendation approach 

In this approach a general framework that incorporates both content-based and 

collaborative characteristics is created. For example in (Basu et al., 1998), the use of 

content-based and collaborative characteristics was proposed, such as the age or gender 

of users or the genre of movies, in a single rule-based recommendation classifier. 

 

2.4.4 Knowledge-based Recommender Systems 

 

Knowledge-based recommenders, though sometimes regarded as fundamentally content-based 

systems are a class of recommender systems that exploit deep knowledge about the product 

domain in order to determine recommendations. They make use of knowledge about users and 

products to generate a recommendation and reasoning about what products meet the user’s 

requirements.   A knowledge-based recommender system avoids the problem of sparsity 

associated with both CBF and CF systems (Pazzani, 1999). The recommendations of knowledge-

based recommender systems do not depend on a base of user ratings. It does not have to gather 

information about a particular user because its judgements are independent of individuals’ tastes. 

These characteristics make knowledge-based recommenders very valuable systems when used 

independently and also when used to complement other types of recommender systems.  

Examples of knowledge-based recommender systems include: The PersonalLogic recommender 

system that offers a dialog that effectively walks the user down a discrimination tree of product 

features (Bhargava et al., 1999).  The restaurant recommender entree (Burke et al., 1996; Burke 

et al., 1997) makes its recommendations by finding restaurants in a new city similar to 

restaurants the user knows and likes. The system allows users to navigate by stating their 

preferences with respect to a given restaurant, thereby refining their search criteria. Other 

implementations of knowledge-based recommender systems are discussed in (Burke, 2000; 

Thompson et al., 2004; Herlocker et al., 2004; Felfernig & Kiener, 2005; Jiang et al., 2005). 

However there two major drawbacks of knowledge-based recommender systems, which are the 

expensive nature of knowledge engineering endeavours which makes them more costly to 

implement, and the static nature of their suggestions ability (Burke, 2000).  
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2.4.5 Evaluating Recommender Systems 

 

An evaluation of recommender systems is crucial in order to access the quality of 

recommendations made by them.  Recommender Systems evaluation methods can be broadly 

classified as accuracy metrics and non-accuracy metrics. The different evaluation schemes that 

have found relevance in these two categories are discussed as follows:  

 

2.4.5.1 Accuracy Metrics 

 

Accuracy metrics can be classified as those designed to assess the accuracy of single product 

predictions and those that are meant for decision-support in order to evaluate the effectiveness of 

the system in helping users to distinguish between high-quality items and the rest of the product 

items. These metrics operate on the assumption that a binary rating scheme is preferred in rating 

products (Ziegler, 20005).  Accuracy metrics are classified as: 

i) Predictive Accuracy Metric 

Predictive accuracy metrics measures the closeness of the predicted ratings of a product by a 

system to true user ratings. In order words, how much predictions wi(pk) for products pk deviate 

from user di’s actual ratings ri(pk). The most prominent and widely used is the mean absolute 

error (MAE) (Shardanand & Maes, 1995; Herlocker et al., 2004). MAE is an efficient metric for 

the statistical accuracy of predictions wi(pk) for sets Pi of products: 
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Another metric closely associated to MAE, is the mean squared error (MSE), which squares the 

error before summing. So that large errors become much more pronounced than small ones. 

Although MAE and MSE are very efficient for predicting recommendations, they are not suitable 

for evaluating the quality of top-N recommendations (Herlocker et al., 2004).  

ii) Decision-Support Metrics 

The adjusted concepts of Precision and Recall, borrowed from information retrieval, are used to 

assess how relevant a set of ranked recommendations is for the active user in making decision.  
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Recall, Precision, FI Measures 

In RS the goal is to retrieve a fixed number of N relevant items to be suggested as part of a list. 

To compute recall and precision, first the data is divided into two disjoint sets, the training set 

and the test set. Then the filtering algorithm employed by the system is made to work only on the 

training set to generate a ranked list of recommended items (say the top-N set). Thereafter, the 

test set which represents the portion of the initial data set that was not used by the recommender 

system is now used with the algorithm to generate recommendations. The two recommendations 

are then compared to find items in the test set that are also included in the generated top-N set. 

The set of items that appear in both sets will become members of a special set, called the hit set. 

Therefore, recall and precision for top-N recommendation systems can now be defined as 

follows: 

• Recall is the ratio of hit set size over the test set size: 
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• Precision is the ratio of hit set size over the top-N set size: 
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The denominator in equation 2.10 becomes N because the size of the top-N set is N. One 

peculiarity of the recall-precision metric is that increasing the size of number N usually results in 

an increase of recall, while at the same time precision is decreased. But since both measures are 

important in evaluating the quality of systems that generate top-N recommendations, the two can 

be combined into a single metric, called the F1 metric.  

 

The standard F1 metric is a widely used metric in information retrieval and recommender 

systems research (Sarwar et al., 2001; Herlocker et al., 2004), which assigns equal weight to both 

recall and precision: 
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To use this metric, F1 is computed for each individual user and then, the average over all users 

are computed to represent the score of the top-N recommendation list (Sarwar et al., 2000; 

Sarwar et al., 2001). 

 

Breese Score 

The Breese score (also known as weighted recall) is an extension to the recall metric proposed by 

Breese et al. (1998). The concept is based on the understanding that the expected utility of a 

recommendation list equates to the probability of viewing a recommended product contained in 

that top-N list multiplied by its utility, which is either 0 or 1 for binary ratings. Breese score, 

further assumes that each successive item in a list is less likely to be viewed by the active user 

with exponential decay. To determine the expected utility of a ranked list Pwi, the test set and 

training set is first obtained just as in the case of the ordinary recall, then expected utility of Pwi 

is computed as: 
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where Qi = {q1,q2,..qf} is the test set, while parameter α denotes the viewing half-life. Half-life is 

the number of the product on the list such that there is a 50% chance that the user, represented by 

training set Ri, will review that product. Finally, the weighted recall of Px
i with respect to Qi is 

defined as follows: 
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 Breese score is identical to unweighted recall when the assumption α = ∞ is made. The Receiver 

Operating Characteristic (ROC) is another form of decision-support metric ROC (Good et al., 

1999; Schein et al., 2002; Melville et al., 2002). It measures the extent to which an information 

filtering system is able to successfully distinguish between signal and noise. The NDPM 

(Balabanovi´c & Shoham, 1997), which compares two different, weakly ordered rankings, is 

another decision-support metric that is less frequently used.  
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2.4.5.2 Non-Accuracy Metrics 

 

Non-accuracy metrics are intended to assess other aspects of a recommender system that the 

accuracy metrics are unable to capture. Examples include the usability of the system and 

satisfaction, which are different from the correctness, or usefulness of recommendation. So far, 

non-accuracy metrics have been used as important supplements for accuracy metrics. The 

various forms of non-accuracy metrics include: 

i) Coverage 

Coverage is the most widely used non-accuracy evaluation metrics (Good et al., 1999; Herlocker 

et al., 1999; Middleton et al., 2004). Coverage measures the percentage of elements part of the 

problem domain for which predictions can be made. For instance, in the memory-based (user-

based) collaborative filtering approach, the coverage for the entire set of users is computed as 

follows: 
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ii) Novelty and Serendipity 

The novelty and serendipity metrics measure the non-obviousness of recommendations made by 

a recommender system. There are instances when recommendations are accurate but useless in 

practice; an example is for a system to suggest bananas to customers in a grocery store. Although 

this is accurate, but it is still useless because people do not require a recommendation to purchase 

bananas, since it is a very popular product, most people will likely buy bananas without a 

recommendation (Terveen & Hill, 2001). However the recommendation of a product in the same 

store that is not ordinarily desired by a user but relevant is a good mark of novelty and 

serendipity attribute of the recommender system concerned (Herlocker et al., 2004). 

 

2.4.6  Improving Recommender Systems 

Although significant advancements have been made in the development of recommender 

systems, there yet exist the need to improve on the capabilities of existing recommendation 

techniques and technologies. Some of the desired improvements are discussed as follows: 
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Non-intrusiveness 

Intrusiveness is a measure that defines the degree of user’s intervention that is required for a 

recommender system to generate accurate recommendations. Most recommender systems are 

intrusive, requiring a great deal of user involvement before recommendations can be constructed. 

It is often time consuming when users have to explicitly indicate their preferences for specific 

items using a binary or numerical scale. The use of a binary scale only helps the user to indicate 

whether an item is liked or disliked while using a numerical scale, helps the user to express in 

more detail, the degree of preference for an item. For example, Syskill & Webert (Pazzani et al., 

1996) is an intrusive system that uses binary rating to capture a user’s impression about a website 

visited (either liked or disliked), while the GroupLens system (Konstan et al., 1997) is an 

intrusive system that allows users to rate Netnews articles on a numerical scale of one (bad) to 

five (good) after reading it. Nonintrusive systems use implicit approach to limit the extent of user 

involvement in capturing the rating of items. To achieve this, a nonintrusive system interprets 

user behaviour or selections gathered over time. This could be when browsing data in web 

applications, purchase history in web stores, or other types of information access patterns. 

However the drawback of nonintrusive ratings is that they are often inaccurate and cannot fully 

replace explicit ratings provided by the user. Therefore, there remains the need to evolve 

recommendation formalisms that will minimize intrusiveness while maintaining a satisfactory 

level of accuracy. 

 

Contextual Information  

Recommender systems need to give accurate recommendations in order to foster users’ 

confidence in them, which will also increase their utility. The current generation of recommender 

systems operates in two-dimensional User x Item space. They focus only on user and item 

information to generate recommendations and do not consider the use of additional contextual 

information, which may be crucial in some applications (Adomavicius & Tuzhilin, 2005). This 

two-dimensional approach is also at variance with reality because in many cases, the items 

preferred by a user may change depending on the context; therefore conventional systems have 

inherent problems. Context is any information that can be used to characterize the situation of an 

entity. An entity can be a person, place or object that is considered relevant to the interaction 
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between a user and an application, or relevant to both the user and applications themselves (Dey, 

2001).  In reality the utility of certain recommended item depends on time and/or location. It also 

depends on the person with whom the recommended item will be shared, and under what 

circumstances. For example, a travel recommender system should not only recommend some 

vacation spots based on what a user and other similar users liked in the past. It should also 

consider the time of the year, persons the user is traveling with, and other relevant contextual 

information (social, environmental, political etc.).  To introduce the use of contextual 

information in recommender systems, the content to be recommended needs some meta-data 

attached to it, which should be a formal description of the different contexts in machine-readable 

form.  Formal meta-data models such as formal logics, ontology, and knowledge bases come to 

mind in this respect to improve the accuracy and dependability of recommendations in 

recommender systems (Park et al., 2006). This is one aspect of contribution that is explored in 

this thesis. 

 

Comprehensive Understanding of Users and Items  

In most of the existing recommendation methods only limited knowledge of the user and item is 

exploited in generating recommendations. The systems do not take full advantage of the 

information in the user’s transactional histories and other available data. For example, classical 

collaborative filtering methods do not use user and item profiles at all for recommendation 

purposes and rely exclusively on the ratings information to make recommendations 

(Adomavicius & Tuzhilin, 2005). Although some attempts have been made to incorporate user 

and item profiles into the implementation of some recommender systems (Pazzani, 1999; Billsus 

& Pazzani, 2000; Pennock & Horvitz, 2000), these profiles still tend to be quite simple and do 

not utilize some of the more advanced profiling techniques. In addition to using traditional 

profile features, such as keywords and simple user demographics (Billsus & Pazzani, 2000; 

Mooney & Roy, 2000), more advanced profiling techniques based on data mining rules (Fawcett 

& Provost, 1996; Adomavicius & Tuzhilin, 2001), sequences (Mannila et al., 1995), and 

signatures (Cortes et al., 2000) that describe a user’s interests can be used to build user profiles. 

Also, in addition to using the traditional item profile features, such as keywords (Pazzani, 1999, 

Bhargava et al., 1999), similar advanced profiling techniques such as data mining can also be 

used to build comprehensive item profiles. Once user and item profiles are built, the most 
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general ratings estimation function can be defined in terms of these profiles that will improve the 

accuracy of recommendations (Adomavicius & Tuzhilin, 2005). 

 

Evaluating Recommender Systems 

The most commonly used metrics to measure the effectiveness of recommendations (Herlocker 

et al., 2004) are the coverage and accuracy metrics. Coverage metrics is used to determine the 

percentage of items for which a recommender system is capable of making predictions.  For 

accuracy statistical or decision-support measures (Herlocker et al., 2004) are used to evaluate 

recommender systems. Statistical accuracy metrics uses techniques such as mean absolute error 

(MAE), root mean squared error and correlation between predictions and ratings to compare the 

estimated ratings against the actual ratings. While decision-support measures determine how well 

a recommender system can make predictions of items that would be highly relevant to the user. 

The most dominant approach to do this is the use of the precision and recall metrics. Precision is 

the measure of truly high ratings among those that were predicted to be high by the recommender 

system, while recall is the measure of correctly predicted high ratings among all the ratings 

known to be high.  

 

Despite the popularity of these measures, they have certain limitations. First, is the fact that they 

can only provide an evaluation of the system on the items that have been rated by the users and 

not item that are not rated. This gives a false impression of preferences because users tend to rate 

the items they like, not the items that they dislike. Thus, evaluation results only show how 

accurate the system is on items that have been rated by users, other than the general ability of the 

system to properly evaluate an item. 

Secondly, the accuracy and coverage metrics do not capture the "quality" and "usefulness" of 

recommendations. Imagine a recommender system for a supermarket. Recommending obvious 

items such as milk and bread that the users are likely to buy, will give high accuracy rates. 

However, it will not be very useful for the customer. It is therefore important to develop 

measures that also capture the business value of recommendations such as return on investments 

(ROI) and customer lifetime value (LTV) measures (Schmittlein et al., 1987; Dwyer, 1989; 

Rosset et al., 2002). 
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Other improvements 

Other research issues within recommender systems include multicriteria rating (Statnikov & 

Matusov, 1995; Ehrgott, 2000), scalability (Sarwar et al., 2001; Schafer et al., 2001), 

explainability (Herlocker et al., 2000), trustworthiness (Dellarocas, 2003) and privacy (Herlocker 

et al., 2000). 

 

2.5 RECOMMENDATION TECHNOLOGIES IN TOURISM 

 

Tourism Recommender Systems (TRS) are the class of intelligent systems that render tourism-

related information services in the form of guides and suggestions to users. This class of systems 

can be broadly classified as web-based tourism recommender systems and mobile recommender 

systems. An overview of the existing mobile and web-based tourism recommender technologies 

is given in the sequel sections. 

 

2.5.1 Mobile Tourism Recommender Systems 

 

Mobile Tourism Recommender Systems (MTRS) are intelligent systems that deliver valuable 

tourism contents and information to users’ mobile phones or PDAs. Thus far in the MTRS arena, 

concentration had been on the delivery of personalized context-aware information notification 

services for users in ubiquitous fashion. For example Cyberguide (Abowd et al., 1997) is a 

mobile guide system that displays point of interests (POIs) on an interactive map. The 

development of an electronic tour guide for the city of Lancaster was described in (Cheverst et 

al., 2000). COMPASS (van Setten et al., 2004) is a system that provides context-aware route 

guide recommendations which was implemented in the Netherlands. MobiDenk (Krösche et al., 

2004) is a multimedia-enriched location-aware information system for the conservation of 

historic sites. Berlintainment (Wohltorf et al., 2005) offers information guide on the location of 

entertainment tourism resources in the city of Berlin.  The etPlanner system, which is currently 

being developed by Austrian Network for E-Tourism (ANET), is a MTRS that is designed to 

render relatively more substantial recommendations. It targets widespread use among tourists by 

eliminating the need for client-side installation requirements. It allows two types of 
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communication with its users, which is one of its novelties.  First, information seekers have 

personalized browsing access to categories like events, sights, restaurants or accommodations. In 

a second step, users may also receive personalized push messages that inform them about 

changing weather conditions if they are out hiking or make them propositions on leisure 

activities based on their preferences. A first version of the system has already been deployed for 

public use and there are plans to extend the scope of its recommendations (Felfernig et al., 2005). 

Other examples of MTRS initiatives include CATIS (Pashtan et al., 2004), CRUMPET 

(http://www.eml-development.de/english/research/crumpet/index.php), and AMBIESENSE 

(Lech et al., 2005), which have been described in section 2.2. 

 

2.5.2 Web-based Tourism Recommender Systems  

 

Web-based Tourism Recommender Systems (WTRS) are intelligent systems that are usually 

embedded in e-Tourism portals (i.e. TIS) in order to deliver travel information guide, travel 

advice and travel planning recommendations. A survey of most of the existing web sites revealed 

that very few go beyond pure booking system functionalities to providing intelligent 

recommendations (Felfernig et al., 2005). In the travel and tourism domain, the two most 

successful recommender system technologies are TripMatcher (used by www.ski-europe.com, 

etc.) from Triplehop, and Me-Print (used by travelocity.com), which is an expert advice platform 

from VacationCoach (Staab et al., 2002). The implementation of these two recommender 

systems emulates the interaction of a travel agents and a user in which the user inquires on a 

possible holiday destination. They largely use a content-based approach for generating 

recommendations, as they allow the capturing of user’s travel preferences and constraints before 

constructing intelligent recommendations of a list of possible destinations. Me Print from 

VacationCoach exploits user profiling by asking the user to identify with one of the available 

specific travel activity classes (for example, as a “culture creature,” “beach bum,” or “trail 

trekker” etc.) in order to induce implicit needs that the user does not provide. The user can also 

input precise profile information by completing the appropriate form. In TripMatcher a more 

sophisticated approach is used to reduce user input. The system guesses the importance of 

attributes that the user does not explicitly mention. It then combines statistics on past user 
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queries with a prediction computed as a weighted average of importance assigned by similar 

users (Staab et al., 2002). 

 

Another successful travel and tourism recommendation technology though relatively new is the 

trip@dvice (http://www.nutking.ectrldev.com/nutking/), which has been applied in some e-

tourism portals (e.g. visiteurope.com) (Venturini & Ricci, 2006).  It is the product of the 5th EU 

Framework Programme project ‘DIETORECS’ (Pühretmair et al., 2002) which is now being 

managed by ECTRL Solutions (http://www.ectrlsolutions.com). Trip@dvice predominantly uses 

Case-Based Reasoning (CBR) as its recommendation technology. CBR is a problem-solving 

paradigm that is based on solving new problems based on past experiences, premised on the 

belief that similar problems have similar solutions. At the instance of a new problem, a past, 

already solved similar case is retrieved, and then used to solve the current one (Vozalis & 

Margaritis, 2003). In Trip@dvice every completed travel plan is stored in the Case Base as an 

instance of good example, so that during a new user’s travel recommendation session, the system 

retrieves cases similar to the one under construction. The similarity function uses the current 

information and historic users’ profiles and travel characteristics to generate highly personalized 

results. Additionally, it uses a ranking technology that sorts suitable items from a catalogue and 

presents candidate trips by using the user input and the satisfaction of other users on similar trips. 

This ranking is applicable to complete travels packages as well as for single travel products such 

as destination, accommodation, and services (http://www.ectrlsolutions.com).  

 

2.6 LIMITATIONS OF EXISTING APPROACHES 

 

A study of existing tourism recommendation technologies conducted in the course of this 

research work reveals some limitations of existing approaches. Firstly, elaborate 

recommendation functionalities have not been implemented on the mobile platform. This 

limitation derives from the limited computational processing capacity of mobile devices and the 

smallness of the screen size (Goren-Bar, 2004). On the web platform, Me-Print and TripMatcher 

technologies are content-based approaches that leverage knowledge to deliver recommendations. 

However, the two platforms are limited to destination recommendations. Recommendations on 

other forms of tourism objects such as accommodation, cruises, services etc. were not covered 
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(Staab et al., 2002).  Another successful recommendation technology is the trip@dvice (see 

http://www.nutking.ectrldev.com/nutking/), which has been applied in some e-tourism portals 

(e.g. visiteurope.com) (Venturini & Ricci, 2006). Trip@dvice predominantly uses case-based 

reasoning as its recommendation technology but unlike TripMatcher and Me Print offers a range 

of recommendation services on several tourism objects. One characteristic common to all of 

these implementations is the fact that the parameters used for destination recommendation were 

strictly two-dimensional (i.e. the user’s travel preferences and the description catalog of travel 

destinations). This imposes a limitation of the quality of recommendations because it fails to 

capture other important dimensions that are crucial to the provision of credible recommendation. 

 

Specifically, the use of relevant contextual information that can improve the quality and 

dependability of recommendations was not considered (Adomavicius & Tuzhilin, 2005; 

Adomavicius, 2005). For example the use of the social and environmental attributes information 

of destinations as an additional factor for destination recommendations have the potential to 

improve the dependability of generated recommendations. This is because inclusion of such 

important contextual information about a place to visit would ensure that recommendations are 

based on deeper knowledge of the destination domain in a way that closely model reality. The 

dependability of tourism information is most important because the tourism product by its nature 

is intangible, one that the traveler cannot touch before the trip. This is one major reason why 

recommendations on destination, accommodation, and other travel services must be accurate and 

credible, one that fosters a user’s confidence, an attribute that existing tourism recommendation 

formalisms do not yet possess. 

 

Hence, recommendation formalisms that exploit deep knowledge of both the user and the 

tourism object, and other relevant contextual information in a way that closely model reality is 

required in order to improve the dependability of existing approaches.  This is one of the cardinal 

objectives of this research work and to which this thesis makes a contribution. 
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2.7 ONTOLOGY-BASED TOURISM RECOMMENDATIONS 

 

This thesis posits that one way to achieve dependable tourism recommendations is to engage 

knowledge representation formalisms that can sufficiently capture all relevant facts about 

tourism objects in a domain on which approaches to rendering tourism information services can 

be based. An ideal approach to achieve this is the use of ontologies which provide the platform 

on which recommendation formalisms that exploit deep knowledge of the user, tourism objects, 

and other relevant contextual information can be built.  

 

The use of ontologies has the potential to solve a number of problems in tourism. First, the fact 

that it allows the sharing of domain knowledge using a common vocabulary across 

heterogeneous platforms means it can be used to solve interoperability problems (Dell’Erba et 

al., 2002). Secondly, ontology enables the sharing of common understanding of the structure of 

information among people and software agents (Noy & McGuinness, 2003); this also can help to 

standardize business models, business processes and knowledge architectures in tourism. 

Thirdly, ontology serves as a model of knowledge representation from which knowledge bases 

that describes specific situations can be built. These reasons motivated our notion of ontology-

enabled TIS. This is premised on the belief that an ontology-based framework that enables the 

leveraging of factual knowledge about a specific tourism context for recommendations has 

potentially high tendency to enhance the quality and credibility of tourism recommendation 

services for such a context. 

 

 

2.7.1 What is Ontology? 

 

The word ‘ontology’ was originally taken from the field of philosophy and is concerned with the 

study of the nature of being. In the context of Artificial Intelligence (AI), there exist sundry 

definitions of ontology (Gomez-Perez et al., 2004; Noy & Hafner, 1997; Noy & McGuinness, 

2003), each one trying to introduce its own emphasis. However, one of the most common 

definitions of ontology in literature is that: ‘An ontology is a formal explicit specification of a 

shared conceptualisation of a domain’.  Conceptualisation entails the use of abstract models to 
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depict what is understood about entities in a domain of interest. Explicit means that the concepts 

used and the constraints on them are clearly defined while formal means that entities in the 

ontology are represented in full or semi-machine processable form. Also, the fact that it is shared 

means that the knowledge captured in the ontology is mutually agreeable to a group of people. 

In this thesis, we define ontology as: A formal model of a domain of interest that depicts the 

domain as an aggregation of its known relevant elemental concepts and the semantic 

relationships between them that provides a platform for knowledge sharing and reuse.  This 

connotes that an ontology is a deliberate semantic description of what is generally known about 

some real world phenomena in a domain of interest using concepts and relationship abstractions 

in a way that is readable by both man and machine.   

 

2.7.2 The Components of an Ontology 

 

An ontology essentially consists of a vocabulary of terms in a domain of interest and their 

meanings. This includes definition of concepts, the properties of the concepts, and the 

interrelationship between concepts. Ontologies are classified into lightweight and heavyweight 

categories based on the nature of their composition (Gomez-Perez et al., 2004).  The main 

components of a lightweight ontology are the concepts of a domain, the interrelationship 

between concepts, and the properties of each concept. However heavyweight ontologies consist 

of concepts, concept properties and concepts interrelationships just like lightweight ontologies 

but have also included in their definition the axioms and restrictions on concepts, concepts 

properties and concepts relationships. Generally, the notion of concepts (sometimes called 

classes) in ontology is akin to classes in the object-oriented paradigm. The properties of a 

concept (sometimes called slots) are the features and attributes of that concept which can take 

specific value types (e.g. boolean, integer, string, float, date, etc.). The restrictions are formal 

logics constraints that are defined on the properties of a concept or on inter-concepts 

relationships. 

 

The taxonomic relationships between classes in an ontology are mostly defined through 

inheritance using ‘ISA’ relationships which specifies a subclass A as ‘a kind of’ the superclass B.  

For example, if the class Location defines all kinds of places where people live, then all 
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addresses will be an instance of class Location. However, City, Town, and Village are different 

kinds of location where people live, each of which can be represented as a subclass of the 

Location. Other kinds of relationship like ‘part-whole’ (“PartOf") or synonym ("SynOf"). 

Additionally, other application specific relationships that might exist can be represented in an 

ontology (Necib & Freytag, 2005).  

 

In practical terms, developing an ontology is no more than 1) defining classes in the ontology; 2) 

arranging the classes in a taxonomic (subclass–superclass) hierarchy; 3) defining properties of 

classes and describing allowed values for these properties; and 4) supplying the values for the 

properties for the instances.  Therefore it is possible to create a knowledge base by defining 

individual instances of these classes, filling in specific property value information and additional 

property restrictions. 

 

2.7.3 Ontology Development Process 

 

An ontology can be built either from scratch, through the re-engineering of other existing 

ontologies or by a process of ontology merging or ontology learning approach. In 1997, a 

proposal that emulates the IEEE standards for software development was formulated as the 

ontology development process, which was based on the framework of the METHONTOLOGY 

methodology for ontology construction (Gomez-Perez et al., 2004).  The ontology development 

process refers to the set of activities involved in building ontologies. These activities have been 

categorized into three, which according to (Gomez-Perez et al., 2004) are: 

i) Ontology Management Activities: The sub-activities that fall into this category include 

scheduling, control and quality assurance activities.  

• Scheduling activity: This entails the identification of the tasks to be performed, the 

arrangement of the tasks and the time and resources that are needed for the completion of 

the tasks.  Scheduling is particularly important for ontologies that reference ontologies 

stored in ontology library or for ontologies that require a high level of abstraction or 

generality. 
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• Control activity:  This moderates the entire development process to ensure that scheduled 

tasks are executed as planned. 

• Quality assurance activity: This is designed to ensure that the quality of every product of 

the ontology development process (ontology, software and documentation) is 

satisfactory. 

ii) Ontology Development Activities: The sub-activities that fall into this category are pre-

development, development and post-development activities. 

• Pre-development: This encapsulates the processes of environmental study and feasibility 

study. The environmental study is used to identify where the ontology will be used and 

the types of applications that will be integrated with the ontology.  During feasibility 

study, the possibility and the suitability of building the ontology is critically examined 

prior to further investment of time and resources. 

• Development Phase: This consists of the specification, conceptualisation, formalization 

and implementation activities. During the specification activity, the reason for building 

the ontology, its intended uses and prospective end-users of the ontology are stated. 

During the conceptualisation activity, abstraction models are used to represent knowledge 

of the domain in a meaningful way. The formalization activity entails the transformation 

of the conceptual model into a formal or semi-formal model that is machine-readable. 

The implementation involves building the formal model in a particular ontology 

language. 

• Post Development: This consists of the maintenance, usage and reuse phases of the 

ontology development. The maintenance activity involves updating and making 

corrections to the ontology after it has been built. The use and reuse of the ontology by 

other ontologies or applications is also considered as activities of post development. 

iii) Ontology Support Activities: These are the set of activities that are carried out 

simultaneously with development activities of the ontology development process without which 

building the ontology would be impossible. Its sub-activities include knowledge acquisition, 

evaluation, integration, merging, alignment, documentation, and configuration management. 

• Knowledge acquisition activity: This entails sourcing for domain knowledge to be stored 

in the ontology from domain experts or through ontology learning (Kietz et al., 2000). 
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• Ontology Evaluation activity: This involves a procedure for the technical assessment of 

various aspects of the ontology such as its components, software environment, and its 

documentation (Gomez-Perez et al., 1995). 

• Ontology Integration activity: This involves the establishment of relevant mappings 

between terms of different ontologies. Integration activity is a necessity when existing 

ontologies are being reused in the development of a new one. 

• Ontology Merging activity (Gangemi et al., 1999; Noy & Musen, 2001; Stumme & 

Maedche, 2001): Ontological merging entails bringing together several ontologies in the 

same domain to create a new one that unifies the concepts, vocabulary, restrictions of the 

source ontologies. This merging can be done either at run- time or at design-time. 

• Ontology Alignment activity: This activity is used to establish different kinds of links 

(mappings) between ontologies that are to be integrated. Ontology alignment preserves 

the original ontologies and does not merge them. 

• Documentation activity: This entails generating sufficient documentation of products of 

the ontology development process and the various stages involved. 

• Configuration Management: This keeps an inventory of the various versions of the 

ontology and their documentation. It takes care of version control for change 

management purposes. 

 

In figure 2.1 a schematic view of the activities of the ontology development process is presented 

using UML activity diagram notations. The activity graph in figure 2.1 consists of three activity 

swimlanes that are used to depict the three parallel development activities (i.e. management, 

development-oriented and support). The ontology development process starts with scheduling 

which is a management activity. Thereafter the control activity starts, which bears relevance 

right from the predevelopment phase and throughout the entire ontology development process. 

Transition flow goes from quality assurance activity node to core development activities node to 

show that it guards the core development activities after the stages of predevelopment. The 

support activities are also shown to directly complement the core development activities using a 

directed transition flow.  Also, the various component subactivities of the management, 

development and support activities are shown using the subactivity state notation of UML 

activity diagram.
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Figure 2.1 Activities of the ontology development process: Adapted from (Gomez-Perez et al., 2004) 
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2.7.4 Ontology development methods and methodologies 

 

According to Noy & McGuinness (2003), there is no absolutely one correct way or methodology 

for developing ontologies. However there are some fundamental rules in ontology design that 

can help to make wise design decisions. These are given as follows: 

• There is no one correct way to model a domain- there are always viable alternatives. The 

best solution almost always depends on the application that one has in mind and the 

extensions that are anticipated. 

• Ontology development is necessarily an iterative process. 

• Concepts in the ontology should be close to objects (physical or logical) and relationships 

in the domain of interest. These are most likely to be nouns (objects) or verbs 

(relationships) in sentences that describe the domain. 

 

Several classical methodologies and methods for building ontologies have been reported in 

literature. Some of these serve to build ontologies from scratch or by reusing other ontologies. 

They include: 

1) The Cyc method (Lenat & Guha, 1990);  

2) The Uschold and King’s method (Uschold & King, 1995); 

3) The Gruninger and Fox’s methodology (Gruninger & Fox, 1995); 

4) The KACTUS approach (Bernaras  et al.,1996); 

5) METHONTOLOGY (Gomez-Perez, 1996); 

6) The Sensus method (Swartout et al., 1999); and 

7) The On-To-Knowledge methodology (Staab et al., 2001). 

 

In this research thesis the two KR ontologies developed were built using the 

METHONTOLOGY methodology.  This is because METHONTOLOGY is one of the most 

detailed approaches to ontology development, with the most accurate description of its activities 

and very good tool support (Gomez-Perez et al., 2004). 
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2.7.4.1   METHONTOLOGY Methodology 

 

The METHONTOLOGY methodology (Fernandez-Lopez et al., 1997; Gomez-Perez, 1998; 

Fernandez-Lopez et al., 1999) was developed within the Ontology group at Universidad 

Politecnica de Madrid. It facilitates the construction of ontologies at the knowledge level. 

Methontology was derived from the main activities of the software development process and the 

knowledge engineering methodologies (Gomez-Perez et al., 2004). The core characteristics of 

this methodology include: 1) identification of the ontology development process; 2) a life cycle 

that is based on evolving prototypes; and 3) techniques to carry out each activity in the 

management, development-oriented and support activities (Gomez-Perez et al., 2004). The 

methodology has adequate support tool to aid the ontology development process. ODE 

(Blazquez et al., 1998), WebODE (Arpirez et al., 2003), Protégé (Noy et al., 2000; Knublauch et 

al., 2003), OntoEdit (Sure et al., 2003), etc. are some of the available tools that give automation 

support to the methodology.  

 

2.7.4.2 Ontology crossed life cycles 

 

The ontology development process (see figure 2.1) was based primarily on the framework of 

METHONTOLOGY and refers only to those activities performed during ontology building but 

fails to identify the order in which such activities should be performed. However, the ontology 

life cycle defines the order of activities in the ontology development process. The 

METHONTOLOGY approach proposes an ontology construction life cycle that is based on 

evolving prototypes. It allows the stepwise refinement of the components of the ontology as new 

versions or prototypes evolve which makes the ontology to be very dynamic and susceptible to 

change and growth (Gomez-Perez et al., 2004).  

 

As a rule, METHONTOLOGY begins with the schedule activity that identifies the tasks to be 

performed, their arrangement, and the time and resources needed for their completion. After that, 

the ontology specification activity starts and simultaneously several activities such as the 

management activities (control and quality assurance) and support processes (knowledge 
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acquisition, integration, evaluation, documentation, merging, alignment, and configuration 

management) also start. All the management and support activities are performed in parallel with 

the development-oriented activities (specialization, conceptualization, formalization, 

implementation and maintenance) during the whole life cycle of the ontology (Gomez-Perez et 

al., 2004).  

 

After the first prototype has been specified, the conceptual model is built within the ontology 

conceptualization activity. Thereafter the formalization (though not mandatory) and 

implementation activities are carried out. The activities are iterative such that if there is a need 

for modifications they can be revisited. The figure 2.2 below shows the ontology development 

life cycle in METHONTOLOGY (Gomez-Perez et al., 2004). The figure shows the composition 

of the three main activities. The subactivities of the management and support activities are 

executed simultaneously with the development subactivities. Also, the figure also reveals that 

much of the efforts in support activities go into the knowledge acquisition and evaluation tasks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

Figure 2.2: The Methontology Development Life Cycle (Gomez-Perez et al., 2004) 
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2.7.5 Ontology Languages 

 

In selecting a language for developing an ontology, the preference of the developer is paramount. 

However factors such as the level of expressiveness of a language, its underlying knowledge 

representation paradigm and the reasoning mechanism attached to it must rank highest in the 

consideration of an ontology language.  

 

Over the years, several AI-based languages for implementing Ontologies have been created 

(Gomez-Perez et al., 2001; Su & Ilebrekke, 2002; Gomez-Perez et al., 2004). Ontolingua, which 

is based on the knowledge representation paradigm of frames and first order logic is the most 

complete of the ontology languages and the one considered as a de facto standard by the 

ontology community. Other languages that have been used for implementing ontologies include: 

KIF, CARIN, LOOM, CycL, OCML, FLogic, OKBC, etc. These languages are underlined by 

diverse knowledge representation paradigms such as:  frames, description logics, first order 

logic, and production rules. 

 

In the recent years, the advent of the Internet has brought about the creation of new web standard 

formats for information exchange such as XML and RDF. As a result, new XML-based ontology 

specification languages such as XOL, OIL, OML, DAML+OIL, OWL, RDF Schema and XML 

Schema have also emerged. These new languages have two roles: The first is that they can be 

used to provide the semantics of information contained in electronic documents; and the second 

is that they can be used for the exchange of ontologies across the web. SHOE is another web 

ontology language that is not based on XML but rather combines frames and rules. It is an 

extension of HTML because its original specification was presented very early in 1996.  

 

2.7.6 Ontology Tools 

 

Broadly speaking ontology tools can be classified into three categories: web-based, computer-

based and client-server tools. Generally ontology tools serve to minimize the complexity of the 

ontology development process by aiding different aspects of the ontology development process 
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such as conceptualization, implementation, consistency checking and documentation (Duineveld 

et al., 1999; Fensel & Perez, 2002; Gómez-Pérez et al., 2004). Particularly, they enable the 

creation, editing, and managing of ontologies written in the various languages. Examples of 

Web-based tools are: Ontolingua, WebOnto, OntoSaurus, WebODE, SymOntoX, APECKS, 

IKARUS and CO4. Computer-based tools include Protégé-2000, ODE, KADS22, OntoEdit, 

OilEd, JOE, Apollo, CODE4, DOE, DUET, GKB-Editor, IODE, KAON Tool Suite, OCM, 

Ontology Editor and VOID. Finally examples of client-server tools include LinKFactory and 

OpenKnoME. 

 

 

2.8 THE CHALLENGE OF DYNAMIC USER REQUIREMENTS IN TOURISM 

  

The tourism product is intangible, heterogeneous (i.e. a trip may have many parts) and non-

persistent (i.e. tourism services and product cannot be reserved for a particular consumer for 

long) (Henriksson, 2005). These core characteristics inevitably influence the nature of 

information exchange within the tourism value chain which includes: tourist, tour operator, travel 

agent, hotelier, government, destination management organizations (DMO), Airlines and so on 

(Henriksson, 2005).  e-Tourism which is the use of ICT applications for enabling the effective 

flow of information and business transaction in tourism faces a big challenge because of: 1) the 

unique nature of the tourism product, 2) the long tourism value chain; and 3) the heterogeneous 

nature of ICT infrastructures. 

 

The most important stakeholder in the tourism value chain is the consumer, who is at the end of 

the value chain and whom all efforts and services in tourism are constructed to benefit. 

According to Steinbauer (2005), the modern tourist is prone to the following characteristics:  1) 

become more mobile and critical; 2) become less loyal and frequently change their product 

preferences; 3) look for more specialized products and ask for better service; 4) want more and 

better information; 5) compare more products in more detail; 6) have fast changing needs and 

belong to different niches at the same time; and 7) tend to make more but shorter vacations.  

These complex and dynamic characteristics of tourism consumer behaviour portend critical 

challenge for providers of e-tourism services (Steinbauer, 2005; Werthner & Klein, 1999). 
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Notably, the characteristics listed as 2 to 6 above, are particularly relevant to the context of this 

thesis, because it raises the concern of how developers of tourism support systems can 

effectively respond to the trends in consumer behaviour. The question that comes to mind is: Is 

there a software development approach or methodology that could be engaged to tackle this 

dynamic nature of consumer behaviour? This therefore provides the basis for the second   

research question of this thesis (see Section 1.2), to which this thesis also provides an answer. 

 

2.9 SPLE - A PANACEA FOR MANAGING DYNAMIC USER 

REQUIREMENTS IN TOURISM?   

 

A candidate software development paradigm that possesses the potential to cater for the 

challenge of dynamic user requirements in e-tourism is Software Product Line Engineering 

(SPLE).    A software product line approach by its characteristics enables the definition of 

system instances dictated by marketing and product plan specification from prospective users 

(Bass & Kazman, 2003).  It also engenders software evolution within a family of closely related 

software products by ensuring that the inter-product commonalities and variabilities among 

products are well exploited for versioning and maintenance purposes (Gamma et al., 2005; Shaw 

& Garlan, 1996). This suggests that if a tourism market niche that cuts across segments of a 

specific tourism value chain with minimal variations and predictable change patterns is identified 

by a software development organization then the feasibility of a carefully planned SPL approach 

can be explored. This will enable a software development organization to manage the dynamism 

of e-tourism requirements that pertain to that domain.     

 

Further to this argument is the fact that generally TIS share many attributes in common and 

mostly perform similar functions. They mainly differ in the nature of local information content 

they deliver and the scope of tourism interest that is being promoted whether at the national, 

continental, regional, state, local and enterprise levels. The similarity in TIS functionalities 

makes them good candidates for a product line development, which seems not yet a prevalent 

practice in the e-Tourism domain (Daramola et al., 2008). However, the fact that Tiscover AG 

(www.Tiscover.com) among others renders tourism support services for eight different countries 
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of the world, with same set of functionalities but unique contents is a clear indication of the 

viability of Software Product Line Engineering (SPLE) in the tourism domain.  

 

2.9.1 What is Software Product Line? 

 

A Software product line (SPL) is a set of software intensive systems that share a common, 

managed set of features satisfying the specific needs of a particular market segment or mission 

and are developed from a common set of core assets in a prescribed way (Bass & Kazman, 2003; 

Ezran et al., 2002).  

 

It entails the production of a set of software products using common core assets. This core asset 

may be a software component, a process model, a plan, a document or any other useful resource 

for building a system. For example, one of the most important core assets in a product line is the 

software architecture. Another important one is the product line’s scope, which is a statement of 

what products the core assets are intended to support. The scope defines the commonality and 

variability (ways in which they differ from each other) that defines every product in the software 

product line. Software architecture provides a context in which other assets can be developed 

with the right flexibility to satisfy the products in the product line. 

 

Software Product Line Engineering (SPLE), which is based on exploring inter-product 

commonality, is rapidly emerging as a viable and important software development paradigm. 

Also, it facilitates the production of tailor-made systems built specifically for the needs of 

particular customers or customer groups by exploiting the commonalities shared by software 

products to realize order-of-magnitude improvements in time-to-market, cost, productivity, 

quality and other business drivers.  It also enables rapid market-entry and flexible response, and 

provides a capability for mass customization of software products. 

 

A product in the software product line is formed by taking applicable components from the base 

of common assets, tailoring them as necessary, through pre-planned variation mechanisms such 

as parameterization or inheritance, adding any new component that may be necessary and 



52 
 

assembling the collection according to the rules of a common reference architecture. This 

connotes that building a system in a product line becomes more of assembly or generation than 

of creation. The predominant activity also becomes integration rather than programming.   

There are other terms that have been used in literature that convey essentially the same meaning 

as the set of terms used in this thesis. In some cases, the term product family has been used to 

refer to a product line; platform is used to refer to the set of core assets, and the term 

customizations is used to refer to the products of the SPL.  The term domain engineering is used 

to refer to core asset development and application engineering is used to refer to product 

development.  Typically, the technical practice of software product line engineering can be 

defined as:   

SPLE = Domain Engineering + Application Engineering 

 

Where domain engineering consist of the aspects of core assets development, while application 

engineering entails the generation of the multiple products that constitute the SPL using reusable 

components in the asset repository. 

 

2.9.2 Merits of the SPL Approach 

 

The adoption of SPL approach for the engineering of TIS has significant merits. However, for 

SPL to engender systematic and strategic reuse within an organization, it must be actively 

supported with adequate managerial policy to back the technical initiative. For example an 

organization will need to migrate from developing a single product to developing product 

families. Hence product family-oriented abstractions must be developed from requirements, and 

relevant core reusable assets built that can be subsequently leveraged in the development of 

variant products by the organization. This offers significant advantage in terms of cost and time 

of development when compared with traditional reuse approaches. 

 

Another advantage of SPL over traditional reuse is that the cost of maintenance is reduced 

because the products are built on a common platform, all products using the platform can share 

the maintenance costs of the platform, while cost of maintaining the variability in products is 

relatively minimal. 
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2.9.3 Product Line Artifacts 

 

The key artifacts of a product line are the product line requirements, the product line architecture 

(PLA) and the product line components. These three artifacts differ from their single product 

equivalent and are described as follows: 

Product Line Requirements: These are base requirements that span several products in contrast 

to their single product equivalent. It defines the basic limits that must be satisfied by each 

component in the PLA. This means that the product line requirements must be written with 

variation points to be able to capture variations between individual products within the product 

line. Product line requirements can be classified as “Non-reusable”, “directly reusable”, 

‘variable” or “obsolete” (Mannion et al., 2000). 

Product Line Architecture: The software architecture of a program or computing system is the 

structure or structures of the system, which comprises software elements, the externally visible 

properties of those elements, and the relationships among them. The externally visible properties 

refer to those assumptions other elements can make of an element (component), such as its 

provided services, performance, characteristics, fault handling, shared resource usage and so on 

(Bass & Kazman, 2003). The success of any software project depends on the architecture 

because it is an important fundamental artifact of a system. Also, the quality and attributes of a 

system such as performance, modifiability, reliability and usability are all derived directly from 

the architecture. In a product line, the dominant core asset is the reference architecture for the 

product line, which is used at every product instantiation. It defines a set of explicitly allowed 

variation that represents the individual products that can be built with a product line. A number 

of variability mechanisms exist of which the FORM and FAST methods are prominent examples 

(Svahnberg et al., 2001; Thiel & Hein, 2002). Also, some of the Product line architecture design 

methods available in literature include: COPA, FAST, FORM, KobrA and QADA (Matinlassi, 

2004). 

Product Line Components: The components in a PL can either be part of the core assets or they 

can be developed for product specific reasons. Even though PL development draws significantly 

from component-based development (CBD) (Szyperski et al., 2002), the notion of components in 

the two concepts differs. This is because: 

• Product line components are typically not independently deployed as CBD components;  
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• Product line components are assembled in a prescribed way specified by their production 

plan and the PLA; and 

• Product line components implements variability mechanism specified by the product line 

architecture (Thiel & Hein, 2002).    

Figure 2.3 shows an overview of the activities and artifacts necessary for component design and 

implementation in a SPL paradigm context.  

 

 

 

 

 

 

 

 

 

 

 

 

2.9.4   State-of-the-art in Software Product Line Research 

 

The trend of current research activities in SPL has among its main emphasis issues involving the 

design and evaluation of product line architectures, definition of product line scope through the 

specification of feature variability and dependency among products, automatic creation of 

generic product line architecture from requirements, model driven product line architectures 

(MDPLA), support tools for model driven development (MDD) for product lines and industrial 

case study reports of product line practices. 

 

A number of product line architecture design methods have been discussed in literature this 

includes: Component-Oriented Platform Architecting (COPA) (America et al., 2000), Family-

oriented Abstraction, Specification and Translation (FAST) process (Weiss et al., 1999), Feature-

Figure 2.3: Activities and deliverables in SPL component development (Bosch, 2000) 
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Oriented Reuse Method (FORM) (Kang et al., 1998), KobrA (Atkinson et al., 2002) and Quality-

driven Architecture Design and Architecture (QADA) Analysis (Niemelä, 2006). 

 

Perry (1998) suggests useful ways of ‘genericizing’ architectural descriptions with an analysis of 

the strengths and weaknesses of each approach. Among those suggested are: 1) use of software 

architectural style, 2) defining a variance-free architecture, 3) use of a parametric description 

using varying binding times, 4) use of service-oriented description for selective provisioning and 

5) use of under-constrained architecture. The generic architecture for Tourism Product Line 

Architecture (TPLA) proposed in this thesis is a product of an integration of all five underlining 

concepts, which makes it sufficiently generic for the tourism domain. A description of a reusable 

architecture for federated client/server systems is given in (Gomaa & Farrukh, 1999) although 

not specifically dedicated to a product line paradigm.  

 

The work by Deng et al, (2007) deals with the challenges of evolution in Model-Driven Software 

Product-line Architectures. The Koriandol system (Balzerani et al., 2005) is product line 

architecture for general web applications. The special feature of Koriandol in contrast to other 

component-based systems is that its components have variability handling mechanism built into 

them.  Koala is an implementation of software component model designed for creating a large 

variety of products (van Ommering, 2002). It is specifically dedicated to the modelling of 

embedded systems. The modelling and specification of a PLA for a family of meshing tools is 

given in (Bastarrica et al., 2006). Meshing tools are pieces of software that are used to generate 

and manage discretization of a domain that find application in mechanics design and medicine. 

The PLA was modelled with ArchStudio tool and formally specified using xADL (Dashofy et 

al., 2001). Among the reported case studies on architectural analysis and design of product lines 

include (Lutz & Gannod, 2003), which is an evaluation of an existing product line of 

Interferometers. The work in (Schwanke & Lutz, 2003) is an experiences report on the 

architectural design of a modest product family in this case some medical image processing 

products. A number of other case studies were reported in (Bosch & Svahnberg, 1999) and 

(Clement & Northrup, 2002), but none of these reports is specific to the tourism domain. 
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ATAM (Architecture Trade-off Analysis Method) is a popular scenario-based architecture 

analysis method that is discussed in (Kazman et al., 1998) and a survey of several software 

architecture analysis methods can be found in (Ionita et al., 2002). 

The modelling of feature variability and dependency is an important aspect of product line 

practice. Feature-Oriented Domain Analysis (FODA) feature diagram (Kang et al., 1990) and 

Feature-Oriented Reuse Method (FORM) (Kang et al., 2002) are few of the popular approaches 

mostly used. Ye and Liu (Ye & Liu, 2005) initiated a newer feature modelling approach, which 

captures both the feature tree view of product line components, and a dependency view.  

 

Also of interest are the various approaches for documenting the different views of software 

architecture. Kruchten presented the “4+1” views model in (Krutchen et al., 1995), while in 

(Hofmeister et al., 2001) the views model of Hofmeister et al. was presented. Other prominent 

approaches to documenting views of architecture are the Software Engineering Institute’s (SEI) 

Views and Beyond Approach (V&B) (Clements, 2005), IBM Standard for Architecture 

Description (ADS) (Youngs et al., 1999) and the HP (Hewlett-Packard) Template for 

Documenting Views of Software and Firmware Architectures (Ogush et al., 

http://www.architecture.external.hp.com) 

 

2.10 THE CONTEXT OF THIS RESEARCH 

 

From the foregoing issues, a number of gaps exist in literature which defines the context of this 

research. The first is the need for the generation of more dependable tourism recommendations 

which have not been adequately addressed by existing TIS platforms. The second is the problem 

of managing dynamic user requirements in tourism to which literature has not been able to 

provide a product development-based solution approach till date.  These two gaps become the 

premise for the central research question being investigated in this thesis, which is: 
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How do we facilitate more dependable recommendations in TIS and at the same time 

cause such systems to evolve in tandem with the dynamic nature of user requirements in 

e-tourism? 

For adequate explication, the central question has been split into the following two research 

questions: 

1. What methods are needed to enable dependable recommendations in TIS in order to 

foster users’ confidence? 

2. Given the frequently changing and growing nature of user requirements in tourism, what 

approach is required by TIS developer organizations to facilitate the proactive evolution 

of their products in order to cater to dynamic user requirements? 

This thesis aims at proposing a viable solution to these questions.  

 

2.11 PROPOSAL OF TOURISM PRODUCT LINE ARCHITECTURE 

(TPLA) FOR NEXT-GENERATION TIS  

 

The advent of new technologies such as the semantic web and mobile computing have offered 

new transactional possibilities that have complicated the nature of e-tourism requirements, a 

challenge that currently eludes the capability of existing TIS (Staab et al., 2002; Felfernig et al., 

2005).  Hence, next generation TIS must be equipped with semantic web, personalization, 

context-aware and content-sharing capabilities that can cater for the dynamic challenges of the e-

tourism domain.  

 

As an aftermath of a detailed study of the emerging user requirements and technology needs in 

the e-tourism domain, a generic reference architecture for Tourism Product Lines (TPLA) is 

proposed. The TPLA is conceptualised as a platform for evolving intelligent component services 

in TIS in response to the dynamic challenges of the e-tourism domain. It is a layered architecture 

of core reusable components that can be leveraged for the development of TIS product family. 

This is the one of the new perspectives offered by this thesis (see Daramola et al., 2008), which 

also serves as a springboard for the rest of the work. 
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2.11.1 Justification for the TPLA 

 

A detailed study of tourism domain clearly reveals that most TIS share similar visions, objectives 

and similar functionalities. Also, a survey of the e-tourism domain and literature shows that the 

features found in TIS can be grouped into three main functional service categories namely: 1) 

Information services: these involve the provision of relevant information content to the user, 

content sharing and content syndication (Hammersley, 2003). The information service provider 

builds its content and publishes or shares it for specific purposes, 2) Transaction Service: here 

the service provider may receive inputs that are consumed in the process of constructing 

something of value for an actor with specified minimum level of quality and may also initiate 

other transactions at run-time (B2B transactions) and 3) Third Party Service: these are services 

provided by e-Business and e-Commerce entities that are external but interoperate with the TIS 

through web services.  

 

SPL by the nature of its characteristics is intrinsically suited to handling some of the dynamic 

challenges, which the next generation TIS must address. For the realization of a product line 

objective in tourism a reference architecture for the product line is crucial. The success of any 

software project depends on the architecture because it is a primary and important fundamental 

artifact of a system from which its quality attributes are derived. Essential quality attributes of a 

system such as performance, modifiability, reusability and usability are all dependent on 

software architecture of a system (Bass & Kazman, 2003). In a product line, the dominant core 

asset is the reference architecture of the product line, which shows the configuration of core 

components that are used at every product instantiation.  

 

2.11.2 Description of the TPLA 

(A significant part of this section, has been published in (Daramola et al., 2008): Information 

and Communication Technologies in Tourism 2008)  

 

The reference architecture for e-Tourism product line (TPLA) (see Figure 2.4) is a layered 

architecture consisting of five layers. Each layer represents specific infrastructural abstractions of 
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the product line architecture. The description of the specific layers is given as follows (Daramola 

et al., 2008): 

1. Client Layer: The client layer abstraction is comprised of client devices through which the 

services of the TIS can be requested. This includes PDA, web browser (through Laptop and PC) 

and i-Mode device.  Components at this level consume the services of the architecture. 
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2. Technology Service Layer: The Technology Service layer defines the implementation 

platform for all the services in the PLA. This can be WAP for WAP-enabled mobile 

applications, i-mode for i-mode-enabled applications or HTTP for web clients. The 

Technology Service layer is augmented with the implementation of a set of four graphic user 

interfaces (GUI) collectively referred to as Basic Utility Services. These are:  

• User profile and request interface: responsible for collection of information on the 

preferences of users and rendering personalized services by exploiting the knowledge 

gained from previously stored user profile. 

• Data mining interface: responsible for knowledge discovery services using in-built 

association rule mining, collaborative filtering and classification algorithms. 

•  Supplier and services data: responsible for content upload and data storage services.  

•  Context sensor services: responsible for the tracking of the environment, social, task, 

and spatio-temporal (time, location, direction, speed, shape) contexts of the user. A 

comprehensive context list is built by this component and is used to aid the delivery of 

services.   

These four distinct functionalities in the Technology Service are provided for every system in 

the product line. Every system in the product line (PL) must be able to hold a conversation 

with Technology Service before it can request any of the utility services in line with the 

principle of conversation before composition. This is for the determination of appropriate 

communication protocol depending on the nature of requesting client and the provision of data-

aware and context-aware services, which only Technology Service is mandated to provide on 

demand. 

3. Variant Services Layer: The Variant Services Layer consists of the class of all services that 

are not basic to the architecture. This set of optional services can be further sub-classified into 

information services, transaction services and third party services. Information services 

component represent a loci of computation that are responsible for the provision of location-

based information contents such as: news, events, places, accommodation and weather reports. 

Transaction services are logic components that are responsible for the delivery of services such 

as travel recommendation, destination recommendation, route advisory services, query search, 

map guide, etc. While third party services are the external e-Commerce sites, which provide 
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web services that can be discovered and consumed by the TIS. Examples of these include car 

rental services, hotel accommodation booking services, bookshops, shopping stores, etc. 

4. Semantic Information Layer: This layer of abstraction defines the semantic awareness that is 

exhibited by all components in the architecture. The components of this layer are the various 

middleware semantic models of knowledge representation specifically designed to enable 

intelligent attributes like context-awareness, personalization and semantic awareness in the 

logic components of the TPLA. Candidate semantic models available in this layer include 

ontologies, knowledge bases, OWL-S, WSMO, WSDL-S, and XML. The implementation of 

these semantic models will facilitate improved query processing, information exchange and 

cross platform interoperability among various information systems yielding high quality 

services. Three of the specific services that will be provided at this layer of abstraction include: 

i) Context-awareness: this refers to the ability of a system to make use of information about the 

device platform, the user, and the surrounding environment in the delivery of its services. 

ii) Personalization: this is a form of context-awareness in which the system gathers user-

information during interaction with the user in order to construct a response that uniquely fits the 

user’s preferences. 

iii) Semantic Web Services: this will enable the automatic annotation, advertisement, discovery, 

composition and execution of inter-organization business logic, making it possible for several 

organizations and individuals to communicate with each other to carry out various commercial 

activities and to provide value-added services (Cardoso, 2004).  

5. Data Layer: The data layer is composed of a set of database abstractions that stores the 

information content delivered by the TIS. These include data repositories, the UDDI registry 

from which third party web services are discovered, and all other external databases to which the 

TIS can bind. 

 

2.12 SUMMARY 

 

The chapter presents the issues that define the research context of this thesis. It started with a 

discussion of the necessity for intelligent systems for tourism and the progress made so far in the 

course of intelligent enabling of e-tourism systems. Secondly, an argument for recommendation-

intensive TIS is presented as justified by the information intensive nature of the tourism industry 
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and the intangible nature of the tourism product which makes it impossible for customer to touch 

a product before a trip. This is followed by an overview of recommender system types and 

techniques. The key aspects discussed include content-based, collaborative filtering, knowledge-

based, and hybrid recommender system. Thereafter, the chapter specifically reviews the 

recommendation technologies in tourism, and the limitations of existing approaches and the gaps 

that this thesis attempts to fill. Next is the subject of ontology-based tourism recommendations as 

a way of improving the dependability of tourism recommendation. After this the subject of 

dynamic requirements in tourism is critically examined with the identification of the Software 

Product Line Engineering (SPLE) paradigm as a possible panacea for managing dynamic 

requirements in tourism. The chapter closes by formally articulating the research context of this 

thesis and the proposal of a Tourism Product Line Architecture (TPLA) as a means for handling 

dynamic challenges in next generation TIS.  
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CHAPTER THREE 
 

PRODUCT LINE FOR ONTOLOGY-BASED TOURISM 

RECOMMENDATIONS (PLONTOREC) APPROACH 
 

3.1 INTRODUCTION 

 

The Product Line for Ontology-based Tourism Recommendations (PLONTOREC) approach is 

the proposed solution to the two research questions posed in this thesis. The chapter presents an 

overview of PLONTOREC as a novel hybrid of software product line engineering and ontology 

engineering dedicated to the development of recommendation-intensive TIS. It gives insight into 

its strategy and underlining assumptions, its process architecture, and its main sub-processes. In 

addition the modalities for the validation of the PLONTOREC approach are discussed. The 

chapter closes with a summary and discussion on expected results.  

 

3.2 OVERVIEW OF THE PROPOSED SOLUTION: PLONTOREC 

APPROACH 

 

The vision of Product Line for Ontology-based Tourism Recommendations (PLONTOREC) 

approach originated from the generic tourism product line architecture (TPLA) presented in 

section 2.10.  It is a product realization concept for TIS that share in the attributes of the generic 

TPLA proposed in (Daramola et al., 2008). PLONTOREC is a novel hybridization of ontology 

engineering and software product line engineering concepts that is dedicated to the development 

of TIS. It is a specialized software development approach that thrives on carefully planned 

knowledge reuse and software reuse initiatives that are designed to enable dependable and 

intelligent tourism recommendations in TIS. It is also aimed at providing a platform for such TIS 

to evolve proactively in tandem with dynamic user requirements. PLONTOREC is proposed as a 

unified approach to tackling the two research questions that have been highlighted in this thesis. 

It is designed as a software development approach that facilitates the creation of 
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recommendations-intensive TIS products in TIS development organizations that brings a boost in 

productivity and minimizes cost. Further details on the PLONTOREC approach are presented 

next. 

 

3.2.1 Limitation and Assumptions 

 

The application of PLONTOREC for the development of TIS is constrained by a set of 

preconditions that assures of its feasibility in a given domain. These are: 

1. All developed TIS belong to the same organization or a consortium of collaborating 

organizations; 

2. The content configurations of different variants of TIS products within the product family 

are known and predetermined in advance; 

3. The process description for developing specific kinds of TIS product is also 

predetermined; and 

4. Planning of the structure of components and reuse context is done proactively in advance. 

In Addition, PLONTOREC is based on the following assumptions: 

1. New products evolve by composition, using existing components in the common asset 

base; 

2. New versions of TIS products are variations of existing ones, having many things in 

common with the old versions; and also 

3. The points of variability are minimal and predictable; 

 

PLONTOREC is designed for specialized unified knowledge and software reuse-oriented 

development of TIS. It does not address the general-purpose reuse context. As such, the 

limitation and assumptions of PLONTOREC are all directly derived from the principles that 

govern the practice of SPL initiatives (Shaw & Garlan, 1996; Gamma et al., 2005). The 

limitation is meant to provide a guide on how the technical and organizational aspects of the 

product line should be managed.  The set of assumptions on the other hand are those that 
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facilitate the highest payoffs in PL development and specify the scenario when PLONTOREC is 

optimally applicable. 

3.2.2 The PLONTOREC Process Architecture 
 
 

The PLONTOREC process architecture provides insights into the activities involved in the 

creation of TIS products using the PLONTOREC approach (see Figure 3.1). It is an adaptation of 

the software product line and ontology development process life cycles, which are the two 

standard system development practices encapsulated in PLONTOREC. The SPL practice is 

divided into three component processes: Product line management, Domain engineering and 

Application engineering, while the ontology development activities which is the fourth 

component process represents the Ontology engineering practice in PLONTOREC. 

 

The flow of activities in PLONTOREC is not necessarily sequential and it is possible to iterate 

through the different processes. PLOTONREC is initiated from product line management to 

ontology engineering, domain engineering and terminates with application engineering. After 

each stage of domain engineering and application engineering, product line management process 

is repeated in order to re-evaluate the PLONTOREC approach with updated data from domain 

analysis. This is to ascertain whether the process should proceed or be halted. 
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Figure 3.1. The Process Architecture of PLONTOREC  
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3.2.3  Product Line Management in PLONTOREC 
 

The product line management sub-process in PLONTOREC defines the set of activities that 

provides the necessary managerial guide and organizational control that complements the 

technical aspects of domain engineering, application engineering and ontology engineering of the 

PLONTOREC approach. Product line management is carried out at specific interval periods or at 

the end of each sub-process. The main activities of product line management include: 

i) Feasibility and Risk Assessment: This involves an assessment of the technical and 

organizational viability of the PLONTOREC approach and a determination of the risks 

associated with it. The tools used for these activities include results obtained from interviews, 

surveys, observations, market analysis, domain field studies and product reviews. Qualitative 

assessment methods such as questionnaire or quantitative assessment methods such as 

measurements and estimation are used to achieve this. A product line management overview 

document is generated at the end of the exercise, which contains the general information 

about the product line that is to be created (Thiel & Hein, 2002; Gamma et al., 2005). 

ii) Economic Evaluation: This involves the evaluation of the economic viability of the 

PLOTONREC approach. In order to do this a quantitative comparison of the situation where 

PLONTOREC is used and when not used is required. The measurement is done on the basis 

of effort in person months involved in the cases with PLONTOREC and without 

PLONTOREC. The metric is assumed to have direct impact on the economic factors such as 

cost, net present value etc. The model for estimating effort in PLONTOREC is derived from 

the standard model already developed for SPL (Bockle et al., 2004).  This is given as: 

 

 Cf = Corg + Ccab + 
n
∑i=1(Cunique(Pi) + Creuse(Pi)) 

Where Corg ,Ccab , Cunique , Creuse are cost functions.  

The effort in PLONTOREC is estimated as follows: 

Eplontorec = Eorg+ Edom+ Eonto+Eontoupdate + N *(Ereusewith+Euniquewith+J*Eupdatewith) 

Where 

Eorg: Effort to introduce the product line, adapt the organization, train staff etc. 

Edom: Effort expended in domain engineering for the development of core assets, cost of 

commonality and variability analysis 
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Eonto: Effort expended in the development of relevant ontologies 

Eontoupdate: Effort expended in updating content of ontologies after initial development and its 

maintenance 

N: Number of TIS products in the product line 

Ereusewith: Average effort in application engineering for the reuse of existing core assets e.g. 

choosing, configuration, searching and integration of core assets. 

Euniquewith: Average effort to extend core assets base with core assets unique to a product, 

effort with manual adaptations of core assets after creation. 

J: Average planned number of content update cycles for one TIS product 

Eupdatewith: Average effort of updating the product-related core assets in the core asset base; 

For a well-designed PLONTOREC approach Ereusewith+Euniquewith should be relatively small 

compared to Eorg+ Edom+Eonto as similarly applicable to well-engineered product line 

initiative. 

 

The effort without PLONTOREC can be estimated as follows: 

Ewithout = N * (Euniquewithout + J*Eupdatewithout) 

Where  

N: number of individual TIS products in the product line; 

Euniquewithout: Average effort to create one unique TIS; 

J: Average planned number of content update cycles for one information product; 

Eupdatewithout: Average effort of updating one TIS product. 

 

In order to determine the economic justification for PLONTOREC, we adopt a similar model 

as used for conventional SPL (Bockle et al., 2004). Hence for a well designed PLONTOREC 

approach, Ereusewith+Euniquewith < Euniquewithout, and Eupdatewith < Eupdatewithout, and 

Ereusewith+Euniquewith. It must be noted that PLONTOREC must first invest Eorg + Edom + Eonto, 

which will prove advantageous after several TIS are realized. A significant and unique 

advantage of PLONTOREC is the improved dependability of intelligent recommendations 

from TIS products, which may also provide good justification for the initial efforts expended 

on domain engineering and ontology engineering. In all cases PLONTOREC will be 

considered successful or viable if the Eplontorec ≤ Ewithout .  
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Nevertheless, the cost differential between Eplontorec and Ewithout becomes less significant when 

the benefit of more dependable recommendations in TIS offered by the PLONTOREC 

approach is considered.  

iii) Configuration Management: The essence of configuration management is to ensure that 

changes in the products of the product line are well managed. A configuration represents a 

fixed arrangement of a set of items at some point. A configuration item is the smallest unit of 

change. The description of a configuration that gives the details of each item that belong to 

that configuration is called a baseline (Tichy, 1992).  Configuration management in 

PLONTOREC ensures that changes that need to be made to products by way of upgrade and 

versioning are carefully planned in a way that makes them technically realizable without 

disrupting the design of the product line. Some of the issues determined during configuration 

management include identifying: the core asset to be upgraded, the new core assets to be 

added to the core asset base, the new products that need to be added to the product line based 

on market demands or trends in consumer behaviour, and the versions of core asset artifacts 

that must be used to implement specific TIS.  

iv) Organization Aspects: This represents the set of organizational initiatives that are 

implemented to guarantee the effectiveness of all the technical sub-processes of 

PLONTOREC and its overall success. The activities expected in the context of an 

organization include: assigning appropriate role responsibilities to groups and individual 

staff, providing necessary infrastructure, defining clear and measurable goals and objectives. 

Role responsibilities are defined in a general way by assigning every staff member to the 

specific subprocesses (i.e. product line management, ontology engineering, domain 

engineering, and application engineering). For some product lines, only one employee can be 

responsible for all subprocesses, if the effort required is relatively small. 

v) Evaluation and Controlling: This provides an avenue for the evaluation and controlling of 

the entire PLONTOREC approach. Periodical evaluations are carried out at specific points, 

notably after ontology engineering, domain engineering and application engineering to 

determine whether the process should proceed. Results obtained from the feasibility and risk 

assessment are used, with the same question asked repeatedly concerning the status of 

development in the product line. If all answers to questions related to feasibility are 

affirmative then feasibility is certified, if any of the answers is negative then PLONTOREC 
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should not be used. If any of the answers is uncertain then it should be resolved to yield 

positive or negative answer, so that the decision of whether to continue with PLONTOREC 

or not can be taken. In the same way risk assessment is carried out together with cost and 

benefit evaluation. Also, for control purposes the configuration management schedules are 

renewed based on emerging market and product views in order to ensure that correct steps 

and decisions that will facilitate the objectives of PLONTOREC are taken (Tichy, 1992). 

 

Product line management is generally concerned with the management and organizational issues 

of PLONTOREC at initiation and throughout its entire lifecycle. It ensures that accurate 

decisions are made based on current realities for the success of the product line initiative. 

 

3.2.4   Ontology Engineering in PLONTOREC 

 

Ontology engineering is the sub-process that focuses on developing the reusable knowledge 

artifacts needed for the execution of the PLONTOREC approach. During this period, the suite of 

ontologies that are relevant to the goals of the product line development are either constructed 

from scratch or built by re-engineering existing ontologies.  Ontology engineering starts with the 

scheduling activity during which time the task to be performed, the arrangement of such tasks, 

the time and resources needed for their completion are all identified. Thereafter the development 

activity starts with the specification of the ontology, at the same time the various management 

activities (i.e. control, quality assurance) and support activities (i.e. knowledge acquisition, 

ontology learning, ontology evaluation, ontology merging, documentation, and configuration 

management) also starts. Section 2.6.3 can be referenced for further details on the key activities 

of ontology engineering.  Also the details of the development of two knowledge representation 

ontologies are discussed in sequel sections (Chapter 4) of the case study part of this thesis. 

  

3.2.5 Domain Engineering in PLONTOREC 

 

Domain engineering is the sub-process of PLONTOREC that is concerned with the construction 

of all reusable software assets that are used for building the variant TIS products in the product 

line. The artifacts created during domain engineering are the core assets that makeup the core 
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assets repository for the product line development. During domain engineering, the reference 

architecture for the product line is created that consists of the core components of the product 

line. Also during domain engineering the components are constructed, tested and certified for 

deployment in application engineering.  The details about key activities in domain engineering 

are discussed as follows:  

i) Domain Analysis: This is the activity carried out at the beginning of domain 

engineering to systematically analyse the problem domain and to structure the 

knowledge in a way that is useful for other phases of the product line development 

process. The most important sub-activities of domain analysis are domain requirements 

engineering and domain scoping (Arango, 1994). During domain analysis in 

PLONTOREC, the requirements that span the entire scope of the tourism domain under 

consideration are captured, while domain scoping (Pohl et al., 2005) is also carried out 

to identify what should be in the product line and what should not. It is also at this 

point, that the configurations of all possible variants of products that will constitute the 

product line are determined. The inputs for the domain analysis include results of 

interviews, market surveys, existing systems and other requirements documents in the 

specific domain. 

ii) Domain Design: This activity generates the reference architecture for the product line 

based on the requirements gathered from domain analysis, and additional abstraction 

models that facilitate the development of TIS products. The different aspects of domain 

design include: conceptual design, logical design and physical design. The dominant 

artifacts of conceptual design are: 1) Conceptual product line model: which is a model 

of the reference product line architecture which incorporates the basic and optional 

features available, and from which TIS products in the product line are instantiated; and 

2) Content component model: which defines the details of content components such as 

modules, functions, logic components, subsystems, database etc. The logical design 

consists of: 1) Core asset version graph model: which defines the available versions of 

core assets that can be used in different TIS product configurations. It specifies the 

uniform way in which core assets are to be versioned in order to engender the evolution 

of core assets in tandem with dynamic requirements or improvements in core 

functionalities; and 2) Product map template: which enables systematic management of 
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the use of core assets in realizing specific TIS products. Data obtained during 

application engineering and from the reference product line architecture are used to 

determine the configuration of core assets to be used in the composition of specific TIS 

products. It is implemented as a two-dimensional matrix of a listing of features and 

variant TIS products. Additionally, the physical design consists of 1) Construction 

specification: which defines the construction workflow model that is used to create 

every possible TIS product in the product line; and 2) Workflow design patterns: which 

are pre-constructed and tested pieces of reusable workflow patterns that can be relevant 

in domain engineering. In addition, design of other software artifacts relevant to the 

course of development are also implemented during domain design. 

iii) Domain Realization: This activity involves the platform specific implementation of 

core assets that are used in application engineering.  The inputs received from domain 

design are engaged in the actual construction of all content components (core assets) 

according to the specification of the content component model. Other software assets 

such as helper programs and general interface layouts are also realized. 

iv) Domain Testing: This activity involves the certification of constructed core assets and 

ensuring quality assurance. The constructed domain core assets are tested, analysed and 

evaluated. Syntax checking, content validation, integration testing and validation 

testing are carried out under specified conditions to ascertain the quality of constructed 

core assets. This activity provides the certification for the engagement of created core 

assets in application engineering. 

 

3.2.6  Application Engineering 

 

Application engineering is the sub-process of PLONTOREC that is concerned with the creation 

of specific TIS products through the reuse of core assets created in domain engineering. The core 

activities of application engineering are application analysis, application design, application 

realization, and application testing. These activities are described as follows: 

i) Application Analysis: The objective of application analysis in PLONTOREC is to capture 

the specific requirements of individual TIS products that will be created using the core assets 
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created during domain engineering. The requirements are obtained from customers or group 

of customers who demand for products with specific content configurations. The input to 

application analysis includes domain requirement specification, domain design models, 

application specific interviews and surveys, and feedbacks from application testing. 

ii) Application Design: This activity is used to determine the configuration of specific products 

in the product line. It involves the creation of application-specific design models and a 

product map based on the conceptual product line model and the core asset graphs developed 

in domain engineering. The configurations of specific products are obtained from the 

conceptual product line model while the product map documents the selected configurations 

for specific TIS products. It also determines the versions of specific core assets that are to be 

used for realization of specific TIS products. Additionally, the application analysis document 

is used as input to application design. 

iii) Application Realization: This involves the generation of TIS products based on their 

specific configuration design using the core assets created in domain engineering. The 

predefined construction workflow model already specified in domain engineering is used to 

realize specific products in the product line. It primarily deals with product composition and 

assembly of variant TIS products leveraging the reusable core assets already developed in 

domain engineering. 

iv) Application Testing: This is concerned with the quality assurance of generated TIS 

products. The TIS products are tested and validated using the domain requirements 

documents, application requirement documents, and domain test artifacts and application test 

artifacts. Some of the tests carried out include syntax checks, integration tests, validation 

tests etc. The output of application testing includes feedback to application analysis, feedback 

to domain testing, and the tested and validated TIS products. 

 

3.3 FORMAL DEFINITION OF PLONTOREC 

 
Based on the conception of PLONTOREC as a formal process that specializes software product 

line practices for the development of TIS, a formal and precise definition of the PLONTOREC 

approach is necessary. In order to achieve this, the definition of SPL given in (Prankatius et al., 
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2007) has been adopted but adapted to fit the specific context of our approach, which hybridizes 

software product line and ontology engineering. 

 

A PLONTOREC-generated product line TISPLplontorec (F, FTree, O, Pr, As, Cs) consist of: 

• A set F of features, such that f ∈ F: F = (name, type, annotation); i.e. each feature has a 

name, a type and an annotation. Feature types are classified as common, optional or 

alternative i.e. type ∈ {common, optional, alternative}. 

It is distinguished between the sets of 

- common features CF: = {f ∈ F | type(f) = common} with CF≠ ø 

- optional features OF: = {f  ∈ F | type(f) = optional}  

- alternative features AF: = {f  ∈ F | type(f) = alternative}. 

   annotation is a description of feature in a natural language.  

 

• The features are organized in a feature tree FTree with nodes Q. Each node  

ni ∈ Q, except the root node nr ∈ Q, has a type and contents, i.e. ni = (type, contents) with 

node type ∈ { common, optional, alternative}. Every node is linked to features in F 

through its contents, and each feature occurs in exactly one node. The root node nr 

however has no corresponding feature in F as an exception. The connection between a 

node ni and features is given as follows: 

- contents (ni) =   f ∈ CF                    , if type(ni) = common; 

                                f ∈ OF        ,if type(ni) = optional;  

                                (Y, min, max) ∈ N with 

                                  Y  ⊆ AF; min, max ∈ N   , if type(ni) = alternative; 

- if type(ni) = alternative then ni must be a leaf in FTree. 

 

• A set of ontologies O = {o1 …ot} and for o ∈ O: o = (oid, name, type, annotation, 

ONTO) with 

−  oid is a unique identifier for the ontology oi 

− a name, a type and an annotation (which is a description in natural language).  

− a  representation ONTO = {G(V,E), β, α, N, T} with 
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� a set  β ={c1,…cn} where ci ∈ β is a concept name;   

� a set α  = {r1…rm}, where ri ∈ α is the type of the binary; relation relating 

two concepts, such that ci and ri are non-null strings); 

� a directed graph G(V, E) representing the ontology, where V is a finite set 

of vertices and E is a finite set of edges: Each vertex of  V  is labelled with 

a concept and each edge of E represents the inter-concept relationship 

between two concepts. Such that the label of a node v ∈ V is defined by a 

function     N (v) = ci that maps v to a string ci from β. The label of an 

edge e ∈ E is given by a function T(e) = ri that maps e to a string ri from α. 

 

• A set of TIS software products Pr = {p1, …pk} and for p ∈ Pr: p = (pid, FTreep, Fp) 

where 

- pid is a unique identifier for the software products p. 

- FTreep is a feature tree for the product p, which is an instance of FTree. In order 

words FTreep is a subtree of FTree, with root node nr that is by default included 

into FTreep;  

- a node ni of the type common in FTree has to be included in FTreep if its 

immediate predecessor was included, i.e. for an included node, all immediate 

successor of type common have to be included in FTreep; 
- From a node na of type alternative in FTree, not all alternative features must be 

chosen for FTreep. The corresponding node  na
’ = (type’, contents’) in FTreep has 

type’ = alternative and contents’ (na
’) = X ⊆ Y  with min ≤│X│≥ max, i.e. at least  

and at most max alternative feature have to be chosen from the set Y 

- The set Fp = CFp ∪ OFp ∪ AFp denotes all common, optional and alternatives 

features in FTreep which are finally in the contents of the included nodes, these 

features will realize the functionality of the product p. 

 

• A set of core assets As := {a1…aj} which are used to build a feature or a subset of 

features in FTree. Furthermore, for a ∈ As: a = (aid, content, annotation), which means 

that a core asset can conceptually consist of 

- a unique identifier aid; 
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- some content which can be for example a document, code, a model etc. 

- some annotations related to the content, e.g. natural language descriptions, metadata, 

process specification for its construction etc. 

 

• A construction specification Cs = (model, annotation, B) which specifies how to create 

every possible product in the TIS product line from core assets. In particular: 

- there is a model which describes the overall construction; 

- an annotation adds additional information e.g. as natural language descriptions; 

- B is the built-in-from-relation B ⊆ P x A indicating which TIS product are built using 

core assets. 

 
The definition above characterizes a PLONTOREC product line as consisting of a set of features 

F that are organized in a feature tree FTree, a suite of ontologies O relevant to specific tourism 

objects of interest, a set of TIS products Pr that are built from reusing a set of core assets As, and 

a construction specification model Cs that defines how individual recommendation-enabled TIS 

products are built from the core assets leveraging specific ontologies. The components of the 

definition as further explicated as follows: 

Features (F): The features in the product line are strictly classified into three crisp sets of: 

common features, optional features and alternative features. In the feature tree each node is 

connected to a feature, and a feature must occur in only one node. The set of features must not be 

empty, and there must be sufficient commonalities among the features of products in the domain 

to justify the need for a product line. The types for features and nodes are used to impose 

constraints on the choice of features for particular products.  

Feature Tree (FTree): The feature tree is used as an organization structure for features and as a 

means to model feature dependencies and constraints. Also, the feature configuration of every 

concrete product exists as an instance of the feature tree, FTree. For the creation of such an 

instance, it is assumed that starting with the root which is always included in every product only 

those nodes from FTree are chosen which contain features that should be implemented in a 

product. For a specific product, the resulting instance FTreep is also a tree.  The selection process 

of features in the nodes of the tree FTree is influenced by already chosen parents and by the type 

of a node (Bosch & Svahnberg, 1999).  
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Ontologies (O): The suite of ontologies provides the basis for intelligent knowledge-based 

recommendation that is inherent in every product in the TIS product line. The features 

configuration of specific products determines the set of ontologies that are relevant to each of 

them. Such ontologies are also built and maintained (updated) as the feature configuration of 

associated TIS products evolve.  

Products (Pr): These are the end products of PLONTOREC; the variability among products is 

determined by their distinct features configurations. This also determines the specific intelligent 

recommendation attribute inherited by such TIS products. 

Core Assets (Cs): Each core assets has a unique identifier, a content part and annotation part. 

The content part can be for example a code component, an architecture, a design diagram, a text 

case etc. The annotation part can be for example metadata, a natural language description with 

details on how to use the asset during the construction of a product, or even a more precise 

process specification for application engineering.  

Construction Specification (Cs): The construction specification is the product line scope that 

defines how each TIS in the product line will be constructed. It is a construction model for the 

whole product line. This also includes relevant annotation in natural language, which may 

contain non-model information of the production plan. The built-in-from-relation B defines how 

specific core assets are used to build specific products. 

 

3.4 TOOL SUPPORT FOR PLONTOREC 

 

In order for PLONTOREC to evolve into a standardized and repeatable practice that is 

industrially applicable, adequate tool-support for implementing the approach is essential. An 

expansive tool-support base for the execution of the PLONTOREC approach has been identified, 

which is drawn mainly from the fields of software engineering and ontology engineering. These 

tools have been classified into functional categories as follows: 

• Requirements Engineering: DOORS, Accept 3600, Accompa, RequisitePro, SpeeDev, 

TigerPro, Raven, Gmarc etc. (http://easyweb.easynet.co.uk 

/~iany/other/vendors.htm#Doors); 
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• Software Architecture Specification and Modelling: xADL (Dashofy et al., 2001), ACME 

(Garlan et al., 1997); ArchStudio 4.0 (http://www.isr.uci.edu /projects/archstudio), 

Ménage (Garg et al., 2003) etc. 

• Software design: UML-based tools (Microsoft Visio, Rational Rose, ArgoUML etc.), 

MDA tools (Eclipse Modelling Framework (EMF) (http://www.eclipse.org), Visual 

Paradigm, Enterprise Architect, AndroMDA (www.modelbased.net/mda_tools.html) etc.  

• Software Programming: Integrated Development Environments (IDEs) e.g. NetBeans 5.x, 

Eclipse 3.x, Microsoft .Net etc. 

• Ontology Development: Protégé 3.x (http://protege.stanford.edu/), OntoEdit 

(http://www.ontoprise.de/documents/tutorial_ontoedit.pdf), Ontolingua (Farquhar & 

Fikes, 1996), Ontology learning tools (Kietz et al., 2000).  

 

Some of these tools were engaged in the case study section (chapter 4) of this thesis in 

detailing the practical application of the PLONTOREC approach. 

 

3.5 APPLICATION SCENARIOS 

 

The PLONTOREC approach is designed to find application in contexts where several similar 

TIS products are to be developed with minimal variations among them. The following are typical 

examples: 

1. A TIS developer organization that has the responsibility of developing tourism promotion 

solutions for different countries. For example West Africa, Central Africa, Southern 

Africa or North Africa.  A scenario akin to what obtains at TISCOVER AG 

(http://www.Tiscover.com), which has implemented tourism solution for 8 countries of 

the world. The TISCOVER tourism portal is a multi-lingual website which delivers 

exactly the same set of functionalities for all 8 countries but with unique local contents. 

This kind of scenario presents a good ground for product line development. Therefore, a 

PLONTOREC approach that will enable the development of recommendation intensive 

TIS by profitably exploiting the commonalities and variabilities that exist between the 

different countries can be adopted. The variabilities could be in terms of the language of 
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information presentation (e.g. English, French, Portuguese, Swahili, Hausa etc), 

information contents (local to each country), context information and web interfaces that 

reflects peculiar national identities. In the same vein, the commonalities will be in the 

predefined functionalities that are made available in all products in the product line.  

2. Instances of an organization having to provide tourism support solution for a set of states 

or regional governments within a country. This kind of scenario also allows exploiting 

what these governments have in common and the variabilities that exist among them 

using the PLONTOREC approach. 

3. Instances of having to implement tourism support services solutions for a particular 

category of tourism service providers. For example hotels, restaurants, café etc. 

4. Implementing tourism promotion solutions for Destination Management Organizations 

(DMO). Examples include city DMO, Site DMO, Regional DMO etc. 

 

3.6 VALIDATION APPROACH 

 

In order to validate the plausibility of the proposed solution approach, a case study of product 

line development using the PLONTOREC approach will be reported in chapter 4 to show the 

practical real-life application scenario of the PLONTOREC approach. This is done to validate 

the hypothesis that: The PLONTOREC approach provides an integrated process platform to 

enabling dependability of intelligent TIS recommendations and proactive management of 

dynamic user requirements in e-tourism within the context of TIS development organization. 

 

3.7  RELATED WORK 

 

So far, to the best of our knowledge, there is no research effort in product line development that 

is specific to tourism that has been reported in literature. This is irrespective of the fact that there 

are ample evidences of the viability of a product line approach in the tourism domain. However, 

the Koriandol system (Balzerani et al., 2005) is a product line architecture for general web 

applications of which TIS is a subset. The special feature of Koriandol is that its components 
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have variability handling mechanism built into them in contrast to other component-based 

systems. The flexibility of the Koriandol architecture gives the impression that it could be 

specialized to fit for a tourism product line context with some kind of effort if so desired.   

 

Another related work is the CWAdvisor (Felfernig et al., 2006), which is an integrated 

environment for the development of knowledge-based recommender applications. The 

CWAdvisor is presented as a domain-independent, knowledge-based recommender environment, 

which assists users by giving intelligent recommendations to ensure that appropriate choices are 

made, additional selling opportunities are identified, and explanations provided for suggested 

solutions in customer-oriented sales transactions.  The CWAdvisor environment can be 

configured for a specific application domain in order to obtain knowledge-based 

recommendations.  The similarity between CWAdvisor and the PLONTOREC approach 

proposed in this thesis is that they both provide an integrated framework for the generation of 

knowledge-based recommendations leveraging deep knowledge of customer and products. 

However, the differences are as follows: 1) While CWAdvisor presents a software environment 

for users to obtain knowledge-based recommendations, PLONTOREC offers a software 

development process that enable the building of knowledge-based recommendation-intensive 

systems; 2) While CWAdvisor presents a customer-oriented software environment that can be 

configured for specific application per time, PLONTOREC presents a developer-oriented 

product line process for generating series of knowledge-based recommender products for the 

tourism domain; and 3) While CWAdvisor makes use of a in-built recommender knowledge-base 

consisting of product properties, customer  properties (obtained at run time) and constraints, 

PLONTOREC makes use of formal knowledge representation ontologies that can be used by 

other semantic web applications;  4) While PLONTOREC is specialized for the tourism domain, 

the plausibility of the CWAdvisor in the tourism domain cannot be ascertained because the two 

application scenarios discussed in (Felfernig et al., 2006) belong to the commodity item  

category, where the tourism product does not belong because of its unique nature (Henriksson, 

2005). 
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Another related work is the PLANT approach as reported in (Prankatius et al., 2007). PLANT is 

an acronym for Product Lines for Digital Information Products. It is a dedicated software product 

line development process for the generation of families of digital information products such as 

product lines for e-learning courses, product lines for e-books, product lines for e-news and 

product lines for audio-based products. The PLONTOREC approach proposed in this thesis 

bears similarity with the PLANT approach in that they are both specialized concepts of product 

line development dedicated to specific product domains. However, while the PLANT approach 

thrives solely on software reuse, PLONTOREC is a hybridization of software reuse and 

knowledge reuse concepts.  

 

Hence, the PLONTOREC approach is unique and novel, offering a unified solution platform for 

enabling intelligent and dependable recommendations in TIS and managing of dynamic user 

requirements. 

 

3.8 SUMMARY AND DISCUSSION 

 

In this chapter the concept of Product Line for Ontology-based Tourism Recommendations 

(PLONTOREC) approach has been presented as an integrated solution model for the two 

research questions posed in this thesis. PLONTOREC is a specialized product line engineering 

approach for creating families of TIS products. In PLONTOREC, software reuse and knowledge 

reuse concepts are engaged to enable intelligent and dependable recommendations in TIS and 

also facilitate the evolution of such TIS products in an organized way in response to the dynamic 

nature of user requirements. In addition, the PLONTOREC approach provides a platform for the 

realization of a family of recommendation-intensive TIS without incurring undue cost overruns 

while in pursuit of good quality. The practical application of PLONTOREC will be discussed in 

the subsequent chapters. 
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CHAPTER FOUR 

PLONTOREC IN PRACTICE 

 

4.1  INTRODUCTION 

 

This chapter presents details of a case study of a real-life product line development scenario 

where the PLONTOREC approach has been applied. The core motivation of this case study is to 

demonstrate the PLONTOREC approach in practice so as to validate the approach and provide a 

basis for its evaluation.  

 

In order to achieve this, a SPL project was undertaken within the framework of the Software 

Engineering Research Group of Covenant University (SERCU). This was aimed at developing 

recommendation-intensive TIS platforms for an enhanced and more sophisticated approach to 

the promotion of tourism in the ECOWAS region of West Africa. Three countries adjudged to 

have the greatest tourism potentials within the geographical region were selected. These are 

Nigeria, Ghana and Cote D’ivoire (Ivory Coast). Currently there is not one e-tourism platform 

that offers intelligent recommendations about available tourism products that exist within the 

region (http://www.touringghana.com; http://www.viewghana.com; http://www.tourisme. com; 

http://www.nigeriatourism.net)  

 

This chapter reports the practical application of the  PLONTOREC process life cycle as 

undertaken in a case study aimed at validating the plausibility of the PLONTOREC approach. 

 

4.2  PRODUCT LINE MANAGEMENT (PLM) IN PLONTOREC 

 

The PLONTOREC was initiated with the PLM.  The essence of the PLM activities was to 

provide the necessary managerial guide and organizational control that complements the 

technical aspects of the PLONTOREC approach. PLM was carried out at the end of each sub-

process of PLONTOREC to determine whether the PL endeavour should continue.   
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4.2.1 Feasibility and Risk Assessment 

 

The first thing that was done during PLM was to undertake feasibility assessment and risk 

assessment.  In the feasibility assessment four specific pertinent questions to determine whether 

there exist sufficient grounds for a SPL pursuit were asked following the guideline provided in 

(Prankatius et al., 2007). The four questions were rated on an ordinal scale of 1-5, with 5 

representing the highest level of consent and 1 the lowest i.e. 

The rule used for decision-making are stated as follows: 

1. PLONTOREC should only be used if the answers to four questions are all in the 

affirmative with a selection of options 4 or 5.  

2. If options 1or 2 is selected for any then PLONTOREC should not be used.  

3. If any case of indecision arises (i.e. selection of option 3), then PLONTOREC should not 

proceed until the question has been resolved to a selection of either 4, 5, 1 or 2.  

An overview of the content of the PLM documentation produced after the exercise that captures 

the questions, and answers and justifications is given as follows:   

i) Is a PL approach technically feasible in the case at hand?   

1) Totally infeasible; 2) Almost infeasible; 3) Not sure; 4) Almost totally feasible; 5) Totally 

feasible. 

Answer: Totally feasible (5). 

Justification: The three countries share a lot in common in terms of concept and orientation 

of tourism. The central objective of tourism promotion platform in the countries considered is 

to create a platform for the discovery and increased awareness of their untapped tourism 

potential to boost trade and economic development. Therefore, reusable functional 

component models of TIS systems that are based on observed generic characteristics can be 

built. These components can then be subsequently customized and adapted by using carefully 

planned reuse and specialization schemes like code reuse, parameterisation, composition, 

and inheritance to suit the specific needs of each country.  

ii) Do commonalities exist among products that can be technically exploited?  
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1) No known commonalty that can be technically exploited; 2) Very few commonalities exist 

that can be technically exploited; 3) Not sure; 4) Sufficient commonalities exist that can be 

technically exploited; 5) Several commonalities exist that can be technically exploited. 

Answer: Sufficient commonalities exist that can be technically exploited (4). 

Justification: The TIS platforms have common characteristics and are intended to be 

functionally identical. In terms of offering information services, recommendation services 

about similar tourism objects such as accommodation, destination, restaurants etc.  

iii) Are the variable points in product already known? 

1) Variable points are not known or unpredictable; 2) Very few variable points are known; 

3) Not sure; 4) Most variable points are known or predictable; 5) All variable points are 

known in advance. 

Answer: All variable points are known in advance (5). 

Justification: The points of differences in the products are all known in advance. The 

content composition of each of the TIS must be local and peculiarly relevant to the particular 

country concerned, the web layouts must also be peculiar to each country. All service 

rendering components must be customized to fit specific national instances. Also services are 

designated as common or optional depending on state of infrastructure in each country. 

Information services are common, while some categories of recommendation services are 

optional. The optional services are those that may not be relevant to some specific TIS 

platforms based on the limited level of development in the country concerned.   

iv) Is there a commitment from the developer organisation to adopt a PL approach? 

1) No management support; 2) Very little management support; 3) Not sure; 4) 

Sizeable management support with approval; 5) Strong and encouraging 

management support and approval. 

Answer: Strong and encouraging management support and approval (5). 

Justification: Since this was being undertaken as a research endeavour motivated by the 

desire to make quality contribution to knowledge, the support from all concerned 

stakeholders (student, supervisors, and collaborators) was total and encouraging. 
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Risk assessment was undertaken in order to compare the expected investments in PLONTOREC 

with the possible benefits that can be gained from the pursuit of a PL initiative.  The concern at 

this stage was to determine the level of predictability of demand for products in the PL and the 

rate at which products in the PL are expected to evolve.  The typical questions asked are as 

follows: 

 

In the tourism domain where PLONTOREC will be applied, how often are radical changes 

expected to occur? 

Answer: Changes occur but they are not radical in most cases. 

Explanation: Changes occur regularly in the tourism domain as an advent of growth and 

development but are seldom radical in nature. Trends in the economy, politics and emerging 

technologies tend to affect the behaviour of tourists but not necessarily the status of tourism 

objects in many places. Hence tourism products are expected to evolve with time based on new 

requirements that emerge from consumer behaviour. 

 

Is the demand for tourism information predictable? 

Answer: Predictable. 

Explanation: The core objectives of users are to obtain travel information about specific 

tourism objects such as events, destinations, accommodation etc. This will provide a basis for the 

adoption of a PL approach where reuse and variability schemes can be built on these 

predictable requirements. 

 

Are there strategic advantages that can be derived from taking to a PL approach? 

Answer:  Strategic advantages are expected. 

Explanation: A PL-based approach will provide a flexible platform for the evolution and 

maintenance of products through carefully planned reuse and versioning schemes (Bosch & 

Svahnberg, 1999; Clement & Northrup, 2002).  
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4.2.2 Organization, Evaluation and Control 

Based on collective experience in software development within our research group and expert 

opinion of a TIS development expert from Tiscover AG (http://www.Tiscover.com), we were 

able to do an approximate initial estimation of the cost of a PLONTOREC endeavour relative to 

single TIS product development based on the modified SPL economic evaluation model that we 

derived in Section 3.2.3. The conclusion at the end of the PLM phase including economic 

evaluation and configuration management encouraged the pursuit of the PLONTOREC 

approach. 

 

4.3   ONTOLOGY ENGINEERING IN PLONTOREC 

 

Since the central objective of the PLONTOREC approach is to enable dependable 

recommendations in TIS, an ontology-based approach that will provide a platform for the 

leveraging of deep knowledge about the tourism domain of interest was favoured. A key concept 

of the PLONTOREC approach is to build specific knowledge representation ontologies that 

relate to specific classes of tourism objects in a domain of interest that will provide a basis for 

obtaining knowledge-based recommendations about them.  Typical examples of such tourism 

objects include accommodation, travel destinations, restaurants, transportation routes, and 

events. 

 

In this regard, an ontology is conceived as a formal semantic representation of what is known 

about specific tourism objects in a particular tourism domain (e.g. national, regional, local etc.). 

The ontology defines all concepts about and around the tourism object that have touristy value, 

and the semantic relationships between the concepts. It also offers a platform for sharing and 

reuse of its stored knowledge within a specific tourism value chain. This connotes that the 

PLONTOREC ontologies are deliberate semantic descriptions of what is generally known about 

some real world phenomena in a domain of interest using concepts and relationship abstractions 

in a way that is readable by both man and machine.  In the specific instance of our case study 

two tourism-related ontologies were developed. These are the Destination Context Ontology 

(DCO) and the Accommodation Ontology (AO). 
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4.3.1 The Destination Context Ontology (DCO)  

 

The motivation for the DCO was the quest to engage a multi-dimensional approach to destination 

recommendation with the use of contextual information different from the 2-dimensional 

approach currently engaged in most of the existing recommendation platforms (Adomavicius & 

Tuzhilin, 2005; Adomavicius, 2005). Indeed, many of the existing DRS have placed more 

emphasis on user’s travel activity preferences, the facilities and services, and the type of 

accommodation available at specific destinations without much consideration for the social 

attributes of such destinations. The social attributes of a destination such as the general scenery 

(atmosphere), security, population size, flow of traffic, behaviour of inhabitants, linguistic 

complexity and many other factors are very crucial to the outcome of peoples’ touristy 

experience in most cases.  This is particularly crucial in the context of many of the developing 

nation where there exist many social and environmental concerns as a result of 

underdevelopment. We believe that incorporating contextual information about the social 

attributes of prospective destinations can enhance the dependability of destination 

recommendations. Hence, the notion of the DCO is conceived as a model of knowledge 

representation ontology that captures contextual information about the social attributes of 

prospective destinations in a specific tourism domain.   

 

4.3.1.1    Using the Methonthology Approach for DCO Development 

 

The Methonthology methodology (see section 2.6.4.1) for ontology development was selected 

for the development of the DCO. This was primarily due to the fact that Methontology is one of 

the most elaborate approaches to ontology development, with very good tool support (Gomez-

Perez et al., 2004). The activities undertaken in developing the DCO are discussed in sequel. 

 

1.   Management Activities in DCO Development 

The development of the DCO was started with the scheduling activity. During this period, we 

were able to set an agenda for the development of the ontology. It was agreed that the DCO 

should be a model of knowledge representation ontology that can be instantiated with 

information contents to realize knowledge bases that suits different scenarios. It was also decided 



88 
 

that DCO should be implemented as Web Ontology Language (OWL) ontology, since it is 

intended to enable web-based recommender system applications. The Protégé 3.3.1 ontology 

development editor was selected as the implementation tool. The types of ontology support 

activities that were adjudged relevant to the DCO development process were knowledge 

acquisition, ontology documentation, and ontology evaluation.  

 

In order to ensure that all the scheduled tasks of the ontology development process were 

achieved, only one person was response for the technical activities of ontology development 

while the non-technical aspect of data gathering was delegated to student assistants. This 

arrangement proved quite useful for effective control. 

Also, in order to ensure good quality of the ontology, an ontology development tool that have in-

built features for formalization, documentation and evaluation was selected for the ontology 

development.   

 

2.   Support Activities in DCO Development 

 

The three types of ontology support activities undertaken in the course of developing the DCO 

are: Knowledge acquisition, ontology documentation and ontology evaluation. The knowledge 

acquisition entailed the collation of available facts about the contextual attributes of major 

tourism destinations within the West African sub-region. The specific focus of our case study 

was the social contextual attributes of tourism destinations in Nigeria, Ghana and Cote D’ivoire.  

Data were collected about five attributes of possible destinations which are Weather 

Temperature (i.e. average daily temperature), Scenery (i.e. the layout and nature of 

environment), Volume of Traffic, Crime Rate, and Status (the size and population of the 

destination, and its rating in terms of level of development). The sources of information included: 

National Websites, Tourism documents from National Tourism Agencies, and Geographical 

information extracted from literature (including maps). 

 



89 
 

The Protege 3.3.1 ontology development tool possesses in-built features for ontology 

documentation which was used for documenting the ontology. Also, Protégé has in-built features 

for evaluating the syntactic and semantic correctness of ontologies. This feature was used to 

evaluate the consistency of classes and semantic completeness of formal logics expressions in 

the ontology.    

 

3.   Development Activities in DCO Development 

The development activities undertaken in respect of the DCO can be broadly classified as pre-

development, development and post-development. These activities are described in the following 

sections: 

 

i)   Feasibility and Environmental Study 

The DCO ontology was intended as a kind of knowledge representation ontology to provide 

semantic-awareness capabilities for tourism and travel support applications in a particular 

domain. The environmental study process revealed that although there exist a number of standard 

tourism ontologies (http://protege.stanford.edu/; http://www.ontoprise.de/documents/ 

tutorial_ontoedit.pdf) whose structure can be emulated by the DCO, we did not find any that 

adequately fits into the context and content of the specific tourism interest we have in mind. This 

imposed the need to build the DCO from scratch. Also during this time, the suitability of 

building the ontology was critically examined. The trade-offs in terms of costs in time and 

resources together with inherent benefits were considered, with the consensus that the ontology 

development process should proceed. 

ii)   Specification of the DCO 

The purpose of the DCO is to provide a semantic representation of contextual knowledge about 

prospective tourism destinations in a form that can be used by web-based tourism support 

systems for the generation of knowledge-based tourism destination recommendations.    

iii) Conceptualization of the DCO 

In the specific case study considered, the DCO is a semantic representation of the contextual 

information about five social attributes of the destination abstractions that exist within the West 
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African tourism context. Every prospective destination in West Africa can be broadly 

categorized into three based on the social, demographic and geographical characteristics of such 

locations. The three types of destinations are City, Town, and Village. Therefore, a conceptual 

taxonomy of destinations was developed consisting of three class abstractions: City, Town and 

Village with ‘ISA’ relationships. The five social attributes of a tourist location that were of 

interest were: Weather Temperature, Scenery, Volume of Traffic, Crime Rate, and Status. These 

attributes were modelled as properties of a destination using ‘FeatureOf’ association. Each of the 

five attributes consists of a set of five possible values from which values that define the 

characteristics of a typical destination is derived. These are given as follows: 

− Weather Temperature =  {“Cold”, “Mild”, “Warm”, “Hot”, “Very Hot”} 

− Scenery =  {“Very Quiet”, “Quiet”, “Medium”, “Noisy”, “Very Noisy”} 

− Volume of Traffic = {“Very Low”, “Low”, “Medium”, “High”, “Very High”} 

− Crime Rate =  {“Very Low”, “Low”, “Medium”, “High”, “Very High”} 

− Status = {“City”, “Urban”, “Town”, “Settlement”, “Village”} 

Such that, if C is a vector denoting the social attributes of a destination, then 

 

C(Ibadan) = <Mild, Medium, Medium, Low, City> 

 

Connotes that Ibadan as a destination has Mild weather temperature, Medium scenery rating, 

Medium volume of traffic, Low crime rate and a City rating in terms of metropolitan status. The 

semantic relationships that may exist between different instances of specific social attribute 

classes were modelled with the ‘CloserTo’ association. For example ‘Hot Weather’ is specified 

as symmetrically closer to ‘Very Hot Weather’, in order to provide adequate basis for reasoning 

about entities represented in the ontology. The relationships between the different destination 

abstractions were represented using ‘PartOf” association, whereby Villages and Towns are 

conceived as extensions of specific City destinations.  Our conceptualisation of the DCO is 

illustrated with the semantic graph shown in figure 4.1.  

 

In the figure 4.1 Town, Village and City were shown to be kinds of Destination using ISA 

relationship denoted with the solid line arrow connections between the different nodes in the 

graph. The feature attributes of a destination such as Crime Rate have been represented using the 
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dotted line arrow connections which represent a FeatureOf association. Chain-like arrow 

connections with two shaded circles at both ends represents CloserTo association, which defines 

the semantic closeness between two entities in the ontology. For example Very High (VH) and 

High (HG) are represented as symmetrically close to each other compared to Very High and 

Very Low. Also, dotted arrow connections with a shaded circle at one end are used to denote 

PartOf relationships that exist between the destination instances in the ontology. In this way, 

towns and villages are related to specific city destinations as extensions. 
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Figure 4.1 A Semantic Graph of Concepts in the DCO 
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Figure 4.2  UML Representation of the DCO 

iv)  Formalization of the DCO 

Formally, we define the DCO as a set C and a set R as follows: 

C= {Destination, Town, City, Scenery, Weather Temperature, Traffic Volume, City Status, 

Crime Rate} and R = {“ISA”, “PartOf”, “FeatureOf”, “CloserTo”}, where each ci ∈ C is a 

concept name and ri ∈ R is the type of relationship relating two non-empty concepts or concept 

properties. 

 

We have adopted UML (Unified Modelling Language) (Booch et al., 2000) notations to 

formalize our conceptualization of the DCO. UML is ideal because of the objected-oriented 

nature of the relationships that exist among the entities in the ontology. In figure 4.2, the UML is 

used as a representation language to describe the components of the DCO. Concepts in the DCO 

are represented as classes. ISA relationships between classes were formalized as generalizations. 

A generalization relationship which shows one class to be a subclass of another is modelled 

using the hollow arrow. PartOf and FeatureOf relationships are modelled as stereotyped UML 

associations.  Classes are represented as rectangles, while Associations are represented as 

arrows. Additionally, the multiplicity of each of the Associations is shown. 
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 v)   Implementing Ontology with the Web Ontology Language (OWL) 

 
The OWL (Ontology Web Language) most preferably referred to as Web Ontology Language 

(OWL) (http://www.w3.org/TR/owl-ref/) is one of the most recent and popular ontology 

languages. It has been adopted as a semantic web standard by the World Wide Web Consortium 

(W3C) (http://www.w3.org/TR/owl-ref/), for formally specifying knowledge in the web. OWL 

facilitates machine interpretation of Web contents in a way that is better than XML, RDF, and 

RDF Schema (RDF-S) by making use of additional vocabulary apart from formal semantics 

(http://www.w3.org/TR/owl-features/). The three types of languages are the: OWL Lite, OWL 

DL, and OWL Full. 

 

Concept axioms in OWL 
 
 

In OWL, concepts are defined using concept axioms. The owl:Class notation is used with a 

concept identifier. For example:  

 

 <owl:Class rdf:ID="Destination"/>.  

 

However, this is only a simple declaration and does not give much information about the 

concept. Hence, concept axioms normally contain additional components to state their 

characteristics. Together with concept declarations, OWL contains three helpful language 

constructs to form concept axioms: rdfs:subClassOf (which indicates that a concept is described 

as a subset of another concept), owl:equivalentClass (which indicates that a concept is an 

equivalent of another concept), owl:disjointWith (which indicates that a concept has no common 

members with another concept). 

 
 

Role axioms in OWL 

 

A role axiom defines characteristics of a role, for example,   

  <owl:ObjectProperty 

rdf:ID="hasCrimeRate"/>.  
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Four kinds of constructs for role axioms are supported in OWL as follows: 

 

i) RDF Schema constructs: rdfs:subPropertyOf, rdfs:domain and rdfs:range. 

ii) Relations to other properties: owl:equivalentProperty and owl:inverseOf 

iii) Global cardinality constraints: owl:FunctionalProperty and 

owl:InverseFunctionalProperty 

iv) Logical property characteristics: owl:SymmetricProperty and owl:TransitiveProperty 

 

These constructs allow the definition of roles in more details. For example to capture two 

relation, we could have two properties has_Status and is_Status_of where   has_Status is an 

inverse role of is_Status_of. 

 

Individual axioms in OWL 

 

Individuals in OWL are the instances of classes. Two types of individual axioms can exist in 

OWL ontology. These are:    

 

i) Individual axioms about concept membership and role values 

For example:    

<City rdf:ID=”Lagos”> 

has_Weather rdf:resource=”# Cold_Weather”> 

< /Lagos> 

 

The first line of code indicates that “Lagos” is an instance of concept “City” and the second line 

says “Lagos” has a role assertion (Lagos, Cold_Weather):has_Weather. This connote that the 

value of the object property “has_Weather” for the City instance “Lagos” is “Cold_Weather” 

 

ii) Individual axioms about identity 

For example:    

<City rdf:ID="Lagos"> 

   <owl:differentFrom rdf:resource="#Ibadan"/> 

</City> 
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This indicates that “Lagos” and “Ibadan” are two different instances (individuals) of the class 

“City”. 

 

vi)   Implementation of the DCO 

 

The DCO was implemented as an OWL ontology using the Protégé 3.3.1 Ontology tool. The 

OWL ontology consists of five disjointed classes namely: CrimeRate, Scenery, Traffic, 

CityStatus, Weather and Destination. Three classes: Town, City, Village were defined as 

subclasses of the Destination class. The classes: CrimeRate, Scenery, Traffic, CityStatus, and 

Weather which represents the attribute features of a destination were defined as OWL Values 

Partition. A partition of a concept C is a set of  subclasses of C that does not share common 

instances (disjointed classes) but cover C, that is, there are not instances of C that are not 

instances of one of the concepts in the partition. Hence, we have the following five values 

partitions defined in the ontology: 

CrimeRate = {Very_High_Crime, High_Crime, Medium_Crime, Low_Crime, Very_Low-Crime}  

Scenery =  {Very_Noisy, Noisy, Medium_Noise, Low_Noise, Very_Low_Noise} 

Temprature = {Cold_Temp, Mild_Temp, Warm_Temp, Hot_Temp, Very_Hot_Temp}  

Traffic = {Very_High_Traffic, High_Traffic, Medium_Traffic, Low_Traffic, Very_Low_Traffic} 

Status = {City, Urban, Town, Settlement, Village} 

 

 The ‘FeatureOf’ relationship between a Destination and each of the feature classes were 

modelled using corresponding OWL functional Object properties of hasCrimeRate, hasScenery, 

hasTraffic, hasStatus and hasWeather respectively. This ensures that a particular functional 

object property maps to only one specific subclass of the corresponding feature values partition 

i.e.: 

   hasCrimeRate (Destination) → Low_Crime ∈ CrimeRate  

Which means that the object property hasCrimeRate must necessarily takes its value from one of 

values in the CrimeRate value partition.  The ‘CloserTo’ and ‘PartOf’ relations between entities 

in the ontology were modelled as inverse and symmetric object properties. This ensures that if A 

is ‘CloserTo’ B, then B ‘CloserTo’ A. As such many of the subclasses in the feature value 

partition have relevant ‘isCloserTo’ property defined on them. 
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During application engineering specific instance of classes in the ontology (OWL individuals) 

were created to populate the ontology with concrete facts that pertain to specific destinations 

within the West African sub-region. Figures 4.3 - 4.5 are snapshots from the DCO 

implementation in protégé. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.3 A Snapshot Classes of the DCO   in Protégé 3.3.1  



98 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 A Graphical Model of Classes in the DCO using Protégé Visualization Tool 
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vii)   OWL Representation of DCO 

 

A fragment of the OWL representation of the ontology is shown in Figure 4.5 below. This 

fragment shows the description of the City class (1), CityStatus  (2), and CrimeRate (3) value 

partitions. Also shown are the hasCityStatus (4) and hasCrimeRate (5) properties. 

 

 

 

<?xml version="1.0"?> 
<!DOCTYPE rdf:RDF [ 
    <!ENTITY owl "http://www.w3.org/2002/07/owl#" > 
    <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" > 
    <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" > 
    <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" > 
]> 
<rdf:RDF xmlns="http://www.owl-ontologies.com/CityOntology1203522180.owl#" 
     xml:base="http://www.owl-ontologies.com/CityOntology1203522180.owl" 
     xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
     xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 
     xmlns:owl="http://www.w3.org/2002/07/owl#" 
     xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> 
    <owl:Ontology rdf:about=""/> 
<owl:Class rdf:ID="City">      (1) 
        <rdfs:subClassOf rdf:resource="#Destination"/> 
        <owl:disjointWith rdf:resource="#Village"/> 
        <owl:disjointWith rdf:resource="#Town"/> 
    </owl:Class> 
      <owl:Class rdf:ID="CityStatus">     (2) 
        <owl:equivalentClass> 
            <owl:Class> 
                <owl:unionOf rdf:parseType="Collection"> 
                    <owl:Class rdf:about="#City_Status"/> 
                    <owl:Class rdf:about="#Settlement_Status"/> 
                    <owl:Class rdf:about="#Town_Status"/> 
                    <owl:Class rdf:about="#Urban_Status"/> 
                    <owl:Class rdf:about="#Village_Status"/> 
                </owl:unionOf> 
            </owl:Class> 
        </owl:equivalentClass> 
    </owl:Class> 
<owl:Class rdf:ID="CrimeRate">     (3) 
        <owl:equivalentClass> 
            <owl:Class> 
                <owl:unionOf rdf:parseType="Collection"> 
                    <owl:Class rdf:about="#High_CrimeRate"/> 
                    <owl:Class rdf:about="#Low_CrimeRate"/> 
                    <owl:Class rdf:about="#Medium_CrimeRate"/> 
                    <owl:Class rdf:about="#VeryHigh_CrimeRate"/> 
                    <owl:Class rdf:about="#VeryLow_CrimeRate"/> 
                </owl:unionOf> 
            </owl:Class> 
        </owl:equivalentClass> 
    </owl:Class> 
<owl:ObjectProperty rdf:ID="hasCityStatus">    (4) 
        <rdf:type rdf:resource="&owl;FunctionalProperty"/> 
        <rdfs:range rdf:resource="#CityStatus"/> 
    </owl:ObjectProperty> 
    <owl:ObjectProperty rdf:ID="hasCrimeRate">    (5) 
        <rdf:type rdf:resource="&owl;FunctionalProperty"/> 
        <rdfs:range rdf:resource="#CrimeRate"/> 
    </owl:ObjectProperty> 
</rdf:RDF> 
 

Figure 4.5 OWL Representation of  Classes in the DCO  
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4.3.2   The Accommodation Ontology (AO) 

 

 The AO is a semantic representation of the attributes of the various types of tourism 

accommodation. It was modelled after the Harmonise ontology (Dell’Erba et al., 2002), which 

captures facts about accommodation types and events in the European tourism domain. The aim 

of the AO is to facilitate generation of knowledge-based recommendation for informed decision 

in seeking tourism accommodation in a particular domain. It is a knowledge base of facts about 

available types of tourism accommodation resources and artifacts within a particular tourism 

domain. The AO captures explicit details about five specific attributes of tourism 

accommodation types (e.g. hotel, guest house, hostel, chalet etc.) in order to enable dependable 

knowledge-based recommendations. These are 1) Services: the description of kinds of services 

rendered in a place of tourism accommodation; 2) Gastro: the profile of eateries, cuisines or 

restaurant near a tourism accommodation l; 3) Attraction: special attractions within or near a 

hotel; 4) State: province or region where an accommodation is located; and 5) Facilities: 

physical facilities available in the tourism accommodation. 

 

4.3.2.1   Using the Methonthology Approach for AO Development 

 

Similarly, the Methonthology methodology for ontology development was used for developing 

the AO just like the case with the DCO. The activities undertaken in developing the AO are 

discussed in sequel. 

 

1. Management Activities in AO Development 

 

The management activities in AO development began with the scheduling activity, where the 

decision to implement the AO as a knowledge representation OWL ontology for facts about 

tourism accommodation was made. The Protégé 3.3.1 ontology development editor was selected 

as the implementation tool for the AO. The Ontology support activities that were identified as 

relevant to the AO development process were knowledge acquisition, ontology documentation, 

and ontology evaluation.  During this period roles were also assigned to a number of staff 

assistants on the projects to alleviate the demands of knowledge acquisition and data gathering. 



101 
 

2.   Support Activities in AO Development 

 

The three types of ontology support activities undertaken in the course of developing the AO are: 

Knowledge acquisition, ontology documentation and ontology evaluation. The knowledge 

acquisition involved gathering data on available tourism accommodation resources within our 

domain of West African sub-region. Three groups of data collectors were simultaneously 

engaged to dig out facts on various types of accommodation in the three West African countries 

of interest (Nigeria, Ghana and Ivory Coast).  The sources of information included: DMO 

Websites, documents from National Tourism Agencies, product brochures obtained from 

operators and available information on operators’ websites. 

 

The documentation and syntactic evaluation of the ontology was undertaken using the Protégé 

3.3.1 ontology development tool.  

 

3.   Development Activities in AO Development 

The details of the pre-development, development and post-development activities that are 

associated with the AO are described as follows. 

 

i)   Feasibility and Environmental Study 

 

The structure of the AO emulated the Harmonise Ontology (Dell’Erba et al., 2002). The 

difference is mainly in the scope of the information covered and the content. While Harmonise 

contains facts about events and accommodation types, the AO is limited to facts on 

accommodation. During this period, a decision to build the AO was taken, because it was 

considered a feasible and worthwhile endeavour with obvious attendant benefits when executed.  

 

ii)   Specification of the AO 

 

The purpose of the AO is to provide a semantic representation of knowledge about the specific 

attributes of available types of tourism accommodation within a domain. This is intended to 
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enable semantic web applications that need such for the generation of knowledge-based tourism 

destination recommendations or semantically enabled tourism query processing.    

 

iii)   Conceptualization of the AO 

 

Five attributes of tourism accommodation types were considered most crucial drawing 

knowledge gained from literature. These are:  1) Services: which are the various kinds of services 

rendered by a place of tourism accommodation; 2) Gastro: which defines types of eateries, 

cuisines or restaurant near a tourism accommodation; 3) Attraction: which describes the types of 

special attractions within or near a hotel; 4) State: which describes the province, city or region 

where an accommodation is located; and 5) Facilities: which describes the types of physical 

facilities available for the comfort of guests in the tourism accommodation. Different types of 

accommodation types were also identified which includes: hotel, rented apartments, guest house, 

luxury hotel, mini-hotel etc. 

 

Based on these observations, a conceptual taxonomy of accommodation was developed 

consisting of an Accommodation superclass and five disjointed classes (Attraction, 

HotelServices, Facilities, Gastro, and State) which represent the feature attributes of every 

instance of the Accommodation class. The Accommodation class is abstracted as an exhaustive 

decomposition of all available accommodation types which are its subclassses. The subclasses of 

Accommodation are: Hotel, Hostel, GuestHouse, WholeHouse, Chalet, and LuxuryHotel.   

 

The subclasses of Accommodation are linked to it through ‘ISA’ relationship, while each of the 

classes representing an accommodation attribute is linked to the Accommodation class via 

‘FeatureOf’ relationship.  

 

In the figure 4.6, Hotel, Hostel, GuestHouse, WholeHouse, Chalet, and LuxuryHotel were shown 

to be kinds of Accommodation using ISA relationship denoted with the solid line arrow 

connections between the different nodes in the graph. The feature attributes of an 
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Accommodation class such as Services was represented using the dotted line arrow connections 

which represent a FeatureOf association.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iv)   Formalization of the AO 

 

Formally, we define the components of AO as a set C and a set R as follows: 

C= {Accommodation, Hotel, Hostel, GuestHouse, WholeHouse, Chalet, LuxuryHotel, Gastro, 

Services, Facilities, Attractions, State} and R = {“ISA”, “FeatureOf”}, where each ci ∈ C is a 

concept name and ri ∈ R is the type of relationship relating two non-empty concepts or concept 

properties. 
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Figure 4.6 A Semantic Graph of Concepts in the AO 
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Just as in the DCO, we engaged the UML (Unified Modelling Language) 

(www.omg.org/technology/documents/formal/unifiedmodelinglanguage.htm) notations to 

formalize our conceptualization of the AO as shown in figure 4.7; the UML is used here as a 

representation language to describe the components of the AO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v)   Implementation of the AO 

 

The AO was implemented as an OWL-KR ontology using the Protégé 3.3.1 Ontology Editor. 

The OWL ontology consists of six disjointed classes namely: Accommodation, Attraction, 

Facilities, Services, Gastro and State. Six classes: LuxuryHotel, Hotel, GuestHouse, Hostel, 

WholeHouse and Chalet were defined as subclasses of the Accommodation class. The classes: 

Figure 4.7   UML Representation of the AO 
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Accommodation, Attraction, Facilities, Services, Gastro and State which are the product features 

of a tourism accommodation were related to the Accommodation class by using OWL object 

properties. 

 

The object properties in the ontology are hasServices, hasGastro, hasAttraction, hasState, and 

hasFacilities. While hasState was defined as a functional property that maps an accommodation 

type to a particular state in the country, all the other object properties are non-functional 

properties, that have their maximum cardinality set to 20. This ensures that up to 20 different 

object property values can be specified for each of the attributes classes of Attraction, Facilities, 

Services, Gastro for every instance of an Accommodation class. During application engineering 

specific instance of classes in the ontology (OWL individuals) were created to populate the 

ontology with concrete facts that pertain to specific destinations within the West African sub-

region. Figure 4.8 are snapshots from the implementation of the AO using protégé 3.3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vi)   OWL Representation of the AO 

A fragment of the OWL representation of the ontology is shown in Figure 4.9 below. This 

fragment shows the description of the Hotel  (1), Gastro (2), and Facilities (3) classess. Also 

shown are the hasGastro (4) and hasFacilities (5) properties. 

Figure  4.8  A Snapshot  AO  Classes in  Protégé 3.3.1 OWLViz - Tab 
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<?xml version="1.0"?> 
<!DOCTYPE rdf:RDF [ 
    <!ENTITY owl "http://www.w3.org/2002/07/owl#" > 
    <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" > 
    <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" > 
    <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" > 
]> 
<rdf:RDF xmlns="http://www.owl-ontologies.com/Ontology1203659989.owl#" 
     xml:base="http://www.owl-ontologies.com/Ontology1203659989.owl" 
     xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
     xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 
     xmlns:owl="http://www.w3.org/2002/07/owl#" 
     xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> 
    <owl:Ontology rdf:about=""/> 
<owl:Class rdf:ID="Hotel">       (1) 
        <owl:equivalentClass> 
            <owl:Class> 
                <owl:intersectionOf rdf:parseType="Collection"> 
                    <owl:Restriction> 
                        <owl:onProperty rdf:resource="#hasAttraction"/> 
                        <owl:maxCardinality rdf:datatype="&xsd;int">20</owl:maxCardinality> 
                    </owl:Restriction> 
                    <owl:Restriction> 
                        <owl:onProperty rdf:resource="#hasFacility"/> 
                        <owl:maxCardinality rdf:datatype="&xsd;int">20</owl:maxCardinality> 
                    </owl:Restriction> 
                    <owl:Restriction> 
                        <owl:onProperty rdf:resource="#hasGastro"/> 
                        <owl:maxCardinality rdf:datatype="&xsd;int">20</owl:maxCardinality> 
                    </owl:Restriction> 
                    <owl:Restriction> 
                        <owl:onProperty rdf:resource="#hasServices"/> 
                        <owl:maxCardinality rdf:datatype="&xsd;int">20</owl:maxCardinality> 
                    </owl:Restriction> 
                </owl:intersectionOf> 
            </owl:Class> 
        </owl:equivalentClass> 
        <rdfs:subClassOf rdf:resource="#Accomodation"/> 
        <owl:disjointWith rdf:resource="#LuxuryHotel"/> 
        <owl:disjointWith rdf:resource="#WholeHouse"/> 
        <owl:disjointWith rdf:resource="#Chalet"/> 
        <owl:disjointWith rdf:resource="#Hostel"/> 
        <owl:disjointWith rdf:resource="#Guesthouse"/> 
    </owl:Class> 
<owl:Class rdf:ID="Gastro">       (2)  
        <owl:disjointWith rdf:resource="#State"/> 
        <owl:disjointWith rdf:resource="#Attraction"/> 
        <owl:disjointWith rdf:resource="#Facilities"/> 
        <owl:disjointWith rdf:resource="#Hotel_Services"/> 
    </owl:Class> 
<owl:Class rdf:ID="Facilities">      (3) 
        <owl:disjointWith rdf:resource="#State"/> 
        <owl:disjointWith rdf:resource="#Attraction"/> 
        <owl:disjointWith rdf:resource="#Gastro"/> 
        <owl:disjointWith rdf:resource="#Hotel_Services"/> 
    </owl:Class> 
 <owl:ObjectProperty rdf:ID="hasFacility">     (4) 
        <rdfs:domain rdf:resource="#Accomodation"/> 
        <rdfs:range rdf:resource="#Facilities"/> 
    </owl:ObjectProperty> 
 <owl:ObjectProperty rdf:ID="hasGastro">     (5) 
        <rdfs:domain rdf:resource="#Accomodation"/> 
        <rdfs:range rdf:resource="#Gastro"/> 
    </owl:ObjectProperty> 
 </rdf:RDF> 
 

Figure 4.9 OWL Representation of Classes in the AO  
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4.3.3   Content Evaluation of PLONTOREC Ontologies 

 

In the course of our ontology engineering endeavour, detailed content evaluation of the DCO and 

AO were undertaken. The goal of content evaluation of the two ontologies was to detect 

inconsistencies or redundancies that may exist in the ontology before they are engaged in TIS 

applications development. According to Corcho et al. (2004), the application of content 

evaluation techniques should take place during the entire ontology life-cycle, as well as during 

the entire ontology-building process (Corcho et al., 2004). Also such evaluation procedure 

should support the evaluation of concept taxonomies, properties, relations and axioms. This is 

because there is a compelling need for ontologies to satisfy stronger requirements such as: 

correctness, consistency, completeness, and conciseness) as it migrates to the commercial 

domain. Therefore ontology evaluation ontology tools that can prevent possible anomalies in 

ontologies, both in the research area and in the industrial area, are needed in order to provide 

reliable ontology-based systems (Hartmann et al., 2005). 

 

However, most of the well-known ontology development tools like OILed (Bechhofer et al., 

2001), OntoEdit (Sure et al., 2002), and Protègé, (http://protege.stanford.edu/) support content 

evaluation mainly in the form of circularities detection, but lack the capability to identify 

inconsistencies and redundancies in concept taxonomies. This brought about the need for us to 

engage a complementary ontology evaluation tool such as ODEval (Corcho et al., 2004). 

 

4.3.3.1 Validation and Evaluation with ODEval 

 

ODEval (Corcho et al., 2004) is a tool that is mostly used to evaluate concept taxonomies of 

RDF(S), DAML+OIL, and OWL from a knowledge representation point of view. It is a 

complement for ontology parsers and ontology platforms. ODEval has capability to 

automatically detect possible problems in ontology concept taxonomies as it relates to 

inconsistency (circularity issues and partition errors), and redundancy problems. This tool is used 

when the development of ontologies has finished.  ODEval uses a set of algorithms based on 

graph theory (Goodaire & Parmenter, 1998). An ontology concept taxonomy is considered as a 

directed graph G (V, A), where V is a set of vertex and A is a set of directed arcs. For each 
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language and each type of problem, the elements in the sets V and A are different. It is used to 

detect possible anomalies from a knowledge representation point of view. Hence, it is used to 

help ontology developers in designing ontologies and helps ontology engineers to reuse 

ontologies. 

 

Some of key problems that may exist when taxonomic knowledge is modelled are given as 

follows:   

• Circularity problems: This is when a class is defined as a specialization or 

generalization of itself. A circularity error is classified as being at distance zero if a class 

generalizes or specializes itself. A Circularity error of distance one occurs if there exist a 

Class_A that is defined as a subclass of Class_B and Class_B is also defined as a subclass 

of Class_A. Thus circularity errors are classified based on the number of relations. 

ODeval looks for cycles in the graph G (V,A ) that represents an ontology. 

• Partition problems: This involves detecting errors in disjoint groups: an error occurs in 

a disjoint decomposition or a partition, formed by the classes {class_A1, 

class_A2,…,class_An}, if there are common elements in two or more branches of the 

partition. 

• Redundancy problems: This occurs when for each class class_A in V and each arc ri in 

A whose origin is class_A, taking ri out of A and check if this change affects the set of 

elements reachable from the class_A. If no change, this means at least one of the ri is 

dispensable. In this way, at least one problem can be found. 

Figure 4.10 gives a preview of some of the potential problems that might appear in 

taxonomies. 

 

The ODEval tool was used on both the DCO and AO ontologies immediately after their 

development using the Protégé tool.  Immediately after developing each of the DCO and AO 

ontologies, their RDF codes contained in their respective files OWL files were ported to ODEval 

for content evaluation. We were able to get the two ontologies successfully parsed and certified 

for consistency and lack of redundancy using the ODEval tool. Snapshots of results obtained 

from the evaluation procedure are shown in the Appendix of this thesis. 
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Figure 4.10 Potential problems that might appear in taxonomies copied from (Gomez-

Perez et al., 2004) 
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4.4   DOMAIN ENGINEERING IN PLONTOREC 

 

Domain engineering is the sub-process of software product line engineering that is concerned 

with the construction of all reusable software assets that are used for building the variant 

products in the product line. Domain engineering starts with domain analysis, whereby the 

domain that is relevant for the product line is surveyed and basic requirements are collected. The 

results are used in domain design to create abstract models that encapsulates the requirements of 

all products in the product line. These models belong to different layers of abstraction, ranging 

from architecture design to component design. Content components and other implementation-

related core assets are implemented in domain realization, tested and certified in domain testing 

before they are later used for product composition in application engineering. The iterative and 

dependency characteristics of domain engineering sub-processes are shown in figure 4.11.  

 

 

 

 

 

 

 

 

 

4.4.1 Domain Analysis 

 

The essence of the domain analysis process is to systematically capture the requirements for all 

TIS products that will be eventually built in the product line. Therefore, during this time domain 

requirements were gathered. The sources of information included the websites of national 

tourism authorities of Nigeria, Ghana and Cote D’ivoire (http://www.nigeriatourism.net;  

http://www.touringghana.com; http://www.tourisme.com), tourism information about these 

countries gathered from web sources, information documents on tourism obtained from national 

tourism agencies of the countries involved, and interaction with tourism experts.  

 

Figure 4.11 Sub-processes of Domain Engineering 
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The domain analysis process produced a document that contained natural language descriptions 

for scoping, and the necessary requirements for developing TIS for these countries. Details are 

presented in the following sections. 

 

4.4.1.1   Domain Requirements Engineering 

 

Domain requirements engineering extends traditional requirements engineering by capturing the 

commonalities and variabilities among software products in a product line in addition to 

individual product requirements. The domain requirement engineering was initiated with domain 

scoping, which is discussed next.  

 

4.4.1.2 Domain Scoping 

 

The essence of domain scoping is to define the limit of membership of a product line. It specifies 

what is in the product line and what is not. The three activities undertaken during domain 

scoping are: 

• Portfolio Scoping: This helped to identify which products have sufficient commonalities 

to be part of the product line. In our case study, the products of the product line were TIS 

that are expected to particularly offer knowledge-based recommendations on specific 

tourism objects such as destination, accommodation, travel packages, entertainment, 

restaurants etc.  

• Information domain scoping: This was used to identify the domain for the product 

portfolio. The core functionalities that were relevant in the domain were also identified. 

In our case study, the domain of consideration is tourism, with particular focus on three 

countries in the West African region. These are Nigeria, Ghana and Cote D’ivoire. 

• Asset scoping: This was used to identify the reusable parts that can be used to realize 

different functionalities. The core assets that were identified as relevant to the three 

national tourism domain considered are tourism recommender systems, web layout 

templates, OWL ontologies, database query component, and database content builder 

component. 
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4.4.1.3   Extracting the Base Requirements of the Product Line 

 

The Application-Requirements Matrix approach was used to capture the commonality and 

variability among TIS products in the product line (Pohl et al., 2005). An Application-

Requirements Matrix is a n x m matrix of identified application-requirements and individual 

software products of a product line. The column headings of the Application-Requirements 

Matrix are the software products while the row headings are the application requirements. At the 

intersection of a row and a column, a mark is used to indicate if a particular requirement is 

mandatory for a particular application. The requirements that have the mandatory mark in every 

cell of one row are the common requirements, whereas the others are variable requirements. 

 

Based on interaction and tourism information gathered from the different sources consulted, the 

desired features in the TIS products of the product line are shown in Table 4.1.  The 

requirements that are marked ‘*’ represents optional features.  

 

 

 
Requirements 

Nigeria-TIS Ghana-TIS Ivory Coast-TIS 

Destination Recommendation X X X 
Accommodation Recommendation X X X 
Restaurant Recommendation * * * 
Travel Recommendation * * * 

Web Layout X X X 
Language Translation Feature   X 
Database Query Feature X X X 
Database Content Update X X X 
 

 

The common requirements that pertain to all three TIS products in the product line as obtained 

from the Application-Requirement Matrix are listed as follows: 

Destination Recommendation: to offer guide to users on choice of destination to visit based on 

their individual tourism activity preferences. 

Accommodation Recommendation:  to offer guide to users on available accommodation types 

based on their preferences in terms of desired services, attractions, location, and available 

facilities. 

Table 4.1 Application-Requirements Matrix obtained from Domain Analysis 
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Restaurant Recommendation: to offer recommendations to users on available restaurants and 

gastronomy preferences, spending budgets, location etc. This is specified as an optional 

requirement. 

Travel Recommendation: to offer appropriate travel package recommendation to users based 

on their personal preferences on multiple tourism objects such as accommodation, travel 

activities, gastronomy, flight etc. This is specified as an optional requirement. 

Web Interface Layout: This is a web-based GUI that is needed to access the features of the TIS. 

Database Query Feature: This feature is to enable the information search and querying of 

tourism information based on stored contents. 

Database Content Update: This feature is to enable users to upload information about new or 

existing tourism assets that they know about if such information do not previously exist. This 

will help to populate the tourism asset database of a domain with usable data and current 

information. 

Language Translation Feature: This feature enables the multi-lingual translation of web 

contents into alternative languages of English and French. 

 

The information obtained from the Application-Requirement Matrix provided the basis for the 

formulation of a reference architecture for the TIS product line. 

 

4.4.2   Domain Design 

 

The domain design phase of the case study was executed using the Feature Oriented Domain 

Analysis (FODA) method approach (Kang et al., 1990). FODA begins with domain scoping, 

which is followed by domain modelling and architecture modelling. Feature modelling is a 

widely used technique to represent the commonality and variability of product variants on a 

feature level in an implementation-independent way. Feature models describe the possible 

configurations with all available options and constraints that are considered relevant to a product 

line (Kang et al., 1990; Gomaa, 2005).  
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4.4.2.1   Feature Modelling of the Product Line 

 

Feature modelling is the main activity of the domain modelling phase, where the characteristics 

that are visible to the end-user are abstracted as features. Features are categorized into functional 

features (i.e., functions of the application seen by the user), operational features (related to the 

operation of an application from the user’s perspective), and presentation features (related to the 

presentation of information to users). All features are represented in a feature model which 

consists of (Kang et al., 1990): 

1. A feature diagram: which graphically depicts a hierarchy of features, and has a 

distinguished root. The nodes of the diagram other than the root represent features which 

can be mandatory, optional (drawn with a circle above the feature name), or alternative 

(drawn as children of the same parent feature, with an arc intersecting the connecting 

lines). The feature diagram presents a view of all relevant features in a domain which can 

be eventually included into a product variant. In a feature diagram, there is no notational 

distinction between functional, operational, or presentation features. 

2. Composition rules: which additionally express dependencies between features: mutual 

dependency (“requires”) or mutual exclusion (“mutex-with”). Composition rules are 

additional constraints limiting the choice of features.  

3. A record of trade-offffffffs, rationales, justifications: This offers guidance during the 

selection of features. 

4. A record of system features: This keeps record of which features are used in which 

systems with which values. This bears some similarities with a product map. 

 

Each feature in a feature model must have a distinct name that is also included in a domain 

terminology dictionary which is used throughout the modelling phase, and which describes the 

meaning of features. The validity of a feature model, in terms of how well it captures all relevant 

features and feature combinations, is usually verified by domain experts. The feature model of 

the TIS product line is shown in figure 4.12. 
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In Figure 4.12 Composite features (e.g., “Tourism Recommender System”) consist of several 

other features, while atomic features are not subdivided further (e.g. “Web Layout”). A line in 

the diagram models the “requires” relationship between the possible features of a TIS software, 

and in addition every feature has an imaginary flag (not shown) to mark if it is chosen for a 

product or not. If a parent feature is not chosen in an instance, then all its children cannot be 

chosen. The root “TIS” is, by definition, chosen for every product configuration. The mandatory 

features “DRS”, “ARS” have to be implemented in every product. The features “Language 

Translation Engine”, “RRS” and “TR” are optional, i.e., they are included only if desired by a 

customer. An additional composition rule specifies that when the optional feature “TR” is 

chosen, then its subfeature “Travel Ontology” must import other ontologies. A rationale 

provides a notification guide on the relative cost of choosing the “TR” optional feature.  

 

4.4.2.2   Reference Architecture for the Product Line 

  

Based on the outcome of domain analysis and feature modelling, a reference architecture which 

is called Tourism Information System Product Line Architecture (TISPLA) was formulated. The 

TISPLA presents a logical view of the basic building blocks of all products in the product line, as 

well as the commonality and variability that exist among the products of the product line. It is the 

Figure 4.12 FODA feature Model for TIS Product Line 
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foundational template from which all products in the PL evolve and embraces all possible 

configurations of products that are realizable in the PL.   

 

In figure 4.13 an architecture diagram (Ogush et al., http://www.architecture.external.hp.com) is 

used to show the structural elements of the TISPLA. The architectural diagram gives a logical 

view of the components in the PL and their interconnection paths using the UML class diagram. 

The TISPLA is represented as a composite aggregation of all its components. Components are 

modelled by the UML class symbol, while interconnections between components are modelled 

by associations. The associations represent direct connections between components. The 

direction of the association shows which component initiates the communication. Components 

and associations are also stereotyped to show the type of component (common, optional) or a 

connection.  In the figure specific knowledge-based recommender systems that are enabled by 

relevant ontologies were designated as common or optional features of the TISPLA. The web 

interface is also shown as an aggregation of the information query, content builder and tourism 

recommender system components. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: The Architecture diagram of the TISPLA 
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4.4.2.3   Architecture Modelling and Specification of the TISPLA  

 

In a product line, the dominant core asset is the reference architecture of the product line, which 

is used at every product instantiation. Hence, the need for the engagement of a formal 

mechanism to precisely define, evaluate and document the software product line architecture.  

The formal specification of architecture has the potential to improve both quality and 

productivity in the software development process because it facilitates the promotion of insight 

and understanding of system properties at a higher level of abstraction than at module and codes 

levels. It provides a basis for formal reasoning and a rigorous analysis of critical non-functional 

system properties like modifiability, flexibility, reliability, extensibility and reusability 

(Daramola et al., 2008). 

 

The TISPLA was modelled as a layered style architecture using the Archstudio 4 (Garg et al., 

2003) architecture modelling tool, while an architecture description language (ADL) xADL 2.0 

was used to formally describe its components. ADLs are a class of formal specification 

languages that are equipped with formal constructs for describing the elements of software 

architecture such as components, connectors and their configurations.  The xADL 2.0 that was 

used for the specification of the TISPLA is a highly extensible XML-based ADL embedded 

within the Archstudio 4 modelling framework. It is preferred to other ADLs because it makes a 

logical distinction between design-time (architectural prescriptions) and run-time (architectural 

descriptions) state of a system in contrast to the other ADLs that assume the two to be the same. 

Also, xADL has a rich tool support and a highly extensible nature that allow users to 

independently extend its XML-based schema to suit their preferred semantic contexts. 

Additionally, it provides support for product line modelling and model-based system 

instantiation (Dashofy et al., 2001).  

 

i)   C2 style Model of the TISPLA 

The TISPLA was modelled as an aggregation of concurrent components tied together by 

message routing devices, which are the connectors (see Figure 4.14). Request is sent from the 

client layer (Web Layout Component) at the bottom and notification from the top after a 

response has been constructed. The tourism recommender components in the architecture 



118 
 

leverage the semantic knowledge representation at the semantic ontology layer in order to 

improve the quality and dependability of recommendations to requesting clients. The rule of 

interaction among the components of the TISPLA follows the c2 architectural style (Whitehead 

Jr. et al., 1995). The choice to model the TPLA as c2 style architecture using Archstudio 4 also 

has the advantage of automatically generating the equivalent formal description of the 

architecture using the xADL 2.0 language. The c2 style imposes the principle of substrate 

independence on the components of the architecture in which a component in the architecture 

hierarchy is only aware of the component above it. This enables high substitutability that offers a 

boost for modifiability and extensibility, especially in a product line context as it provides a 

platform for the dynamic evolution of products. The c2 style also supports the use of 

parameterizable components thereby facilitating the reusability of the architecture. 

Customization of components is also possible based on the c2 style model of the TISPLA 

(Whitehead Jr. et al., 1995). Thus the c2 style of the TISPLA gives an insight into a measure of 

elasticity and extensibility of the architecture, which makes it potentially suitable as a reference 

architecture for the TIS product line.     
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ii)   Formal Specification of Components with xADL 

The xADL schemas for the component type structures in the TISPLA were generated by 

Archstudio.  Each layer of the architecture is defined as a structure in xADL.  The excerpts from 

the complete specification of the TISPLA are shown in figures. 4.15-4.18. In figure 4.15, the 
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Figure 4.14  The c2-style layered View of the TISPLA in Archstudio 
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TISPLA is shown to contain 4 structures, each structure representing a layer of the TISPLA 

architecture. Figure 4.16 and 4.17 show xADL specifications of the Information Query (a basic 

component) and Language Translation Engine (an optional component) components of the 

TISPLA.  

 

The extensible nature of xADL schemas was engaged to extend the specifications of the 

Recommender System components in the TISPLA with the addition of the “<UseResource>” 

schema to indicate the essential resources required by the components to realize their respective 

functionalities. In Figure 4.18 the Destination Recommender component is specified as basic 

component in the product line that requires the services of semantic components of the TISPLA. 

The extension was made in order to promote a better understanding of the semantic properties of 

the component concerned in contrast to normal xADL descriptions that does not capture the 

semantic attributes of components (http://www.isr.uci.edu/projects/xarchuci/). In Figure 4.19, a 

sample specification of a semantic component type (Destination Context Ontology) is shown 

with the lookup implementation extension schema in xADL used to indicate the implementation 

source (source file) of the ontology component.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+<types:archStructure types:id="ClientLayer" xsi:type="types:ArchStructure"> 
+<types:archStructure types:id=" LogicServicesLayerStructure "types:ArchStructure"> 
+<types:archStructure types:id="SemanticLayerStructure" xsi:type="types:ArchStructure"> 
+<types:archStructure types:id="DataLayerStructure" xsi:type="types:ArchStructure"> 

 

Figure 4.15   Structures in the TISPLA   

<types:component types:id=" InformationQueryComp " xsi:type="types:Component"> 
<types:description xsi:type="instance:Description">Database Query Engine</types:description> 
<types:interface types:id="UserProfile_upper" xsi:type="types:Interface"> 
<types:description xsi:type="instance:Description">Upper Interface</types:description> 
<types:direction xsi:type="instance:Direction">inout</types:direction> 
</types:interface> 
<types:interface types:id=" InformationQuery_bottom " xsi:type="types:Interface"> 
<types:description xsi:type="instance:Description">Bottom Interface</types:description> 
<types:direction xsi:type="instance:Direction">inout</types:direction> 
</types:interface> 
<types:interface types:id=" InformationQuery _bottom " xsi:type="types:Interface"> 
<types:description xsi:type="instance:Description">Bottom Interface</types:description> 
<types:direction xsi:type="instance:Direction">inout</types:direction> 
</types:interface> 
</types:component> 

 

Figure 4.16   xADL Specification of Information Query Component  
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<types:component types:id="LangTranslationComp" xsi:type="options:OptionalComponent"> 
<types:description xsi:type="instance:Description">Language Translation Engine</types:description> 
<types:interface types:id="UpperInterface" xsi:type="types:Interface"> 
<types:description xsi:type="instance:Description">Upper Interface</types:description> 
<types:direction xsi:type="instance:Direction">inout</types:direction> 
</types:interface> 
<types:interface types:id="BottomInterface" xsi:type="types:Interface"> 
<types:description xsi:type="instance:Description">Bottom Interface</types:description> 
<types:direction xsi:type="instance:Direction">inout</types:direction> 
</types:interface> 
<options:optional xsi:type="options:Optional"/> 
</types:component> 
 

Figure 4.17 xADL Specification of Optional Language Translation 

<types:component types:id="DRS_RecommComp" xsi:type="types:Component"> 
<types:description xsi:type="instance:Description">Destination Recommender</types:description> 
<types:interface types:id="UpperInterface" xsi:type="types:Interface"> 
<types:description xsi:type="instance:Description">Upper Interface</types:description> 
<types:direction xsi:type="instance:Direction">inout</types:direction> 
</types:interface> 
<types:interface types:id="BottomInterface" xsi:type="types:Interface"> 
<types:description xsi:type="instance:Description">Bottom Interface</types:description> 
<types:direction xsi:type="instance:Direction">inout</types:direction> 
</types:interface> 
<types:useResource type:id="DRS_RecommComp _neededResource1 " xsi:type="types:useResource"> 
<types:description xsi:type="instance:Description">uses Technology Layer Service</types:description> 
<types:resourceid xsi:type="instance:resourceid">#SemanticComponentType</types:resourceid> 
</types:useResource> 
</types:component> 

 

Figure 4.18 xADL Specification of Destination Recommender Component  

<types:componentType types:id="DestinationOntologycomponentType" xsi:type="implementation:VariantComponentTypeImpl"> 
<types:description xsi:type="instance:Description">SemanticComponent Type</types:description> 
<types:signature types:id="SemanticTypeUPsignature" xsi:type="types:Signature"> 
<types:description xsi:type="instance:Description">Semantic Component upper Signature</types:description> 
<types:direction xsi:type="instance:Direction">inout</types:direction> 
<types:serviceType xsi:type="types:SignatureServiceType">Provides</types:serviceType> 
</types:signature> 
<types:signature types:id="SemantictypeBTSgnature" xsi:type="types:Signature"> 
<types:description xsi:type="instance:Description">Semantic Component Lower Signature</types:description> 
<types:direction xsi:type="instance:Direction">inout</types:direction> 
<types:serviceType xsi:type="types:SignatureServiceType">Provides</types:serviceType> 
</types:signature> 
<implementation:implementation xsi:type="lookupimplementation:LookupImplementation"> 
<lookupimplementation:name 
xsi:type="lookupimplementation:LookupName">http://sample.org/destinationontology</lookupimplementation:name> 
</implementation:implementation> 
</types:componentType> 
 

 

Figure 4.19 xADL Specification of Destination Context Ontology Component  
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4.4.2.4   Description of DRS Component 

 

The design of the DRS was based on a hybrid architecture that leverages content-based filtering 

and case-based reasoning (Vozalis & Margaritis, 2003) for destination recommendations. The set 

of travel activity preferences of a user is used as input, which is then correlated with the content 

description of various destinations to construct an ordered list of top nearest neighbourhood 

matches. Therefore, destination recommendation can be represented as an event-matching 

problem such that: 

Given the conjunction predicate Userj that denotes the activity preferences of a user and their 

associated priority ratings i.e.  

Userj = a1r1 Λ a2r2 Λ a3r3… Λ akrk 

where each ai is a specific travel activity feature, and ri the priority rating score of ai. We define a 

predicate function                            

1 (if ai has been selected) 

                     pred(ai) =      

                                            0 (if ai has not been selected) 

such that Pj becomes a pattern vector for the activity preferences of Userj :         

     Pj = <x1.r1,x2.r2,…xk.rk> where each xi = {0,1} and integer ri such that 0 ≤ ri ≤ 5. 

If V= {a1, a2,…an} is the set of possible travel activities and U = {c1, c2…cm} is the set of 

possible destinations then recommendation is given as:  F (V) → X where X ⊂ U.   

In our approach, we incorporated the description of the social attributes of a destination as 

defined in the Destination Context Ontology (DCO). Such that if the matrix Smj represents the 

description of j (where j is the maximum cardinality for social attributes) social attributes of m 

cities, then the augmented recommendation function becomes:  

F(V, Smj) → X*  where X* ⊂ U.  

Given that X Θ Smj →X* where Θ is an ontology filtering operator, and X* ⊂ U is a re-ordering 

of X. 

The hybrid DRS architecture consists of the following (see Figure 4.20): 

• A Content-Based Filter (CBF): This is responsible for generating the initial top-N 

recommendations after performing nearest-neighbour vector space matching between a 
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given set of selected travel activities and activity features of prospective destinations. A 

personalized frequency-based metric Tij is computed for each possible destination after 

using a set of knowledge-based rules to associate specific tourist assets stored in a 

tourism asset database with particular travel activities i.e. 

Tij = ∑(kjfi)Pi         (4.1) 

Where  

kj = number of times activity ai has been selected by userj / number of times userj 

has traveled, hence kj is a personalization factor for userj based on the travel 

history. 

fi = frequency count of assets for activity ai in a destination  / total frequency count 

of assets for  activity ai. in the database. 

Pi = the priority score rating of activity ai, if ai has been selected or 0 if not selected  

 

• A Cased-Based Reasoner: The case-based filtering component endows the DRS with 

alternative personalization capability leveraging users’ travel history. To achieve this, the 

systems stores the activity preferences profile and recommended results of all user 

sessions in its case base such that when a new user arrives, it does case matching using 

the cosine similarity metric (Vozalis & Margaritis, 2003) (see Equation 2.2) to determine 

the best-match from the case base. The recommendations for the best-matching case are 

given as the initial recommendations for the new case thus acting in this context as an 

exemplar case-based reasoner (Porter, 1987).  This makes the system to generate its 

recommendations faster in that the use the content-based filtering approach is avoided.  

• Ontology Engine: The ontology engine in the DRS architecture consumes the initial 

recommendations of the content-based / case-based filters and revises it after performing 

ontological reasoning based on facts stored in the ontological knowledge base (which is 

an instantiation of the DCO with the specific facts of a domain) so that a re-ordered top-N 

list of recommendations is produced.  
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DRS Algorithm 

Function DRS (Userj: List, N):List 

{The function matches the selected preferences of a user with  the content description of possible destinations to 

return an ordered list of top-N destinations;  

  Userj is a list of travel activity preferences of a user; N is number of products to recommend 

CosineMetric(): computes a similarity score for userj using the cosine similarity metric 

  Similarityscore[]:An array of  similarity scores 

CaseBased-Filter(): implements a case-based reasoning algorithm; returns a list of size n  

Content-Based Filter(): implements a nearest-neighbour search algorithm; returns a list of size n 

OntoFilter(): is an ontology reasoner function; returns a List of size n 

Exist(): implements a database find function; returns a Boolean result; Flist: list of initial N-recommendations} 

SimilarityScore[j] ← CosineMetric(Userj) 

If Exist(SimilarityScore[j]) and Exist(Userj) then return CaseBased-Filter(Userj, N) 

  else if  FList ← ContentBased-Filter(Userj, N) 

   return OntoFilter(Flist, N) 

End function 
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Figure 4.20 Schematic Hybrid Architecture of DRS Component 
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4.4.2.5    Description of the ARS Component 

 

The ARS is a knowledge-based recommender system that leverages the knowledge captured 

about specific accommodation types in the AO to generate recommendations. By so doing deep 

knowledge filtered from the content description of key attributes of different accommodations 

types are used for recommendations. Formally, we could say that: 

Given V= {a1, a2,…an} as the set of available accommodations and the vector U as the selected 

accommodation preferences of a user (in terms of type, facilities, services, attraction, gastro, and 

location of accommodation) i.e. Uj = <x1, x2, x3 … xk >  

Then recommendation is given as:  F (V, U) → N where N is an ordered list ⊂ V 

The architecture of the ARS consists of the following (see Figure 4.21): 

Inference Engine: This provides a basis for reasoning for decision making by the ARS.  

Ontological Knowledge base: This is an instantiation of the Accommodation Ontology (AO) 

using specific instances. Facts about specific accommodation types such as hotels, guest houses, 

rented apartments etc. are captured in the knowledgebase. 

Ontological Filtering Component: This executes an algorithm that matches the content 

descriptions of accommodation instances with the specified preferences of the user. It returns a 

Top –N list, where N is the number of product recommendations required by the user. 

 

 

 

 

 

 

ARS Algorithm 

 

 

 

 

 

 

Figure 4.21 Schematic Architecture of the ARS Component 
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Function ARS (Uj : List, N):List 

{  The function matches the attributes of accommodation selected by a user with the content description of 

available accommodation types to return an ordered list of top-N destinations;  

  Userj is a list of selected attributes of accommodation by a user 

OntoRecommend(): is an ontology reasoner function; returns a List of size n 

If Uj← {v1,v2,v3…,vn} 

     OntoRecommend Computes  v1 Λ v2 Λ … vn 

Rlist: list of initial N-recommendations  } 

Rlist ← OntoRecommend(Uj, N) 

  return Rlist 

End function 

 

4.4.2.6   Description of Other Components 

 

The design of other content components of the TISPLA architecture was undertaken during 

domain design. These include: 

i) The Web Layout: A web layout template was designed and stored as a cascading style 

sheet file using the Dream Weaver and Macromedia Flash design tools as platform on 

which the web interfaces of the TIS products will be based. The layout has four ports 

which represents the four core functionalities that will be realized in each of the TIS 

product. These are: destination recommendation, accommodation recommendation, 

Information search, and content update. 

ii) Tourism Asset Database: A database schema design to store information on available 

tourism assets was also formulated.  The structure of the tourism database was modelled 

following the structure of Canadian Tourism Board Database. Table 4.2 gives an 

overview of the structure of the tourism asset database.  
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Table 4.2: Overview of the Structure of Tourism Asset Database 

Field Name Description Type Size 

Assetcode The code used to represent a tourist 
asset 

String 10 

Asset Name of a tourism asset String 150 
Category The tourism asset category String 50 
Subcategory The tourism asset subcategory String 50 
District The district in which a tourism asset is 

located  
String 150 

LocalGovt Local government in which a tourism 
asset is located 

String 100 

State The state in which an asset is located  String 100 
Province-Region The province or region in which a 

tourism  asset is located  
String 100 

Authority The tourism authority or private 
enterprise that manages or owns the 
tourism asset 

String 50 

City-Town The city or town where the tourism 
asset is situated 

String 50 

Latitude Latitude of the location of the tourism 
asset 

Number 12 

Longitude Longitude of location of the tourism 
asset 

Number 12 

Last-update The date when information on tourism 
asset was first supplied or last updated 

Date 12 

Route Description of the route to the location 
of the tourism asset or its map 
information 

String 100 

Source The source or provider of information 
on tourism asset 

String 50 

Picture Snapshot of the image of the tourism 
asset 

Image 65535 

 

 

4.4.3   Domain Realization 

 

The domain realization phase involved the construction of the domain components using Java 

programming language implementation technologies. The content components that were 

implemented include 1) Destination Recommender System 2) Accommodation Recommender 

System 3) Database Query Component and 4) Database Layout Template. A fifth component, 

the Language Translation Engine was sourced as a standard Plug-in component from the Java 
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open source platform. The details of the components and tools used for implementation and the 

implementation procedure are presented next.  

 

4.4.3.1   Implementation Components and Tools  

 

The software tools used for the implementation of content components include the following: 

i) NetBeans 5.5: The NetBeans integrated development environment (IDE) is a free, open-

source IDE for developing Java applications, including enterprise applications. NetBeans 

5.5 supports the Java Enterprise Edition 5 (Java EE 5) platform.  

 

ii) Java EE Components: A Java EE component is a self-contained functional software 

unit that is assembled into a Java EE application with its related classes and files that 

communicate with other components. The Java EE specification defines the following 

Java EE components:  

• Application clients and applets are components that run on the client. 

• Web components include Java Servlet, JavaServer Faces, and JavaServer Pages 

(JSP) technology components. They run on the server. 

• Enterprise JavaBeans (EJB) components are business components that run on the 

server.  

iii)  Java Servlet Technology: This enables the definition of HTTP-specific servlet classes. 

A servlet class extends the capabilities of servers that host applications that are accessed 

by way of a request-response programming model. Although servlets can respond to any 

type of request, they are commonly used to extend the applications hosted by web 

servers. 

iv)  JavaServer Pages Technology: This allows the addition of snippets of servlet code 

directly into a text-based document. A JSP page is a text-based document that contains 

two types of text: static data (which can be expressed in any text-based format such as 

HTML, WML, and XML) and JSP elements, which determines how the page constructs 

dynamic content.  

v)  Enterprise JavaBeans Technology: An Enterprise Java Beans (EJB) component, or 

enterprise bean, is a body of code having fields and methods to implement modules of 
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business logic. An enterprise bean is a building block that can be used alone or with other 

enterprise beans to execute business logic on the Java EE server. It is a server-side 

component written in the Java programming that encapsulates the business logic code 

that fulfills the purpose of the application. The enterprise beans implements the business 

logic in methods that when invoked enables clients to access the services provided by the 

components. There are two kinds of enterprise beans: session beans and message-driven 

beans. A session bean represents a transient conversation with a client. When the client 

finishes executing, the session bean and its data are gone. A messagedriven bean 

combines features of a session bean and a message listener, allowing a business 

component to receive messages asynchronously. Commonly, these are Java Message 

Service (JMS) messages. In Java EE 5, entity beans have been replaced by Java 

persistence API entities. An entity represents persistent data stored in one row of a 

database table. If the client terminates, or if the server shuts down, the persistence 

manager ensures that the entity data is saved. 

vi)  Java Database Connectivity API: This allows SQL commands to be invoked from Java 

programming language methods. The JDBC API is used in an enterprise bean when there 

is a need for a session bean to access the database. The JDBC API can also be used from 

a servlet or a JSP page to access the database directly without going through an enterprise 

bean. The JDBC API has two parts: an application-level interface used by the application 

components to access a database, and a service provider interface to attach a JDBC driver 

to the Java EE platform. 

vii) Sun Java System Application Server Platform Edition 9: This is a fully compliant 

implementation of the Java EE 5 platform. It provides the necessary middleware 

infrastructure support for all the Java APIs. The Application Server includes a number of 

Java EE tools that are not part of the Java EE 5 platform but are provided as a additional 

support to the developer.  

viii)   Macromedia DreamWeaver: This is a rapid application development tool for web 

design and website development.  It is the most popular visual HTML editor. It 

enables the creation of web page templates, cascading style sheets and offers support 

for multiple client-side programming languages such JSP, ASP.Net, VBscript, 

JavaScript etc. 
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ix)  MySQL Database: This is a database management system tool for managing the data 

storage and retrieval. MySQL also has excellent query facilities and very suitable for 

the configuration of network data servers on the web. 

x)  Protégé Ontology Editor:  Protégé is a flexible, configurable platform for the 

development of arbitrary model-driven applications and components. It has an 

extensible and customizable toolset for constructing ontologies and for developing 

applications that use these ontologies. Some of the outstanding features of Protégé 

include: 1) Automatic generation of graphical-user interfaces, based on user-defined  

models, for acquiring domain instances; 2)  Extensible knowledge model and 

architecture; 3) Possible embedding of standalone applications in Protégé knowledge 

engineering environment and vice versa; and 4) enabling the scalability of ontologies 

to very large knowledge bases.  Protégé also has an open architecture that allows 

programmers to integrate plug-ins, which can appear as separate tabs, specific user 

interface components (widgets), or perform any other task on the current model. The 

Protégé-OWL editor provides many editing and browsing facilities for OWL models, 

and therefore serves as an attractive starting point for rapid application development. 

xi)  Protege-OWL API: This is an open-source Java library for the Web Ontology 

Language (OWL) and RDF(S). The API provides classes and methods to load and 

save OWL files; to query and manipulate OWL data models; and to perform 

reasoning based on Description Logic engines. Furthermore, the API is optimized for 

the implementation of graphical user interfaces.  The API is designed to be used in 

two contexts: 1) For the development of components that are executed inside the 

Protégé-OWL editor's user interface; and 2) For the development of stand-alone 

applications (e.g., Swing applications, Servlets, or Eclipse plug-ins)  

xii)  Pellet Reasoner: This is a Description Logic Reasoner that allows automated 

reasoning to be performed over an ontology. A Description Logic Reasoner performs 

various inferencing services, such as computing the inferred superclasses of a class, 

determining whether or not a class is consistent (a class is inconsistent if it cannot 

possibly have any instance), deciding whether or not one class is subsumed by 

another, etc. 
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xii)   Language Translation Engine: This is an open source translation engine 

implemented by Google that equips content management systems on the web with 

language translation capabilities.  

 

 

4.4.3.2 Implementation Details 

 

The implementations of components were based on Java Platform Enterprise Edition (JEE) using 

the NetBeans 5.5.1 Java IDE. The recommender system components were implemented as 

stateless session beans (Enterprise Java Beans - EJB) that have their functionalities triggered 

using Java Servlet technology. Each of the recommender system EJBs were made to reference 

the relevant Protégé Ontology Java AP1 in order to enable the required ontology querying and 

description logics reasoning capabilities. The Pellet 1.5 Descriptive Logics (DL) reasoner 

(http://pellet.owldl.com) was used as the reasoning engine for the ontology-based transactions. 

The tourism asset database was implemented in MySQL, which exploits the JDBC technology to 

connect to the EJBs. The database query component was implemented as a generic 

parameterizable EJB that accepts user request to construct responses.  The web layout template 

was implemented a cascading style sheet file using Macromedia Flash and Macromedia Dream 

Weaver tools.  All components were deployed on the Sun Application Web Server 9.0 which 

serves as the middleware infrastructure for all server-based services.  In figure 4.22 a view of the 

run-time deployment architecture of the domain components is presented. It is a 3-tier 

architecture showing the configuration of the content components as deployed on the Java EE 

server in the middle layer. The data layer (backend systems) consisting of ontologies and 

databases makes up the third layer while request for services are made through the client layer.  
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4.4.4 Domain Testing 

 

Domain testing entails the testing of core asset components developed during domain realization. 

It differs from traditional application testing, in that the domain core assets are not yet a complete 

executable application which can be subjected to full-scale testing. However, it is desirable to 

test core assets, so as to assess their fitness for product line composition and in order to be able to 

correct defects noticed in them as early as possible.  Among the varied domain system testing 

strategies that exist, the Simple Application Strategy (SAS) and Commonality and Reuse 

Strategy (CRS) was found most feasible in a product line context, hence as suggested in (Pohl et 

al., 2005) a combination of SAS and CRS was used for our domain testing.   

 

 

Figure 4.22: Deployment Architecture of System Components  
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4.4.4.1 Using Simple Application Strategy (SAS) 

 

The SAS of domain testing entails the creation of a sample prototype application with a typical 

product configuration using the implemented domain components as core assets. The purpose of 

SAS is to facilitate early validation and performance assessment of the core assets used. In 

essence, the SAS subsumes the unit testing and integration testing of the domain components 

used in a sample application. Also, the test cases generated during SAS can later be customized 

for reuse during application testing.  

 

In our case study, we engaged SAS domain testing by developing a prototype web platform for 

one of the products (The Nigeria-TIS). The configuration of the sample application included the 

destination and accommodation recommendation features, database query, and database update 

features. This enabled us to test all the implemented core assets in order to certify them for use in 

application engineering. During SAS domain testing, some of the initial defects noticed in the 

functionalities of the domain components were corrected. Some of the issues had to do with the 

accuracy of recommendations particularly when the Top-n value supplied by a user is more than 

the number of generated recommendations from the available content catalog. An instance of this 

is if a user wants a Top-6 recommendation in a category where only four products exist. In this 

kind of situation a system will be reckoned as functioning well if it can return the relevant Top-4 

rated products instead of doing something else. Also, several issues of inter-components 

interactions (between Servlet and EJB components, EJBs and Ontology Reasoner components, 

tourism database and EJB components) were resolved. Also, exception handling issues that were 

necessary to enhance the robustness of the domain components were attended to during SAS 

domain testing.    

 

4.4.4.2 Using Commonality and Reuse Strategy (CRS) 

 

The goal of CRS domain testing is to assess the integration of the common parts of each product 

with the variable parts. In the CRS domain testing, test cases are defined for the common and 

variable parts of an application. Common parts are tested with the appropriate test cases as far as 

possible. Later, all predefined test cases are reused in application testing for a chosen system 
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configuration to test the variable parts and once again the common parts to see if they work as 

intended.  

 

In our case study, we constructed test cases for the common components of our product 

configurations based on the specification of the Application-Requirement Matrix (see Table 4.1). 

The configuration of the Nigeria-TIS was then used during application testing to test the 

integration of the common parts (components) with the variable components to ensure that they 

work together perfectly.  

 

4.5 APPLICATION ENGINEERING IN PLONTOREC 

 

Application engineering deals with the creation of specific products in the product line through 

the reuse of domain core assets created in domain engineering and exploiting the product line 

variability. The core activities of application engineering are application analysis, application 

design, application realization, and application testing (see Figure 4.23).  

In application engineering the parameterizable core assets are configured with concrete 

parameters. Then, they are assembled to realize the needed features. Also some product-specific 

additions are made in order to cater for product specific requirements. If domain engineering was 

well conducted, the effort expended in application engineering should be much lower than in 

single system development.  In the particular instance of our case study three TIS products were 

considered. These are the Nigeria-TIS, Ghana-TIS and Ivorian–TIS. The details of the sub-

processes of application engineering that was applied in realizing these products are presented in 

the sequel sections. 
 

 

 

 

 

 

 

 

Figure 4.23 Sub-processes of Application Engineering 
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4.5.1 Application Analysis Process 

 

The focus of application analysis process is to obtain requirements that are specific to concrete 

products in the product line.  Application analysis enabled us to pay attention to requirements 

that were specific to the three national TIS products. Information contents local to specific 

countries were sourced; attention was also given to the need to develop customized layouts that 

reflects the unique national identities and essential attributes of the respective countries. The 

biases of each country with respect to hospitality were also noted during this phase. The 

summary of core application requirements for the three products is given as follows: 

• Product-Specific requirements for Nigerian-TIS 

- A web layout that distinctively represents the culture, tradition, characteristics and 

ambience of the Nigeria nation and people. These include national flags, national 

logos and images of national monuments unique to Nigeria. 

- Provision of destination recommendation service to prospective visitors offering 

guide on places to visit based on their preferred travel activity preferences. 

- Provision of guide on available accommodation facilities in Nigeria (hotels, guest 

houses, chalets etc.) based on a user’s preferences in terms of desired services, 

attractions, facilities, gastronomy, location preferences. The recommendations are 

further constrained by the selected accommodation type and budget of the user. 

- Provision of query facilities that enable users to inquire information about existing 

tourism assets in Nigeria. 

- Creation of a platform that enables storing of information about new tourism 

artifacts and the updating of  information on existing Nigerian  tourism assets. 

• Product-Specific Requirement for Ghana-TIS 

- A web layout that distinctively represents the culture, tradition, characteristics and 

ambience of the nation and people of Ghana. These include national identifiers and 

images of national monuments that are peculiar to Ghana. 

- Provision of destination recommendation service to prospective visitors offering 

guide on places to visit based on their preferred travel activity preferences. 

- Provision of guide on available accommodation facilities in Ghana (hotels, guest 

houses, chalets etc.) based on a user’s preferences in terms of desired services, 
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attractions, facilities, gastronomy, location preferences. The recommendations are 

further constrained by the selected accommodation type and budget of the user. 

- Provision of query facilities that enable users to inquire information about existing 

tourism assets in Ghana. 

- Creation of a platform that enables storing of information about new tourism 

artifacts and the updating of  information on existing Ghana  tourism assets. 

• Product-Specific Requirement for Ivorian -TIS 

- A web layout that distinctively represents the culture, tradition, characteristics of the 

nation and people of Cote D’ivoire. These include national identifiers and images of 

national monuments that are peculiar to Cote D’ivoire. 

- Provision of destination recommendation service to prospective visitors offering 

guide on places to visiting based on their preferred travel activity preferences. 

- Provision of guide on available accommodation facilities in Cote D’ivoire (hotels, 

guest houses, chalets etc.) based on a user’s preferences in terms of desired services, 

attractions, facilities, gastronomy, location preferences. The recommendations are 

further constrained by the selected accommodation type and budget of the user. 

- Provision of query facilities that enable users to inquire information about existing 

tourism assets in Cote D’ivoire. 

- Creation of a platform that enables storing of information about new tourism 

artifacts and the updating of  information on existing  tourism assets in Cote D’ivoire. 

- A multi-language language web platform that allows presentation in the language of 

English and French.  

 

The output of the application analysis activity revealed that the application requirements were in 

tandem with the previously established domain requirements, which suggest that they are 

realizable through a product line approach. 

 

 

 

 

 



137 
 

4.5.2 Application Design Process 

 

During application design, the artifacts of domain design are instantiated with the product-

specific requirements obtained from application analysis to create design for individual 

products in the product line. Based on the results of application analysis, valid features 

configurations were chosen for each application as derived from the feature model developed in 

domain design (discussed in Sect. 4.4.2.1). Also, the reference architecture obtained from 

domain design is adapted with concrete data, and specific parameters to realize variant 

applications using the established variation points.  

 

In our case study, the application design for each of the TIS products were derived directly from 

the reference architecture given in figure 4.13.  First the concepts of the two ontologies (i.e. 

DCO, AO) were adapted to fit the specific context of individual countries. For example the 

concept ‘State’ which connotes a regional unit of governance in the Nigerian context was 

customized as ‘Province’ in the Ghanaian and Ivorian contexts of national governance. 

Thereafter the ontologies were instantiated with specific national information contents of the 

three countries to become national tourism knowledge bases (i.e. Nigerian Destination 

Ontology, Nigerian Accommodation Ontology, Ghana Destination Ontology, Ghana 

Accommodation, Ivorian Destination Ontology, and Ivorian Accommodation Ontology). The 

Tourism databases for the three countries were designed and populated with relevant local 

contents. The 3 databases had largely identical structure except for differences in the 

nomenclature of few fields (but the total number of fields was the same). 

 

The valid feature sets derived from the domain feature model (see Figure 4.12) are shown for 

each of the TIS product variant. They are enumerated below (the root node is omitted and 

composite features contain subfeatures in parentheses): 

 

Nigerian-TIS = {Tourism Recommender System (DRS (Nigeria Destination 

Ontology), ARS (Nigeria Accommodation Ontology)), web layout, query engine, 

database update (Nigeria Tourism Asset Database)} 

Ghana-TIS= {Tourism Recommender System (DRS (Ghana Destination ontology), 
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ARS (Ghana Accommodation Ontology)), web layout, query engine, database update 

(Ghana Tourism Asset Database)} 

Cote D’ivoire-TIS= {Tourism Recommender System (DRS (Ivorian Destination 

ontology), ARS (Ivorian Accommodation Ontology)), web layout, language 

translation engine, query engine, database update (Ivorian tourism Asset 

Database)} 

The feature tree (FT) model of the three TIS product instances are shown in figures 4.24 –figures 

4.26. 
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Figure 4.24 Feature Tree Model of Nigeria-TIS 

Figure 4.25 Feature Tree Model of Ghana-TIS 
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4.5.3 Application Realization Process    

 

Application realization commits to implementation of specific products in a product line 

leveraging the components developed during domain engineering. Hence, the focus of our 

implementation process shifted from a detailed development to customization and assembly of 

software components to realize specific product requirements. 

 

The programming implementation platform used for the TIS products was Java 2 Enterprise 

Edition. The national tourism knowledge bases were created by populating the DCO and AO 

ontologies for each of the three countries with specific facts (individuals). Also, tourism 

information that pertains to each country was sourced and used to populate the respective 

tourism databases of the three countries. Java Servlet technology running on Sun Application 

Web Server 9.0 was employed to launch the functionalities of the recommender systems and 

information query components embedded in each of the national TIS products. The tourism 

databases were implemented in MySQL, using the JDBC Connector for connectivity. The web 

interfaces for each of the countries were implemented with Macro Media Flash and Dream 

Weaver web design tools leveraging a uniform web layout cascading style sheet template, while 

Figure 4.26 Feature Tree Model of Ivorian-TIS 

    Ivorian-TIS 

Tourism Recommender System 
(Common) 

 

Ivorian Destination 
Recommender System 
(Common) 
 

Ivorian Accommodation 
Recommender System 
(Common) 
 

Ghana Tourism 
Web GUI  

(Common) 
 

Ghana Tourism Information Query 
Engine 

 (Common) 
 

Ghana Tourism Content 
 Builder  

 (Common) 
 

Ivorian Destinations Ontology  
(Common) 

 

Ivorian Tourism Asset Database  
(Common) 

 

Ivorian Accommodation Ontology  
(Common) 

 

Language Translation  
(Optional) 

 



140 
 

Java Server Pages (JSP) scripting was used to provide the necessary supportive client-side 

scripting. Figures 4.27-4.29 are snapshots from the application realization of the three TIS 

products. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.27  Snapshot of the Destination Recommender System (DRS) in the Nigerian-TIS 

Figure 4.28 Snapshot of the Home Page of the Ghana- TIS (Discover Ghana)    
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4.5.4 Details of Application Testing Process 

 

The focus of our application testing process is to validate the quality of the TIS products 

generated in application realization. During this process, the TIS products were tested and 

validated using the domain requirements documents, application requirement documents, and 

domain test artifacts and application test artifacts. Some of the tests carried out include syntax 

checks (which was greatly boosted by the ‘intellisence’ and advanced debugging feature present 

in the NetBeans Java IDE that was used), unit testing (validating the individual created 

components), integration testing (checking the interaction of the components) and validation 

tests (ensuring that specific application requirements are fully satisfied).  The fact that some 

measure of testing was carried out in domain testing using the Sample Application Strategy 

(SAS) and Commonality and Reuse Strategy (CRS), accelerated the application testing 

procedure. Also, the common parts were tested in a commonality test to see if they work 

correctly in different customized application contexts, all of these tests proved successful. 

 

 

 

Figure 4.29   Snapshot of the Cote D’ivoire TIS (Ivorian-Discover)    
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4.6   SUMMARY AND DISCUSSION 

 

In this chapter the full scope of the application of the PLONTOREC life cycle has been 

discussed using a practical case study of TIS development. The sub-processes of  PLONTOREC 

include: 1) Product Line Management - in which feasibility and risk assessment was undertaken 

prior to the commencement of the product line development activity; 2) Ontology Engineering – 

in which two OWL-KR ontologies were developed to enable a family of TIS products with 

knowledge-based recommendation capabilities; 3)  Domain Engineering – in which specific 

domain reusable components such as tourism recommender systems for the TIS were developed; 

and 4) Application Engineering – in which 3 variant national TIS products for three countries in 

the West African sub-region were developed based on a specific product line feature model.  The 

experience and observations gained from the application of these four aspects of PLONTOREC 

in a practical real-life scenario, demonstrates the potential viability of the PLONTOREC 

approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



143 
 

CHAPTER FIVE 

EVALUTION OF THE PLONTOREC APPROACH 

 

5.1 INTRODUCTION 

 

This chapter reports the empirical evaluation of the PLONTOREC approach and its products. 

The usability evaluation of the two recommender systems was undertaken in order to capture 

users’ impressions of the quality of their functionality and rate their efficiency. In addition, a 

usability evaluation of the TIS product platform was also conducted. Lastly, a comparative 

evaluation of the scenario of TIS development with PLONTOREC and without PLONTOREC 

was undertaken. 

 

5.2 THE MOTIVATION FOR USABILITY EVALUATION OF TOURISM 

RECOMMENDER SYSTEMS  

 

The accuracy metrics for evaluating recommender systems (See Section 2.3.5.1) involve 

measuring variables that are expected to affect the utility of a recommender system to the user 

and affect the reaction of the user to the system (Herlocker et al., 2004). Predictive accuracy 

metrics measure how close is the predicted ratings of a product by a system to true user ratings, 

while the decision support metrics evaluate the effectiveness of the system in helping users to 

distinguish between high-quality items and the rest of the product items.  Precision and recall are 

the most popular decision-support metrics that have been used for evaluating recommender 

systems. The concepts of precision and recall were borrowed from Information Retrieval (IR), 

and have been used severally for recommender systems evaluation (Basu et al., 1998; Sarwar et 

al., 2000; Billsus & Pazzani, 2000; Sarwar, 2001). Precision is defined as the ratio of relevant 

products selected to the number of products selected. It represents the probability that a selected 

product is relevant. Recall is defined as the ratio of relevant product selected to the total number 

of relevant products available. It represents the probability that a relevant product will be 

selected.  
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However, while these metrics may be adequate for assessing the recommendation of commodity 

products like a book or a movie, they cannot be trusted in the case of the tourism product. This is 

because the tourism product is always unique to individuals, in that two people seldom have 

travel preferences that are exactly similar.  Peoples’ tourism preferences are always unique and 

personal (unlike what obtains with commodity products). Recommender systems recommend 

products based on the likelihood that they will meet a specific user’s taste or interest. However to 

determine whether a product meets the taste requirement of a user demand that we ask the user 

concerned. Thus, relevance is much more inherently subjective in tourism recommender systems 

and objective relevance does not exist. 

 

Also, measuring recall in the context of tourism recommendation is almost always impractical. 

In the pure sense, measuring recall requires knowing whether each product is relevant; for a 

tourism recommender system, this would involve asking the opinion of many users to view all 

available products to measure how successfully a product has been recommended to each user. 

IR evaluations have been able to estimate recall by pooling relevance ratings across many users, 

but this approach depends on the assumption that all users agree on which items are relevant, 

which is inconsistent with the nature of the tourism product (Herlocker et al., 2004). 

 

 

As an alternative to the traditional recall and precision metrics, Zanker et al. (2008) suggested 

that metrics along the dimensions of efficiency, effectiveness and marketing intelligence are more 

relevant to RS applications that will be featured in the commercial environment like tourism. 

Since the RS is expected to guide the user through a series of decision making steps without 

provoking him to quit the application, the usability of such RS then becomes the most 

approximate measure of its efficiency. Also, the fact that a direct usability evaluation of a system 

encapsulates several dimensions of users’ perception of the system makes it a more realistic 

measure of efficiency (Zins et al., 2004a; Zins et al., 2004b).  These perspectives influenced the 

decision for a usability evaluation of the two recommender system components that were 

developed in the case study. The details of the empirical evaluation experiments are given next. 
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5.3   EMPIRICAL USABILITY EVALUATION OF RECOMMENDER 

SYSTEMS COMPONENTS  

 

Usability evaluation is an attempt to measure the user’s perception of a recommender system 

after an interaction experience. The essence of usability testing is to assess the quality of human-

computer interaction properties of a system. According to ISO 924-11 (1998), usability is the 

extent to which specified users can use a system to achieve specified goals with effectiveness, 

efficiency and satisfaction. It is also, a perception of a system’s ease of learning and use from 

both the experienced and inexperienced users’ viewpoint (Lindgaard, 1994). 

 

The reason for undertaking a prototype usability testing was to assess the performance of the 

DRS and ARS components and also to obtain timely feedback from potential users on possible 

future enhancements that are crucial for the recommender systems. This is based on our belief 

that the use of empirical testing with potential users is still the best way to find problems related 

to user’s task and experiences (Zins et al., 2004a; Zins et al., 2004b; Riihiaho, 2003).  

 

Herlocker et al. (2004) suggested the use of explicit (ask) and implicit (observe) feedback as the 

most appropriate for user evaluation of RS, and emphasised the need to clearly define the task 

that a recommender system is intended to support before its evaluation. Therefore, standard 

usability testing concepts (Nielsen, 1993) was used for evaluating the DRS. 

 

5.3.1 Experiment Design for DRS  

 

A trial experiment was undertaken with 20 users, including 5 non-Nigerian West Africans on 

short visit to Nigeria for the purpose of religious tourism. The rest of the sample user population 

comprises of staff and students of the Science and Technology faculty of Covenant University. 

All the participants gave their informed consent to participate in the experiment, and were taken 

through a 15 minutes tutorial session at the commencement of the experiment. Participants were 

requested to respond to a pre-experiment questionnaire which was specifically designed to 

evaluate the background of the participants particularly in terms of their IT skills, knowledge of 

the Internet, familiarity with recommender systems, e-Commerce portals, and general tourism 



146 
 

and travel experience. They were asked to rate themselves on a scale of 100, which was 

graduated into 5 class categories. The specified task for the DRS is to provide intelligent 

recommendation to the user on the most probable Nigerian locations to spend the next vacation 

after it has been   supplied with a list of travel activity preferences and social attributes 

description of a desirable destination.  Participants were allowed to engage the system in as many 

sessions as they chose but were encouraged to randomly iterate between instances where social 

attribute preferences are included as input for recommendation and when they are not included.   

 

The post-experiment questionnaire was a customisation of the Post-Study-Satisfaction-User-

Questionnaire (PSSUQ) standard (Nielsen, 1993; Lewis, 1995; Zins et al., 2004a; Zins et al., 

2004b). The PSSUQ has 26 questions, which were specifically adapted for a destination 

recommender system context (See Table 5.1). Items 16 and 17 in the questionnaire were 

specifically designed to capture users’ impression of the system’s recommendation when social 

attribute information is used and when not used, which is to be analysed to determine the 

potential influence of the inclusion of social attribute information of destination on the utility of 

recommendation. The participants were required to rate each item in the post-experiment 

question on a scale of 1-5 (1-Excellent, 2-Good, 3-Satisfactory, 2-Unsatisfactory, 1-Poor) while 

‘n/a’ should be used for any questionnaire item they choose not to rate. 

 

 

 
 

Items 5 4 3 2 1 n/a 

 Design/Layout       

1 I liked using the interface of the system.  
 

      

2 The organization of information presented by the system was 
clear. 
 

      

3 The interface of this system was pleasant to use.  
 

      

 Functionality       

4 This system has all the functions and capabilities that I expect 
it to have to perform its task 
 

      

5 The options listed by the system as a reply to my request were 
suitable for my travel. 
 

      

6 I agree with the suggested recommendation of the system and 
believe it will be useful 

      

Table 5.1 Usability and User Satisfaction Questionnaire for DRS 
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7 Ease of Use 

 
      

8 It was simple to use this system.  
 

      

9 It was easy to find the information I needed.       
10 The information (such as online-help, on-screen messages, and 

other documentation) provided with this system was clear.  
 

      

11 Overall, this system was easy to use.  
 

      

 Learnability 
 

      

12 It was easy to learn to use the system.        
13 There was too much information to read before I can use the 

system.  
 

      

14 The information provided by the system was easy to 
understand.  
 

      

 Satisfaction 
 

      

15 I felt comfortable using this system.  
 

      

16 I am satisfied with recommendations when social attribute 
information of destination is used.  (*) 
 

      

17 I am satisfied with recommendations when social attribute 
information of destination is not used.  (*) 
 

      

18 Overall, I am satisfied with this system.       
 Outcome / Future Use 

 
      

19 I was able to complete the task quickly using this system.  
 

      

20 I could not complete the task in the preset time frame.  
 

      

21 I believe I could become productive quickly using this system.  
 

      

22 The system was able to convince me that the recommendations 
are of value.  
 

      

23 From my current experience with using the system, I think I 
would use it regularly.  
 

      

 Errors / System Reliability 
 

      

24 Whenever I made a mistake using the system, I could recover 
easily and quickly. 
 

      

25 The system gave error messages that clearly told me how to fix 
problems.  
 

      

26 In my opinion the system is somewhat fault tolerant       
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The pre-experiment and post-experiment questionnaires were analysed and the following were 

the findings: 

i)  80% of participants claimed to be expert Internet users (indicating a rating of 70-100).   

ii)  60% of participants’ claimed to have very good familiarity with RS and e-Commerce 

applications; 

iii) 40% rated their travel and tourism experience as excellent; 

iv)  Another 40% rated their travel and tourism experience as above average. 

v) While the remaining 20% claimed to have little or no travel and tourism experience.  

Figure 5.1 is a chart showing a summary of the background of participants according to their 

familiarity with e-Commerce applications, RS and previous tourism experience. 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.2 Post –Experiment Results for DRS 

 

The feedback obtained from users through the post-experiment questionnaire was analysed 

statistically to determine the mean scores of user ratings of the system based on the seven 

0

10

20

30

40

50

60

70

80

90

Knowledge of

Internet

Familiarity with RS Familiarity with e-

Comm Applications

Travel and Tourism

Experience

70-100

60-69

50-59

35-49

34-10

0-9

Figure 5.1 Summary of Background of Participants  
 



149 
 

usability metric parameters used to evaluate the system. Table 5.2 shows the mean scores of the 

parameters used. These are: design/layout, functionality, ease of use, learnability, satisfaction 

(which was split into two, i.e. when social attribute information was used and when social 

attribute information was not used), future use (confidence), and reliability.  From the result, the 

DRS had a mean score of above 4 in seven out of the 8 parameters used. Several usability studies 

have revealed that a system should have a mean score of 4 on a 1-5 scale to be rated as 

acceptably usable. Hence, it is sufficient to say that the DRS has a good usability. Also, from our 

experiment, it was discovered that most users expressed satisfaction; and showed preference for 

recommendations that were based on the use of social attributes information over when social 

attributes information was not used. 

         Table 5.2: Means Scores of Usability Metrics for DRS  

 Usability Metrics Mean Scores Std. Deviation 

1 Design/Layout 4.13 0.57

2 Functionality 4.19 0.63

3 Ease of Use 4.15 0.25

4 Learnability 4.00 0.76

5 Satisfaction/Social attribute 4.15 0.78

6 Satisfaction/without Social attribute 3.58 1.05

7 Outcome/Future Use 4.20 0.34

8 Reliability 4.02 0.68

 

Also, from our experiment, 80% of the sample population responded that they felt comfortable 

with the system by giving it a rating of 5(excellent) or 4(good). 20% of the participants gave the 

system a rating of 3(satisfactory) or 2(unsatisfactory).  60% of the sample population rated the 

recommendations of the system as excellent or good when social attributes information was 

used, 20% of participants rated the recommendations as satisfactory or unsatisfactory, while 40% 

chose not to comment. Also, 20% of participants rated recommendations of the system as 

3(satisfactory) or 2 (unsatisfactory), when social attribute information is not used, 0% rated it as 

excellent or good, while 40% chose not to comment. 80% of participants felt generally satisfied 
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with the system. Figure 5.2 is a visualization of user’s satisfaction with the recommendation of 

the DRS prototype.   

 

The results of the evaluation experiment clearly support the notion that use of contextual 

information such as the social attributes information of destinations as a factor in destination 

recommendation can indeed boost the dependability of destination recommendations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.3 Experiment Design for ARS  

 

A trial experiment for evaluation similar to that of the DRS was engaged for the ARS. 10 willing 

and informed users were used for the evaluation even though it has been suggested that just five 

users are sufficient for a first cut usability study of any system (Nielsen, 1993).  Half of the users 

in this experiment participated in the DRS evaluation which significantly reduced the need for 

prolonged preliminary introduction; nevertheless a 10 minutes tutorial session was given to users 

Figure 5.2 Summary of User’s Satisfaction with the DRS 
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at the commencement of the experiment. The participants in this experiment shared largely the 

same background with those used for the DRS evaluation in terms of their IT skills, knowledge 

of the Internet, familiarity with recommender systems, e-Commerce portals, and general tourism 

and travel experience. The specified task for the ARS which participants are to evaluate is to see 

how well it recommends relevant accommodation types (e.g. hotel, guesthouse, chalet etc.) based 

on their selected preferences in terms of facilities, services, attractions, and gastronomy. 

Participants were allowed to engage the system in as many sessions as they desired.  

 

A post-experiment questionnaire containing 24 questions that was designed based on the PSSUQ 

standard was used to capture user’s impression of the ARS (See Table 5.3). The participants 

were required to rate each item in the post-experiment question on a scale of 1-5 (1-Excellent, 2-

Good, 3-Satisfactory, 2-Unsatisfactory, 1-Poor) while ‘n/a’ should be used for any questionnaire 

item they choose not to rate. 

 

 

 

 
 

Items 5 4 3 2 1 n/a 

 Design/Layout       

1 I liked using the interface of the ARS.  
 

      

2 The organization of information presented by the ARS was 
clear. 
 

      

3 The interface of this system was pleasant to use.  
 

      

 Functionality       

4 This system has all the functions and capabilities that I expect 
it to have to perform its task 
 

      

5 The options listed by the system as a reply to my request were 
suitable for my decision making. 
 

      

6 I agree with the suggested recommendation of the system and 
believe it will be useful 
 

      

7 Ease of Use 
 

      

8 It was simple to use this system.  
 

      

9 It was easy to find the information I needed.       
10 The information (such as online-help, on-screen messages, and       

Table 5.3 Usability and User Satisfaction Questionnaire for ARS  
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other documentation) provided with this system was clear.  
 

11 Overall, this system was easy to use.  
 

      

 Learnability 
 

      

12 It was easy to learn to use the system.        
13 There was too much information to read before I can use the 

system.  
 

      

14 The information provided by the system was easy to 
understand.  
 

      

 Satisfaction 
 

      

15 I felt comfortable using this system.  
 

      

16 I am satisfied with the recommendations. 
 

      

 Outcome / Future Use 
 

      

17 I was able to complete the task quickly using this system.  
 

      

18 I could not complete the task in the preset time frame.  
 

      

19 I believe I could become productive quickly using this system.  
 

      

20 The system was able to convince me that the recommendations 
are of value.  
 

      

21 From my current experience with using the system, I think I 
would use it regularly.  
 

      

 Errors / System Reliability 
 

      

22 Whenever I made a mistake using the system, I could recover 
easily and quickly. 
 

      

23 The system gave error messages that clearly told me how to fix 
problems.  
 

      

24 In my opinion the system is somewhat fault tolerant.       

 

 

5.3.4 Post –Experiment Results for ARS 

 

The feedback obtained from users through the post-experiment questionnaire was analysed 

statistically to determine the mean scores of user ratings of the ARS based on the seven usability 

metric parameters used to evaluate the system. Table 5.4 shows the mean scores of the 
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parameters used.  From the result, the ARS had a mean score of above 4.3 in all seven 

parameters used, which is symbolic of the fact that the ARS has good usability. It is also 

important to note that the ARS is purely a semantic web application. Hence the evaluation of the 

ARS also directly corresponds to an application-based evaluation of the Accommodation 

Ontology (AO) that is at the base of the ARS knowledge-base. Therefore the positive result 

obtained certifies the good quality and completeness of the Accommodation ontology.  

 

        Table 5.4: Means Scores of Usability Metrics for ARS  

 Usability Metrics Mean Scores Std. Deviation 

1 Design/Layout 4.53 0.47

2 Functionality 4.50 0.32

3 Ease of Use 4.35 0.25

4 Learnability 4.50 0.56

5 Satisfaction/Social attribute 4.5 0.38

6 Outcome/Future Use 4.42 0.24

7 Reliability 4.30 0.58

 

Also, from our experiment, 80% of the sample population responded that they felt comfortable 

with the system by giving it a rating of 5(excellent) or 4(good). 20% of the participants gave the 

system a rating of 3(satisfactory) or 2(unsatisfactory).  80% of the participants also expressed 

confidence in the recommendations of the ARS, claiming that they believed it enough to act on 

it. The results of this evaluation experiment clearly support the notion that recommendations that 

are based on deep factual knowledge of a specific tourism domain are more dependable and have 

a greater propensity to foster users’ confidence. 

 

5.4   EMPIRICAL USABILITY EVALUATION OF TIS PRODUCTS 

 

A usability evaluation of the e-Tourism portal for Nigeria was undertaken to assess user’s 

impression of the TIS product. A post-experiment questionnaire was formulated based on the 

Post-Study-Satisfaction-User-Questionnaire (PSSUQ) standard. The PSSUQ had 26 questions, 

which were specifically adapted to fit the scenario of our case study. The participants were 
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required to rate each item in the post-experiment question on a scale of 1-5 (1-Excellent, 2-Good, 

3-Satisfactory, 2-Unsatisfactory, 1-Poor) while ‘n/a’ was used for any questionnaire item they 

choose not to rate. The questions addressed various aspects which include: design layout, 

functionality, ease of use, learnability, satisfaction, outcome/future use and reliability of the 

system. The post-experiment questionnaire was analysed statistically to determine the mean 

scores of user ratings of the system based on the seven usability metrics used for evaluation. 

Table 5.5 shows the mean scores obtained for each of the metrics used. From the result, the 

system had a mean score of above 4.0 in all of the 7 parameters used which suggests that the 

system is sufficiently usable and has a an acceptable performance level going by users’ ratings. 

In our experiment, we sought to know what users feel about the fact that the recommendations 

were knowledge-based. From the feedback, we discovered that most of the users felt that the 

recommendation were accurate enough to earn their trust, because of convincing evidences that 

they were based on some facts that they are also aware of.  

 

         Table 5.5: Means Scores of Usability Metrics for e-Tourism System Prototype  

 Usability Metrics Mean Scores Std. Deviation 

1 Design/Layout 4.13 0.57 

2 Functionality 4.19 0.63 

3 Ease of Use 4.15 0.25 

4 Learnability 4.00 0.56 

5 Satisfaction 4.15 0.28 

6 Outcome/Future Use 4.20 0.34 

7 Reliability 4.02 0.68 

 

Summarily, 80% of the sample population responded that they felt comfortable with the system 

by giving it a rating of 5(excellent) or 4(good). 20% of the participants gave the system a rating 

of 3(satisfactory) or 2(unsatisfactory).  60% of the sample population rated the recommendations 

of the system as excellent or good and claimed to believe it, 20% gave it a rating of 3 or 2 while 

20% chose not to comment.  80% expressed general satisfaction with all aspects of the system. 

Figure 5.3 is a visualization of user’s perception of the system.  We consider the results of the 

evaluation experiment encouraging and supportive of our belief that development of semantic 
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ontology-based platform will engender the delivery of knowledge-based recommendations and 

will command user’s confidence is indeed viable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.5   EVALUATION OF THE PLONTOREC APPROACH 

 

In order to evaluate the PLONTOREC approach, we compared our experiences in the scenario of 

the application of PLONTOREC and the situation where traditional software development 

approach was used in engineering the three TIS products. The details of the evaluation procedure 

are given next. 

 

 

5.5.1 Estimating Effort of Developing TIS Products using COCOMO II  

 

The Constructive Cost Model (COCOMO) is an algorithmic software budget estimation 

technique that is used to empirically determine the amount of effort required for the complete 

development of a software project (Boehm et al., 2000). It uses empirically derived formulas to 

estimate the cost of human resources (effort) as a function of the project size. The latest version 

of the COCOMO estimation technique is the COCOMO II which subsumes the previous version 

Figure 5.3   A Graphical View of User’s Satisfaction Index for the e-Tourism Portal  
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COCOMO 81. COCOMO II consist of three different models, which are: 1) The Application 

Composition Model (which is to be used in the early analysis stage or during prototyping); 2) 

The Early Design Model (which is to be used after requirement analysis is completed); and 3) 

The Post-architecture Model (which is to be used after the software architecture design is 

known). 

 

The COCOMO II Post-architecture model was used to estimate the effort in developing a TIS 

product using the traditional development approach. The motivation for using the Post-

architecture model is to enable more accurate information for various cost drivers to be generated 

and thus ensure more accurate estimations.  The estimation formula for COCOMO II model is 

given as (Boehm et al., 2000): 

 

 effort = c * sizek * m + autoeffort                    (5.1) 

 

Based on the COCOMO II research, the value of constant coefficient c is set to 2.5. The Post-

architecture model of COCOMO II makes use of seventeen cost drivers and five scale factors. 

The cost drivers are grouped into 4 categories (product, platform, personnel, and project) and it is 

not always necessary to consider all four categories. The values of the cost drivers are multiplied 

to obtain the value of the effort multiplier m in the formula. The value of cost drivers ranges 

from very low to very high. Cost drivers have a nominal value of 1. A value above 1 for a cost 

driver connotes negative effect on the effort multiplier while a value below 1 connotes a positive 

effect. A value of 1 does not affect the computation of m. 

 

 The scale factors are used to derive the value from exponent k applied to the size value. Each 

factor is rated with integer values from 5 to 0. The values are added, divided by 100, and the 

result added to the nominal value of the exponent (k) 1.01 to give the new value of the k to be 

used in the formula. The five scale factors were used to account for the relative economies or 

diseconomies of scale encountered for software projects of different sizes. The size value 

represents the total number of unadjusted function points in the project.  The last term in the 

formula, autoeffort, is the effort put by developers in the automatic code generation and the 

integration of the code with the manually created programs.   The details of our estimation 
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experiment are presented next. 

 

5.5.1.1 Determining Function Points 

 

The function points metric is a measure of the size of the functionality associated with a software 

project. It is used to quantify the information processing functionality associated with major 

external data or control input, output, or file types in a software project. Function points are 

useful estimators since they are based on information that is available early in the project life 

cycle. The various components of function points are (http://linkinghub.elsevier.com/retrieve 

/pii/S0164121200000157): 

External Input (Inputs): This is the count of each unique user data or user control input type 

that (i) enters the external boundary of the software system being measured and (ii) adds or 

changes data in a logical internal file. 

External Output (Outputs): This is the count of each unique user data or control output type 

that leaves the external boundary of the software system being measured. 

Internal Logical File (Files): This is the count of each major logical group of user data or 

control information in the software system as a logical internal file type. This includes each 

logical file (e.g. each logical group of data) that is generated, used, or maintained by the software 

system. 

External Interface Files (Interfaces): These are files that are passed or shared between the 

software systems within each system. 

External Inquiry (Queries): This is the count of each unique input-output combination, where 

an input causes and generates an immediate output, as an external inquiry type. 

An overview of the function points counting procedure used for the Nigeria-TIS is shown in 

Figure 5.4 as follows: 
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Data Functions: 

List of Internal Logical Files (ILF): 

1. Tourism Asset Table ( 19 fields) 
2. Case Base Table ( 8 fields) 

 

List of External Interface Files (EIF): 

1. Destination Recommender Interface  
2. Accommodation Recommender 

Interface  
3. Query Interface  
4. Update Asset Register Interface  
5. Main Application Interface 

 

Transactional Functions: 

List of External Inputs (EI): 

1. User Commands (text boxes) 
2. Command Buttons 
3. User Login 
4. Product Preferences Selection List 

 

List of External Outputs (EO): 

1. Destination Recommendations Result  
2. Accommodation Recommendations 

Result 
3. Query Result  
4. Data Update feedback 
5. User Login Result  

List of External Queries (EQ): 

1. Referencing Destination Context 
Ontology 

2. Referencing Tourism Asset Database 
3. Referencing Accommodation Ontology 

 

 

After the identification of the function points in the Nigeria-TIS, the COCOMOII standard tables 

(see Appendix I) were used for constructing the unadjusted function points as shown in Table 

5.6.  Twenty percent was added to all the obtained function points in order to cater for any 

missed component due to unspecified requirements (Boehm et al., 2000).  The unadjusted 

function points for the Nigerian-TIS software in COCOMO II is 120. 

 

Table 5.6 Constructing Function Points 

Internal Logical Files (ILF) 

Logical File Data Element Types Record Element Types Complexity 

1 19 4 Low 
2 8 3 Low 

External Interface Files (EIF) 

Logical File Data Element Types Record Element Types Complexity 
1 16 4 Average 
2 120 4 High 
3 4 4 Low 
4 16 4 Low 

Figure 5.4 Function Points Counting Procedure for Nigerian-TIS 
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5 5 2 Low 
External Inputs 

External 
Inputs 

File Types 
Referenced 

Data Element Types Complexity 

1 < 2  15- Above  Low 
2 < 2   5-15 Low 
3 < 2   1-4 Low 
4 < 2   15- Above High 

External Outputs 

External 
Outputs 

File Types 
Referenced 

Data Element Types Complexity 

1  2 – 3   1-5 Low 
2 < 2   1-5 Low 
3 < 2   1-5 Low 
4  < 2   1-5 Low 
5 < 2   1-5 Low 

External Oueries 
External 
Outputs 

File Types 
Referenced 

Data Element Types Complexity 

 1  < 2   5 Low 
 2  < 2   4  Low 
 3 < 2   5  Low 

Unadjusted Function Points 

  Low Average High 
ILF (2) X 7  X 4  X 6 
EIF (3) X 7 (1) X 10 (1) X 15 
EI (3) X  3  X 4 (1) X 6 
EO (4) X 4  X 5   X 7 
EQ (3) X 3 X 4 X 6 
Total Unadjusted Function Points:  100 
Input for COCOMO II: 100* 1.2 = 120 (20% more due to other uncounted 
function points that might arise when more thorough requirements review 
has been conducted). 

 

5.5.1.2 Determining the Scale Factors 

 

The scale factors values used for the estimation are shown in Table 5.7, while the justifications 

for the values used are given as follows: 

Precedentedness (PREC): This reflects the similarities of a current project to projects that had 

been undertaken in the past.  In our case, this factor is dimmed to be very low because the 

development team (actually only one person was involved) that will implement the system has 
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no prior similar project experience at all.   

Development flexibility (FLEX): This refers to the level of suppleness associated with what 

actually must be developed versus the pre-established requirements and interface specifications 

of the software.   This is assumed to be nominal since little information on strict adherence to 

conformance is specified.   

Architecture/Risk Resolution (RESL): This factor defines the need for the extension of the 

architecture being completely specified and major risks being eliminated. In the case at hand, the 

scope of the project does not demand going into details of risk management and thus, this factor 

is assumed to be very low. 

Team cohesion (TEAM): This accounts for the synergy factor or project turbulence factor due 

to ease or difficulty of synchronizing the views of project stakeholders like users, customers, 

developers, maintainers, interfacers, etc. This is assumed to be very high because only one 

person was involved in dictating the pace of the project with a few errand staffs. 

Process maturity (PMAT): This is a measure of the quality of software process used for 

development based on the SEI Capability Maturity Model Integration (CMMI) standard. Since 

the project is being handled as a pilot study, it is considered far from being fully professional, the 

PMAT factor that corresponds to CMMI – level 3 is assumed, which represents an averagely 

acceptable level of process maturity of the development. 

Table 5.7 Estimating k Exponent 

Scale Factors 

Rating 

(5-0) 

Precedentedness (PREC) 5 

Development Flexibility (FLEX) 4 

Architecture/Risk Resolution (RESL) 5 

Team Cohesion (TEAM) 2 

Process Maturity (PMAT) 2 

Sum 18 

K =  1.01 + (Sum/100)  = 1.19 
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5.5.1.3 Determining Cost Drivers (Effort Multipliers)  

 

Seventeen cost drivers that are divided into four categories were used to determine the effort in 

Person Months required for the software. The justifications for the values assigned to each of the 

cost drivers are presented as follows: 

 

Required System Reliability (RELY): This measures the extent to which the software must 

perform its intended function over a period of time.  The system is expected to be reliable, 

however failure is not considered hazardous. The failure might cause some losses, but not 

considerable enough to be a major concern.  Therefore, a nominal value less than 1 is assigned.   

Database size (DATA): This measure attempts to capture the effect that large data requirements 

have on product development. The rating is determined by dividing the database size (in bytes) 

by the program size (SLOC). The size of the database is important for consideration because of 

the effort required to generate the test data that will be used to test the program. This is 

determined to be much because of the data-intensive nature of the application. 

Product complexity (CPLX): This is the measure of the perception of how complex the product 

is. In this case a nominal value of is assumed.  

 Reusability (RUSE): This is the level of reuse required in the project. This assumed to be 

nominal by implicit assessment since the project description is not emphatic on reuse. 

Documentation (DOCU): This is a measure of the documentation suitable for life-cycle needs. 

This is given a nominal value because right-sized documentation is assumed.   

Execution time (TIME) and Storage (STOR): These are platform constraints that are not 

considered as significant in this project context, the availability of capable hardware platform is 

assumed,  hence nominal values have been assigned to both of them.   

Platform Volatility (PVOL): The platform volatility (PVOL) refers to the frequency of change 

of hardware/software that the services rely on to perform their own tasks.  In this case, no major 

change is expected in a 12-month period that can radically alter the course of events of 

development although minor changes might occur along the line. Therefore, a nominal value is 

assigned. 
Personnel Continuity (PCON): This is the measure of stability of personnel in the project 

development team. This is given a nominal value since only one personnel is involved with an 

assumption that the project will be completed before any change of personnel takes effect. 
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Analyst Capability (ACAP), Programmer Capability (PCAP): These are measures of the 

ability and competence of Analyst and programmers in the project team. Since the programmer 

has previous programming experience and has worked on other projects that required the use of 

analytical ability as well as programming ability, the analyst capability (ACAP) and programmer 

capability (PCAP) multipliers are assumed to be very high.  

Analyst Experience in Project Domain (AEXP), Programmer Experience in Project 

Domain (PLEX), Language Tool Experience (LTEX): These are measures of the experience 

of the analyst and the programmer in the project application domain. Although the analyst and 

programmer do not have prior experience in TIS development, some knowledge of web-based 

development is available, hence AEXP, PEXP and LTEX are considered relatively high.  

Toolsets (TOOL): This is the measure of tool-support available for the development process. It 

is expected that the development will leverage the rich tool-support available for the 

development. Hence this is assumed to be relatively high. 

Multisite Working and Quality of Communication (SITE): This is the measure of the extent 

of multi-site working and quality of site communication in development. The multisite 

development multiplier is set to be high because the degree of site collocation and 

communication support is relatively high.   

Development Schedule (SCED): This measure the schedule constraint imposed on the project 

team developing the software.  The ratings are defined in terms of the percentage of schedule 

stretch-out or acceleration with respect to a nominal schedule for a project requiring a given 

amount of effort.  In this case, there was no formal agenda with regard to stretch out and thus, we 

assumed a nominal value. Table 6.8 presents a view of the values for the different cost drivers. 

      Table 5.8   Estimating Effort Multiplier (m) 

Cost Drivers 

Product 

Attributes Required System Reliability (RELY) 0.9 
Complexity of System Modules (CPLX) 1 
Extent of Documentation Required (DOCU) 1.2 
Size of Data Used (DATA) 1.5 
Required % of Resuable Components (RUSE) 1 

Computer 

Attributes Execution Time Constraints (TIME) 1 
Volatility of Development Platform (PVOL) 1 
Memory Constraints (STOR) 1 
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Personnel 

Attributes Capability of Project Analysis (ACAP) 0.3 
Personnel Continuity (PCON) 1 
Programmer Experience in Project Domain(PEXP) 0.8 
Programmer Capability(PCAP) 0.3 
Analyst Experience in Project Domain (AEXP) 0.5 
Language and Tool Experience (LTEX) 0.5 

Project 

Attributes Use of Software Tools (TOOL) 0.5 
Development Schedule Compression (SCED) 1 
Extent of multi-site Working and Quality of Site 
Communication(SITE) 0.5 
Effort Multiplier (M) 0.00729 
COCOMO II (in Person Months) 3.7 

 

 

 Given that the autoeffort is set to 0, using the formula in equation 5.1 then 

 COCOMO II for Nigerian-TIS = 2.5 * (120 1.19 )* 3.7 = 5.4 Person Months.  

Using the same procedure the effort in person months for the Ghana-TIS and Ivorian-TIS were 

computed to be 5.4 and 5.7 Person Months for unadjusted function point values (size) of 120 and 

125 respectively. Hence, the total effort for the three products sums up to 16.5 person months. 

 

5.5.2 Estimating Effort in PLONTOREC 

 

The effort expended in PLONTOREC is computed in person months using an augmented SPL 

estimation model (see Section 3.2.3) given as: 

Eplontorec = Eorg+ Edom+ Eonto+Eontoupdate + N *(Ereusewith+Euniquewith+J*Eupdatewith) 

  Hence for,  

Number of TIS products = 3 

Eorg = 0.6 

Edom =3.6 

Eonto (for 2 ontologies) = 1.8 

Eontoupdate (one cycle, estimated average) = 0.3 

Ereusewith (estimated average) = 0.5 

Euniquewith (estimated average) = 0.3 
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J = 4 (for quarterly content updates) 

Eupdatewith= 0.06 

Recall that  

Eorg: Effort to introduce the product line, adapt the organization, train staff etc. (In this case, 

only one staff was involved assisted by available student support in non-technical areas such 

as data gathering) 

Edom: Effort expended in domain engineering for the development of core assets, cost of 

commonality and variability analysis. 

Eonto: Effort expended in the development of relevant ontologies. 

Eontoupdate: Effort expended in updating content of ontologies after initial development and its 

maintenance.  

N: number of TIS products in the product line. 

Ereusewith: Average effort in application engineering for the reuse of existing core assets e.g. 

choosing, configuration, searching and integration of core assets. 

Euniquewith: Average effort to extend core assets base with core assets unique to a product, 

effort with manual adaptations of core assets after creation. 

J: Average planned number of content update cycles for one TIS product. 

Eupdatewith: Average effort of updating the product-related core assets in the core asset base; 

 

Therefore, estimate for PLONTOREC in person months    

Eplontorec = 0.6+3.6+1.8+0.3+ 3(0.24 + 0.5 + (4*0.06)) = 9.24 

 

5.5.3 Result and Discussion  

 

The first advantage derived was the significant reduction in the effort expended on development. 

An expert-based estimate for the three TIS products used in our case study predicted between 4.5 

- 5 Person Months for each product given that a minimum of Capability Maturity Model (CMM) 

Level-3 process standard is attained in development and other deciding factors remain stable. 

This represents a maximum of about 15 person months for the three products. This budget 

estimate is also not so distant from the total estimate of 16.5 person months was obtained by 

using the post architecture COCOMO II to estimate the required efforts for the three TIS 



165 
 

products. However, with PLONTOREC 9.24 person months was expended in the development 

of the three TIS products.   The reduction in person months was due to the fact that relatively 

minimal effort was spent in application engineering. In our specific experience, 5.4 person 

months was expended on the combination of ontology engineering and domain engineering 

endeavours. Also, as expected the realization of the first variant product (Nigerian-TIS) took 

some time, because we needed to master the challenges of how best to customize our domain 

components. Also, the bulk of our domain testing was executed using the first product variant.  

Thereafter composing the two other products was relatively very fast.  Overall, the difference in 

the effort in person months between the instance when PLONTOREC is used and when it is not 

used accounts for about 44% gain in development cost. 

 

Secondly, the inherent benefits of reuse-oriented approach like PLONTOREC came to the fore in 

the course of our case study. During application testing, many of the bugs and required 

functionality adjustments that needed to be made in specific TIS products were traceable to 

specific core components. Therefore, all that we had to do was to fix the concerns that pertain to 

the respective core components and the effects of these corrections were automatically 

propagated to the various products within the product line. This obviously led to a reduction in 

the time and effort expended on maintenance. This also gives an indication that the 

PLONTOREC approach will allow most of future maintenance concerns to be centrally attended 

to. 

 

PLONTOREC also created an avenue for proactive evolution of content and future extensions. In 

our specific case study the product line was based on a particular reference architecture derived 

from the requirements of three countries. However, the first set of working prototype 

implementations did not cover the full scope of the product line model, but there remain ample 

opportunities for future extensions and products evolution based on a predefined versioning 

scheme. Drawing from our implementation experience for example, it is obvious that to realize 

extended versions of the TIS products all that needed to be done is to add new domain content 

components such as travel ontology, restaurant ontology, travel recommender and restaurant 

recommender components that have been specified in the reference architecture but are currently 

missing.  Also, other future additions could be made to the reference architecture based on the 
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dynamics of user requirements in the specific domain which will in turn provide a basis for new 

product variants with added features and advanced functionalities to evolve.  

 

The PLONTOREC approach enabled the generation of various kinds of knowledge-based 

tourism recommendations that pertain to the three countries on a relatively cheap platter 

compared to if a single product development approach had been adopted. Due to the similarity in 

requirements, it became possible to implement the core intelligent functionalities of 

recommendation as domain components and then populate products with contents that are unique 

to them. This ensured that such intelligent capabilities got systematically propagated to the 

generated products, which is obviously cheaper than pursuing a single product approach. 

 

 

 5.6   POSSIBILITIES FOR GENERALIZATION OF THE RESULTS 

 

Having shown that PLONTOREC worked for one product line in the presented context, we 

therefore postulate that PLONTOREC can indeed be applied to create other product lines in the 

tourism domain, if sufficient commonalities exist and the variabilities of requirements among 

different tourism entities (service providers, support outfits etc.) or tourism organizations 

(continental, national, regional, local, enterprise etc.) are well known.  

 

This connote that the aggregate of the tourism requirements in a domain can be represented by a 

conceptual product line model from which  a set of core asset components, a feature tree model 

of each product, a set of relevant ontologies, the construction specification and a set of variant 

TIS products can be generated. PLONTOREC is particularly applicable in all cases where 

assorted kinds of intelligent recommendations on tourism objects are required. Instances of these 

include developing a product line of TIS for: 1) states, regional governments within a country; 2)   

a chain of hotels; 3) a group of religious organizations (promoting religious tourism); 4) a 

network of Destination Management Organizations (DMO); 5) a network of tour operators etc. 

In all of these instances PLONTOREC holds the potential to create not only TIS platforms from 

which credible knowledge-based recommendations that foster user’s confidence can be 

generated, but also that which will engender the proactive evolution of such TIS products in 
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tandem with  future emerging user requirements within the specific tourism domain concerned.  

 

5.7   SUMMARY AND DISCUSSION 

 

In this chapter a report of the procedure adopted for the evaluation of the PLONTOREC process 

and its products is presented. It is shown that the variant TIS products generated from the 

PLONTOREC approach had substantially favourable usability rating from users based on the 

empirical test conducted, which is very crucial for a people-oriented service delivery platform 

like e-tourism. Furthermore, the case study scenario has demonstrated the applicability of 

PLONTOREC in a real-life context and proved the viability of the PLONTOREC approach. 

This is because PLONTOREC produced measurable reduction in time and cost of development, 

demonstrated the potential to reduce maintenance cost, and facilitated significant improvements 

in the quality of recommendations obtained from the variant TIS products it generated.  

 

The case study therefore, successfully validates PLONTOREC as platform for generating 

dependable and intelligent knowledge-based recommendation and one that has the potential to 

engender dynamic product evolution in the tourism. 
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CHAPTER SIX 

SUMMARY AND CONCLUSION 

 

This Chapter summarizes and discusses the contributions of the thesis, and presents an outlook 

of the opportunities for future research work. The thesis presented a specialized product line 

approach for ontology-based recommendations in e-Tourism Systems. 

 

6.1   SUMMARY  

 

The thesis has shown that tourism recommendation services are particularly important because of 

the information-intensive nature of the tourism industry where access to useful information guide 

brings immense benefits to all stakeholders within the tourism value chain. 

 

However, tourism recommendation services are currently not prevalent on most of the existing  

e-tourism platforms (TIS), and where such exist, they need to be made more dependable in a way 

that fosters users’ confidence. Also such e-tourism systems must be able to evolve with the 

dynamic nature of user requirements in tourism in order to maintain their relevance.   

 

The thesis intervened by introducing a novel unified solution approach to these two concerns 

called Product Line for Ontology-based Tourism Recommendations (PLONTOREC), which 

provides a process platform for the creation of variant e-tourism systems that can evolve 

proactively in response to dynamic user requirements and also offer dependable knowledge-

based recommendations. PLONTOREC is a hybrid of software product line engineering and 

ontology engineering that is dedicated to the production of recommendation-intensive Tourism 

Information Systems. 

The PLONTOREC approach consist of four main sub-processes which are: 1) Product Line 

Management (which provides the necessary managerial guide and organizational control that 

complements the technical aspects of PLONTOREC); 2) Ontology Engineering (which is 

concerned with the development of the reusable knowledge artifacts which are typically 

ontologies that are needed for knowledge-based recommendations); 3) Domain Engineering 
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(which is concerned with the construction of all reusable software assets that are used for 

building variant TIS products in the product line); and 4) Application Engineering ( which is 

concerned with the creation of specific TIS products through the reuse of core assets created in 

domain engineering. In Addition, PLONTOREC is based on a set of assumptions which defines 

the condition for its optimal applicability. These are:  

• New products evolve by composition, using existing components in the common asset 

base; 

• New versions of TIS products are variations of existing ones, having many things in 

common with the old versions; and also 

• The points of variability are minimal and predictable. 

 

The thesis provided a validation of the PLONTOREC approach by using a case study of TIS 

product line development involving three countries in the West African Sub-region (Nigeria, 

Ghana, and Cote D’ivoire) in order to demonstrate the applicability and viability of 

PLONTOREC in a real-life context. 

 

The thesis made some significant contributions. Firstly, it has opened-up a new perspective on 

how to tackle the problem of dynamic user requirements in the e-tourism domain by offering a 

clear demonstration of the viability of software product line engineering as a solution approach 

to solving this problem. Secondly, an innovative 3-dimensional approach was introduced to 

destination recommendation with the use of ontological representation of contextual information 

on social attributes of prospective destinations in order to improve the dependability of 

destination recommendations. Thirdly, the creation of a suite of tourism ontologies as semantic 

web contents for the tourism value chain within the West African sub-region represents a first 

attempt at creating an interoperable platform for the sharing and reuse of tourism information, 

and tourism knowledge within the West African sub-region. Lastly, the thesis makes a first 

attempt to create a product line of recommendation-intensive TIS products using the 

PLONTOREC approach. PLONTOREC is a novel specialized and repeatable software product 

line process that engenders the generation of dependable and intelligent recommendations in e-

tourism systems and facilitates the proactive evolution of such e-tourism systems in tandem with 

dynamic user requirements.  
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6.2 CONCLUSION  

 

This research work tackled two concerns in the global e-tourism industry which is the need for 

more dependable recommendations and the need for e-tourism systems to proactively evolve 

with emerging users need.  It has succeeded in providing a unified solution model for reasonably 

improved intelligence and dependability of recommendations of e-tourism systems and offered a 

way for developers of e-tourism systems to manage the dynamic nature of user requirements in 

tourism.  

 

The research has also provided a theoretical and product-oriented framework that can be 

leveraged for the generation of recommendation-intensive tourism support systems in the 

geographic contexts of developing countries where none of such platforms is known to exist.   

 

Finally, the results of this research endeavour if adopted will give the quality boost needed in 

most parts of Africa where tourism is largely undeveloped.  For example the ontology artifacts 

created in the course of this research offers a potential platform for data interoperability, 

knowledge reuse, and business model standardization within the West African tourism value 

chain. Also the e-tourism portal prototypes if extended with more detailed requirements will 

provide a platform for increased publicity and promotion of tourism as a veritable tool for 

economic development in the countries concerned. 

 

6.3   FUTURE WORK 

 

The thesis provides several opportunities for further research in the immediate future. The 

PLONTOREC approach as implemented in this thesis directly inherited some limitations from its 

parent concepts of software product line engineering and ontology engineering. Notably, there 

exist ample research possibilities to enhance the concept in the following areas: 

 

i) Automated Tool Support 

There are different aspects of the PLONTOREC approach that may be enriched with automated 
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tool support. Some of these include:  

• Domain Requirements Engineering: The elicitation and validation of domain 

requirements is largely a human-centered activity, which is based on the experience of 

the experts involved. It will be interesting to see the possibilities of having an expert 

system that can reasonably emulate human capability in these areas or at least offer 

credible decision support in the elicitation and validation of domain requirements to 

minimize human effort. One candidate intelligent model that can be explored is Case-

Based Reasoning (CBR). CBR entails solving new problems based on experience that 

have been gathered from previous episodes. One thinks that a CBR-based expert system 

that is fortified with a rich knowledgebase of relevant tourism domain knowledge looks 

very promising in this regard. 

• Architecture Creation and Evaluation: The existing methods of architecture evaluation 

such as the Architecture Trade-off Analysis Method ATAM (Kazman et al., 1998), 

Scenario-based Architecture Analysis Method (SAAM) (Ionita et al., 2002) are largely 

human-centered; it will be interesting to see how an automated architecture evaluation 

scheme can be executed using tourism domain knowledge. Also, having a tool that can 

automatically generate the reference product line architecture from a given set of domain 

requirements is a fascinating dimension that could be introduced to fast track the 

PLONTOREC process. 

• Project Cost Prediction: The Product Line Management activity of PLONTOREC could 

be greatly enhanced if an automated tool can be used to predict the effort required for the 

project based on some objective parameters extracted from the domain requirements and 

application requirements. The prediction model could be based on statistical techniques 

like regression or a machine learning concepts like Artificial Neural Networks. 

• Customization GUI Tool: Most of the core assets used in this research work was 

implemented as parameterizable content components that were invoked from program 

codes. A better approach would be to create a tool that will enable the parameters for 

specific components in the core asset repository to be supplied from a GUI interface and 

have a customized version of the content component automatically created by calling 

relevant files and compilers. 
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ii) Group Recommendations 

 The work done in this thesis focused on provision of personalized recommendation services for 

individuals (i.e. single user recommendations). The aspect of recommendations that pertain to a 

group or team of people was not considered. This is one dimension that could be incorporated in 

the future, which have the capacity to enhance the quality of the products generated through the 

PLONTOREC approach. 

iii) Mobile Computing 

The scope of implementation of this research has been limited to web-based e-tourism systems. 

However, the possibilities of adapting or extending the PLONTOREC approach for the 

realization of   mobile TIS product line looks very promising as future research endeavour. 

iv)  Semantic Query Processing 

Ontology engineering has been engaged in this research to develop knowledgebase ontologies 

that contain facts about the specific tourism domain. In future research endeavours, domain 

ontologies that would serve as lexical databases for specific tourism domains could be included 

in the PLONTOREC framework. By doing this, the domain ontologies could be used as a basis 

for enabling the generated TIS with natural language processing capabilities which are currently 

lacking in existing e-tourism systems. Query reformulation techniques and content 

summarization techniques in the field of natural language processing are viable computational 

models that can be used to realize this objective. Other related aspects such as native language 

processing can also be explored on the PLONTOREC framework in future research work. 

 

 

 

 

 

 

 

 

 

 



173 
 

REFERENCES 

• Abowd, G., Atkeson, C., Hong, J., Long, S., Kooper, R. and Pinkerton, M.,   ” Cyberguide: a 

mobile context-aware tour guide”, ACM Wireless Networks, 5(3), pp. 421-433, 1997. 

• Adomavicius G. and Tuzhilin, A., “Toward the Next Generation of Recommender Systems: 

A Survey of the State-of-the-Art and Possible Extensions”, IEEE Transactions on 

Knowledge and Data Engineering, 7(6), pp. 734-749, 2005. 

• Adomavicius, G. and Tuzhilin, A., “Expert-Driven Validation of Rule-Based User Models in 

Personalization Applications,” Data Mining and Knowledge Discovery, Vol. 5, Nos. 1 

and 2, pp. 33-58, 2001. 

• Adomavicius, G., Sankaranarayanan, R., Sen, S. and Tuzhilin, “A: Incorporating Contextual 

Information in Recommender Systems Using a Multidimensional Approach”, ACM 

Transactions on Information Systems, 23(1), pp. 103-145, 2005. 

• Ali, K. and van Stam, W., “TiVo: Making show recommendations using a distributed 

collaborative filtering architecture”, In Proceedings of the 2004 ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining. ACM Press, 

Seattle, WA, USA, pp. 394–401, 2004. 

• Alspector, J., Kolcz, A., and Karunanithi, N., “Comparing feature-based and clique-based 

user models for movie selection”, In Proceedings of the Third ACM Conference on 

Digital Libraries. ACM Press, Pittsburgh, PE, USA, pp. 11–18, 1998. 

• America P., Obbink H., Muller J., van Ommering R., “COPA: A Component-Oriented 

Platform Architecting Method for Families of Software Intensive Electronic 

Products”, In Proceedings of the First Conference on Software Product Line 

Engineering, 2000. 

• Arango, G., “Domain Analysis”, In Marciniak, J. (Eds.), Encyclopedia of Software 

Engineering, Volume 1, pp. 423-434, Wiley, 1994. 

• ArchStudio 4 – Software and Systems Architecture Development Environment (2007). 

Institute for Software Research, University of California, Irvine, Available at:  

http://www.isr.uci.edu/projects/archstudio 

• Arpirez, J., Corcho, O., Fernandez-Lopez, M., Gomez-Perez, A., “WebODE in a nutshell”, 

AI Magazine, 2003. 



174 
 

• Atkinson, C., Bayer, J., Bunse, C. , Kamsties, E, Laitenberger, O., Laqua, R., Muthig, D., 

Paech, B., Wüst, J., Zettel, J., “Component-based product line engineering with 

UML”, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 2002. 

• Baeza-Yates, R. and Ribeiro-Neto, B., “Modern Information Retrieval”, Addison-Wesley, 

Reading, MA, USA, 1999. 

• Balabanovi´c, M. and Shoham, Y. “Fab: Content-based, collaborative recommendation”, 

Communications of the ACM, 40(3), pp. 66–72, 1997 

• Balzerani, L., Di Ruscio, D., Pireantonio, A., De Angelis, G. “A Product Line 

Architecture for Web Applications”, In Proceedings of the ACM symposium on 

Applied computing, Santa Fe, New Mexico, 1689 – 1693, 2005.  

• Bass, L. and Kazman, R., “Software Architecture in Practice”, Addison-Wesley, M.A. pp. 

19-23, 2003.   

• Bastarrica, M. C., Hitschfeld-Kahler, N., Rossel, P. O., “Product Line Architecture for a 

Family of Meshing Tools”, International Conference on Software Reuse (ICSR), 

Torino, pp. 403-406, 2006. 

• Basu, C., Hirsh, H. and Cohen, W. “Recommendation as Classification: Using Social and 

Content-Based Information in Recommendation,” Recommender Systems, Papers 

from 1998 Workshop, Technical Report WS-98-08, AAAI Press 1998. 

• Bechhofer S., Horrocks I., Goble C., Stevens R., “OilEd: a reason-able ontology editor for 

the Semantic Web”, In: Baader F, Brewka G, Eiter T (eds) Joint German/Austrian 

conference on Artificial Intelligence (KI’01). Vienna, Austria. (LNAI 2174) Springer-

Verlag, Berlin, Germany, pp. 396–408, 2001. 

• Bernaras, A., Laresgoiti, I., Corera, J., “Building and reusing ontologies for electrical 

network applications”, Lecture Notes in Artificial Intelligence (LNAI 1621) Springer-

Verlag, Berlin, Germany, pp. 49-66, 1996. 

• Bhargava, H. K., Sridhar, S. and Herrick, C., “Beyond Spreadsheets: Tools for Building 

Decision Support Systems”, IEEE Computer, 32(3), pp. 31-39, 1999. 

• Billsus, D. and Pazzani, M., “User Modeling for Adaptive News Access,” User Modeling 

and User-Adapted Interaction, Vol. 10, Nos. 2-3, pp. 147-180, 2000. 

• Blazquez, M., Fernandez-Lopez, M., Garcia-Pinar, J., Gomez-Perez, A., “Building 

Ontologies at the Knowledge Level using the Ontology Design Environment”, In: 



175 
 

Gaines B.R., Musen, M.A. (eds) 11th International Workshop on Knowledge 

Acquisition, Modeling and Management (KAW’98), Banff, Canada, SHARE 4: pp. 1-

15, 1998. 

• Bockle, G, Clements, P., McGregor, J.D., Mathig, D., Schmid, K: “Calculating ROI for 

Software Product Lines”, IEEE Software, 21(3), pp. 23-31, 2004. 

• Boehm, B., Abts, C., Winsor Brown, A., Chulani, S. Clark, B.K., Horowitz, E.,  Madachy, 

R.,  Reifer, D., Steece, B., “Software Cost Estimation with COCOMO II”, Prentice 

Hall PTR, Upper Saddle River, N.J., 2000. 

• Booch, G., Jacobsen, I.  and Rumbaugh, J.  OMG Unified Modeling Language 

Specification, 2000. Available at www.omg.org/technology/documents 

/formal/unifiedmodelinglanguage.htm 

• Bosch J., “Design & Use of Software Architectures”, Addison-Wesley, 2000. 

• Bosch, J. and Svahnberg, M., “Evolution in Software Product Lines: Two Cases”, Journal of 

Software Maintenance, 11(6), 391-422, 1999.  

• Breese, J., Heckerman, D., and Kadie, C., “Empirical analysis of predictive algorithms for 

collaborative filtering”, In Proceedings of the Fourteenth Annual Conference on 

uncertainty in Artificial Intelligence, Morgan Kaufmann, Madison, WI, USA, pp. 43–

52, 1998. 

• Burke, R., “Knowledge-based Recommender Systems:, Encyclopedia of Library and 

Information Systems, 69(32), pp. 180-200, 2000. 

• Burke, R., Hammond, K. & Cooper, E., “Knowledge-based navigation of complex 

information spaces”, In Proceedings of the 13th National Conference on Artificial 

Intelligence, pp. 462-468. Menlo Park, CA: AAAI Press, 1996. 

• Burke, R., Hammond, K., and Young, B., “The FindMe Approach to Assisted Browsing”, 

IEEE Expert, 12(4): 32-40, 1997. 

• CAPITAL ITTS, 

http://cordis.europa.eu/data/PROJ_FP5/ACTIONeqDndSESSIONeq112422005919nd

DOCeq405ndTBLeqEN_PROJ.htm. (Accessed 03/04/07) 

• Cardoso, J., “Approaches to Developing Semantic Web Services”, International Journal of 

Computer Science, 1(1), pp. 8-21, 2004. 



176 
 

• Cheverst, K., Davies, N., Michell, K., Friday, A., Efstratiou, C., “Developing a Context-

aware Electronic Tourist Guide: Some Issues and Experiences”, CHI Letters, 2(1), pp. 

17-24, 2000. 

• Claypool, M., Gokhale, A., Miranda, T., Murnikov, P. Netes, D.  and Sartin, A “Combining 

Content-Based and Collaborative Filters in an Online Newspaper,” Proc. ACM SIGIR 

’99 Workshop Recommender Systems: Algorithms and Evaluation, 

Citeseer.ist.psu.edu/226009.html, 1999. 

• Clement, P. and Northrup, L., “Software Product Lines, Practices and Patterns”, Addison-

Wesley, 2002.  

• Clements, P., “SEI’s Views and Beyond Approach for Documenting Software Architectures 

with ANSI-IEEE 1471-2000”, 2005.  

• Cleverdon, C., “The Cranfield tests on index language devices. Aslib Proceedings 19, pp. 

173-192, 1967. 

• Corcho, Ó, Gómez-Pérez, A., González-Cabero, R.  and Suárez-Figueroa, M., “ODEval: a 

tool for evaluating RDF(S), DAML+OIL, and OWL concept taxonomies”, IFIP 

WG12.6 -- First IFIP Conference on Artificial Intelligence Applications and 

Innovations (AIAI2004). Toulouse, France, 2004.  

• Cortes, C., Fisher, K., Pregibon, D., Rogers, A., and Smith, F., “Hancock: A Language for 

Extracting Signatures from Data Streams,” Proc. Sixth ACM SIGKDD Int’l Conf.  

Knowledge Discovery and Data Mining, pp. 9-17, 2000. 

• Cote D’ivoire Tourism http://www.tourisme.com  (accessed 19/07/08) 

• CRUMPET, http://www.eml-development.de/english/research/crumpet/index.php 

• Dahlen, B. J., Konstan, J. A., Herlocker, J. L., Good, N., Borchers, A., and Riedl, J., 

“Jumpstarting movielens: User benefits of starting a collaborative filtering system 

with dead data”. TR 98-017, University of Minnesota, 1998. 

• Daramola J.O, Adigun, M.O, and Ayo, C.K., “Building an Ontology-based Framework for 

Tourism Recommendation Services”, In W. Hopken and U. Gretzel, and M. Sigala 

(eds.) Information and Communication Technologies in Tourism (pp. 135-147),  

Springer Wien New York, 2009. 

• Daramola J.O, Adigun, M.O, and Olugbara, O.O., “A Product-Line Architecture for 

Evolving Intelligent Component Services in Tourism Information Systems”, In   P. O’ 



177 
 

Connor, W. Hopken and U. Gretzel (eds.) Information and Communication 

Technologies in Tourism (pp. 117-145), Springer Wien New York, 2008. 

• Dashofy, E.M., van der Hoek, A. and Taylor, R.N., “A Highly-Extensible XML-Based 

Architecture Description Language”, Proceedings. Working IEEE/IFIP Conference 

on Software Architecture, Amsterdam, Netherlands: pp. 103-112, 2001. 

• Dashofy, E.M., van der Hoek, A. and Taylor, R.N., “A Highly-Extensible XML-Based 

Architecture Description Language”, Proceedings. Working IEEE/IFIP Conference 

on Software Architecture, Amsterdam, Netherlands: 103-112, 2001. 

• Dell’Erba, M., Fodor, O., Ricci, F., Werthner, H., “Harmonise: a Solution for Data 

Interoperability”,  In J.L. Monteiro, P.M.C. Swatman, and L.V. Tavares (eds.), 

Proceedings of Second IFIP Conference on E-Commerce, E-Business, E-Government 

(pp. 433-445), Kluwer, Boston, 2002. 

• Dellarocas, C. “The Digitization of Word of Mouth: Promise and Challenges of Online 

Feedback Mechanisms”, Management Science, Vol. 49, No. 10, pp. 1407-1424, 2003. 

• Deng, G., Schmidt, D.C., Gokhale, A., Gray, J., Lin, Y., and Lenz, G., “Evolution in Model-

Driven Software Product-line Architectures”, available at: 

http://www.cs.wustl.edu/~schmidt/PDF/MDE-PLA-BookChap-v10.pdf, 2007 

• Deshpande, M. and Karypis, G., “Item-based top-n recommendation algorithms”, ACM 

Transactions on Information Systems 22(1), pp. 143–177, 2004. 

• Dey, A., “Understanding and using context”, Personal and Ubiquitous Computing Journal, 

Vol. 5, No. 1, pp. 4-7.  

• Duineveld, A., Studer, S., Weiden, M., Kenepa, B., Benjamis, R., “WonderTools? A 

comparative study of ontological engineering tools”, In: Proc. 12th Knowledge 

Acquisition Workshop (KAW99), Banff, 1999. 

• Dwyer, F., “Customer Lifetime Valuation to Support Marketing Decision Making”, Journal 

of Direct Marketing, Vol. 3, No. 4, pp. 8-15, 1989. 

• ECTRL Solutions, Trento, Italy, http://www.ectrlsolutions.com. (Accessed 04/03/08) 

• Ehrgott, M., “Multicriteria Optimization”, Springer Verlag, New York, 2000. 

• Expedia Inc., http://wwww.expedia.com (Accessed 06/06/2007) 

• Ezran M., Morisio M., Tully, C., “Practical Software Reuse”, Springer, 2002. 



178 
 

• Farquhar, A, Fikes, R & Rice, J.,  “The ontolingua server: a tool for collaborative ontology 

construction”, Proceedings of the Tenth Knowledge Acquisition for Knowledge-Based 

Systems  Workshop, Banff, Canada, 9–14 November, 1996. 

• Fawcett, T. and Provost, F., “Combining Data Mining and Machine Learning for Efficient 

User Profiling,” In Proc. Second Int’l Conf. Knowledge Discovery and Data Mining 

(KDD-96), 1996. 

• Felfernig, A. and Kiener, A., “Knowledge-based Interactive Selling of Financial Services 

using FSAdvisor”, In 17th Innovative Applications of Artificial Intelligence 

Conference (IAAI’05), pp. 1475–1482, Pittsburgh, Pennsylvania, 2005. 

• Felfernig, A., Friedrich, G., Jannach, D., and Zanker, M., “An Integrated Environment for 

the Development of Knowledge-Based Recommender Applications”, International 

Journal of Electronic Commerce, 11(2), pp. 11-34, 2006. 

• Felfernig, A., Gordea, S., Jannach, D., Teppan, D., and  Zanker, M., “A Short Survey of 

Recommendation Technologies in Travel and Tourism”, ÖGAI Journal, 25(2),        

pp. 1-7, 2006. 

• Fensel, D. and Perez, A.G., “OntoWeb deliverable 1.3: a survey on ontology tools”, 

Technical report, IST OntoWeb Thematic Network, 2002. 

• Ferman, M., Errico, J., van Beek, P., and Sezan, I., “Content-based filtering and 

personalization using structured metadata”, In Proceedings of the Second ACM/IEEE-

CS Joint Conference on Digital Libraries, ACM Press, Portland, OR, USA, pp. 393–

393, 2000. 

• Fernandez-Lopez, M., Gomez-Perez, A., Juristo, N., “METHONOLOGY: From Ontological 

Art Towards Ontological Engineering”, Spring Symposium on Ontological 

Engineering of AAAI, Stanford University, California, pp. 33-40, 1997. 

• Fernandez-Lopez, M., Gomez-Perez, A., Pazos, A, Pazos, J.:  Building a Chemical Ontology 

Using Methontology and the Ontology Design Environment, IEEE Intelligent Systems 

& their applications, 4(1), pp. 37-46, 1999. 

• Gamma, E., Helm, R., Johnson, R., Vlissides, J., “Design Patterns: Elements of Reusable 

Object-Oriented Software”, Addison-Wesley, 2005. 



179 
 

• Gangemi, A., Pisanelli, D., Steve, G.: An Overview of the ONIONS Project: Applying, 

Ontologies to the Integration of Medical Terminologies. Data & Knowledge 

Engineering, 31(2), pp. 183-220, 1999. 

• Garg, A., Critchlow, M., Chen, P., Van der Westhuizen, C., van der Hoek, A.:  “An 

Environment for Managing Evolving Product Line Architectures”, Proceedings of 

the International Conference on Software Maintenance, Amsterdam, The 

Netherlands, pp. 358-367, 2003. 

• Garlan, D., Monroe, R. and Wile, D., “ACME - An Architecture Description Interchange 

Language”, In Proceedings of CASCON ’97, ACM Press: 169-183, 1997. 

• Ghana Online Forum. http://www.viewghana.com  (accessed: 16/07/08) 

• Ghana Tourism, http://www.touringghana.com  (accessed: 16/07/08) 

• Ghani, R. and Fano, A., “Building recommender systems using a knowledge base of product 

semantics”, In Proceedings of the Workshop on Recommendation and Personalization 

in E-Commerce (RPEC), Springer-Verlag, Malaga, Spain, 

citeseer.ist.psu.edu/697938.html, 2002 

• Goldberg, D., Nichols, D., Oki, B. M., and Terry, D., “Using collaborative filtering to weave 

an information tapestry”, Communications of the ACM,  35(12), pp. 61–70, 1992. 

• Gomaa, H. and Farrukh, G. “A reusable architecture for federated client/server systems”, In 

Proc. of   Fifth Symposium on Software Reusability, pp. 113-121, 1999. 

• Gomaa, H., “Designing Software Product Lines with UML”, Addison-Wesley, 2005. 

• Gomez-Perez, A., “A Framework to Verify Knowledge Sharing Technology. Expert Systems 

with Application, 11(4), pp. 519-529, 1996. 

• Gomez-Perez, A., “Knowledge Sharing and Reuse”, In: Liebowitz J. (ed.) Handbook of 

Expert Systems, CRC Chapter 10, Boca Raton, Florida, 1998. 

• Gómez-Pérez, A., Corcho-García, O., Fernández-López, M., Lehtola, A., Taveter, K.,  

Sorva, J.,  Käpylä, T., Tourmani, F.,  Soualmia, L., Barboux, C., Castro, E., Sallantin, 

J.,  Arbant, Bonnaric, G.,” Multilingual Knowledge Based European Electronic 

Marketplace”, D-31: Requirement, Choice of a Knowledge Representation and Tools 

- V 2.0 – Public, IST (Information Society Technologies), 2001. 

• Gomez-Perez, A., Fernandez-Lopez, M. and Corcho, O., “Ontological Engineering”, 

Springer-Verlag London, 2004. 



180 
 

• Gomez-Perez, A., Juristo, N., Pazos, J., “Evaluation and assessment of knowledge sharing 

technology”, In: Mars N (ed.) Towards Very Large Knowledge Bases: Knowledge 

Building and knowledge Sharing (KBKS’95), University of Twente, Enschede, The 

Netherlands. IOS Press, Amsterdam, The Netherlands, pp. 289-296, 1995. 

• Good, N., Schafer, B., Konstan, J., Borchers, A., Sarwar, B., Herlocker, J., and Riedl, J., 

“Combining collaborative filtering with personal agents for better recommendations”, 

In Proceedings of the 16th National Conference on Artificial Intelligence and 

Innovative Applications of Artificial Intelligence. American Association for Artificial 

Intelligence, Orlando, FL, USA, pp. 439–446, 1999. 

• Goodaire, E., Parmenter, M., “Discrete Mathematics with Graph Theory”, Ed. Prentice Hall. 

1998. 

• Goren-Bar, D.  "Overcoming mobile device limitations through adaptive information 

retrieval", Applied Artificial Intelligence, Vol. 18(6), pp. 513–532, 2004. 

• Gruninger, M.  and Fox, M., “Methodology for the design and evaluation of ontologies In: 

Skuce, D. (eds.) IJCAI’95 Workshop on the Basic ontological Issues in Knowledge 

sharing, Montreal, Canada, pp. 6.1-6.10, 1995.  

• Hammersley, B. “Content Syndication with RSS”, O'Reilly Media Inc, California, 2003. 

• Hartmann, J., Spyns, P., Giboin, A., Maynard, D., Cuel, R., Suárez-Figueroa, M., Sure, Y., 

“D1.2.3 Methods for ontology evaluation”, 2005. 

www.starlab.vub.ac.be/research/projects/knowledgeweb/ 

• Henriksson, R., “Semantic Web and E-Tourism”, 

www.cs.helsinki.fi/u/glinskih/semanticweb/Semantic_Web_and_E-Tourism.pdf, 2005. 

(Accessed 3/02/08). 

• Herlocker, J., Konstan, J. and Riedl, J., “Explaining collaborative filtering 

recommendations”, 2000, citeseer.ist.psu.edu/herlocker00explaining.html. 

• Herlocker, J., Konstan, J., Borchers, A., and Riedl, J., “An algorithmic framework for 

performing collaborative filtering”, In Proceedings of the 22nd Annual International 

ACM SIGIR Conference on Research and Development in Information Retrieval, 

ACM Press, Berkeley, CA, USA, pp. 230–237, 1999. 



181 
 

• Herlocker, J., Konstan, J., Terveen, G. and Riedl, T., “Evaluating Collaborative Filtering 

Recommender Systems”, ACM Trans. Information Systems, Vol. 22, No. 1, pp. 5-53, 

2004. 

• Herlocker, J.L., “Understanding and Improving Automated Collaborative Filtering 

Systems”, PhD Thesis, 2000. 

• Hill, W., Stead, L., Rosenstein, M., and Furnas, G.,” Recommending and evaluating choices 

in a virtual community of use”, ACM Press/Addison-Wesley Publishing Co., 

http://doi.acm.org/10.1145/223904.223929, pp. 210-217, 1995. 

• Hi-Touch project at: 

http://icadc.cordis.lu/fepcgi/srchidadb?CALLER=PROJ_IST&ACTION=D&RCN=63

604&DOC=20&QUERY=3 

• Hofmann, T. “Latent Semantic Models for Collaborative Filtering”, ACM Trans. 

Information Systems, Vol. 22, No. 1, pp. 89-115, 2004. 

• Hofmeister, C., Nord, R., “From Software Architecture to Implementation with UML”, 

Proceedings of the Twenty-Fifth Annual International Computer Software and 

Applications Conference (COMPSAC 01), Chicago, Illinois, pp. 113-114, 2001. 

• Intelligent Mobility Agents.  IM@GINE IT, European Commission, Brussels, 2004, 

http://dbs.cordis.lu/fepcgi/srchidadb?ACTION=D&SESSION=296320041126& 

DOC=53&TBL=EN_PROJ&RCN=EP_RPG:508008&CALLER=PROJ_IST 

• Intelligent system for Tourism, available at:  ftp://ftp.cordis.europa.eu/pub/ist/docs/transport 

environment/intelligentsystems_for_tourism_en.pdf 

• International Function Point Users’ Group, “Function Point Counting Practices: Manual 

Release 4.0”, http://linkinghub.elsevier.com/retrieve/pii/S0164121200000157 

• Ionita, T., Hammer, K., Obbink ,H., “Scenario-Based Software Architecture Evaluation 

Methods: An Overview”, available at: 

www.win.tue.nl/oas/architecting/aimes/papers/scenario-

based%20scost%20evaluation%20methods.pdf., 2002. 

• ISO 9241-11, “Ergonomic requirements for office work with visual display terminals 

(VDT’s) – Part 11”, Guidance on usability, International Organization of 

Standardization, 1998. 



182 
 

• Jennings, A. and Higuchi, H., “A personal news service based on a user model neural 

network”, citeseer.ist.psu.edu/jennings92personal.html, 1992. 

• Jiang, B., Wang, W. and Benbasat, I., “Multimedia-Based Interactive Advising Technology 

for Online Consumer Decision Support”, Communication of the ACM, 48(9), pp. 93–

98, 2005. 

• Kang K., Kim S., Shin E., Huh M., “Form: A Feature-Oriented Reuse Method with Domain 

Specific Reference Architectures”, Annals of Software Engineering, Vol. 5, pp. 143-

168, 1998. 

• Kang, K., Cohen, J., Novak, W. and Peterson, S., “Feature-oriented domain analysis 

feasibility study”, Carnegie Mellon University, Software Engineering Institute, Tech. 

Rep. CMU/SEI-90-TR-21, pp. 1-82, 1990.  

• Kang, K., Lee J., and Donohoe, P., “Feature-oriented product line engineering”, IEEE 

Software, 19(4), 58-65, 2002. 

• Karypis, G., “Evaluation of item-based top-n recommendation algorithms”, In Proceedings 

of the Tenth ACM CIKM International Conference on Information and Knowledge 

Management”, ACM Press, Atlanta, GA, USA, pp. 247–254, 2001. 

• Kazman, R., Klein, M., Barbacci, M., Lipson, H., and Carriere, J., “The Architecture 

Tradeoff Analysis Method”, Carnegie Mellon University, Software Engineering 

Institute, Tech. Rep. CMU/SEI-98-TR-008, pp. 1-83, 1998.  

• Kietz, J., Maedche, A., Volz, R., “A Method for Semi-Automatic Ontology Acquisition 

from a Corporate Intranet”,  In: Aussenac-Gilles N, Biebow B, Szulman S (eds.) 

EKAW’00 Workshop on Ontologies and Texts, Juan-Les-Pins, France, CEUR 

Workshop Proceedings, pp. 51:4.1-4.14. Amsterdam, The Netherlands (http://CEUR-

WS.org/Vol-51/), 2000. 

• Knublauch, H., Musen, M., Noy, N., “Tutorial: Creating Semantic Web (OWL) Ontologies 

with Protégé”, 2nd International Semantic Web Conference (ISWC2003), Sanibel, 

Island, Florida, U.S.A, 2003. 

• Konstan, J., “Introduction to recommender systems: algorithms and evaluation”, ACM 

Transactions on Information Systems, 22(1), pp. 1–4, 2004. 



183 
 

• Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L.  and Riedl, J., “GroupLens: 

Applying Collaborative Filtering to Usenet News”, Communications of ACM, Vol. 

40, No. 3, pp. 77-87, 1997. 

• Krösche, J., Baldzer, J., Boll, S., “MobiDENK-Mobile Multimedia in Monument 

Conservation”, IEEE Multi-Media, 11(2):72–77, 2004. 

• Krutchen, P., “Architectural Blueprints- The “4+1” View Model of Software Architecture”, 

IEEE Software, 12(6), pp. 42-50, 1995.  

• Lam, S. and Riedl, J., “Shilling recommender systems for fun and profit”, In Proceedings of 

the 13th International Conference on World Wide Web, ACM Press, New York, NY, 

USA, pp. 393–402, 2004. 

• Lam, W., Mukhopadhyay, S., Mostafa, J., and Palakal, M., “Detection of shifts in user 

interests for personalized information filtering”, In Proceedings of the 19th ACM 

SIGIR Conference on Research and Development in Information Retrieval, ACM 

Press, Zurich, Switzerland, pp. 317–325, 1996. 

• Lang, K., “NewsWeeder: Learning to filter netnews”, In Proceedings of the 12th 

International Conference on Machine Learning, Morgan Kaufmann, San Mateo, CA, 

USA, pp. 331–339, 1995. 

• Lech, T.C. and Wienhofen, L.M., “AmbieAgents: A Scalable Infrastructure for Mobile and 

Context-Aware Information Services”, Proceedings of the fourth international 

joint conference on Autonomous agents and multiagent systems, The 

Netherlands: 625-631, 2005. 

• Lenat, D., Guha, R., “Building Large Knowledge-based Systems: Representation and 

Inference in the Cyc Project”, Addison-Wesley, Boston, Massachusetts, 1990.  

• Lewis, D. and Sparck-Jones, K., “Natural Language Processing for Information Retrieval”, 

Volume 39, No.1, Communications of the ACM, pp. 92-101, 1996. 

• Lewis, J.R., “IBM computer usability satisfaction questionnaires: psychometric evaluation 

and instructions for use”, International Journal of Human Computer Interaction, 7(1), 

57-78, 1995. 

• Lieberman, H., “Letizia: An Agent That Assists Web Browsing”, Proceedings of the 

Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-95), 

citeseer.ist.psu.edu/lieberman95letizia.html, pp. 924-929, 1995. 



184 
 

• Linden, G., Smith, B., and York, J., “Amazon.com recommendations: Item-to-item 

collaborative filtering”, IEEE Internet Computing, Vol. 4, No. 1 (January), pp. 76-80, 

2003. 

• Lindgaard, G., “Usability testing and system evaluation. A guide for designing useful 

computer systems”, London, Chapman and Hall, 1994. 

• Lutz, R. and Gannod, G., “Analysis of a Software Product Line Architecture: An experience 

Report”, Journal of Systems and Software, 66(3), pp. 253-67, 2003.  

• Mannila, H., Toivonen, H. and Verkamo, A.I., “Discovering Frequent Episodes in 

Sequences,” Proc. First Int’l Conf. Knowledge Discovery and Data Mining (KDD-

95), pp. 210—215, 1995. 

• Mannion M., Lewis O., Kaindl H., Montroni G., Wheadon J., “Representing Requirements 

on Generic Software in an Application Family Model”, Proceedings of the 

International Conference on Software Reuse (ICSR-6), pp. 153-196, 2000. 

• Matinlassi M., “Comparison of Software Product Line Architecture Design Methods: 

COPA, FAST, FORM, KobrA and QADA”, Proceedings of the 26th International 

Conference on Software Engineering (ICSE’04), pp. 127-136, 2004. 

• Melville, P., Mooney, R., and Nagarajan, R., “Content-boosted collaborative filtering for 

improved recommendations”, In Eighteenth National Conference on Artificial 

Intelligence. American Association for Artificial Intelligence, Edmonton, Canada, pp. 

187–192, 2002. 

• Middleton, S., Shadbolt, N., and De Roure, D., “Ontological user profiling in recommender 

systems”, ACM Transactions on Information Systems, 22(1), pp. 54–88, 2004. 

• Mooney, R. and Roy, L., “Content-Based Book Recommending Using Learning for Text 

Categorization”, In: Proceedings of the Fifth ACM International Conference on 

Digital Libraries, pp. 195-204, 2000. 

• Mukherjee, R., Dutta, P., and Sen, S., “MOVIES2GO: A new approach to online movie 

recommendation”, In Proceedings of the IJCAI Workshop on intelligent Techniques 

for Web Personalization, Seattle, WA, USA, 2001. 

• Necib, C. and Freytag, J, “Query Processing Using Ontologies”, Lecture Notes in Computer 

Science, Springer/Berlin, Heidelberg, pp. 167-168, 2005. 



185 
 

• Nielsen, J., “Usability engineering”, Boston, MA, Academic Press, Harcourt Brace & 

Company, 1993.  

• Niemelä E., “QADA – Quality-driven Architecture Design and Architecture Analysis”, 

Available at: http://www.vtt.fi/qada/, (January 2006) 

• Nigeria Tourism Development Corporation, http://www.nigeriatourism.net. (Accessed 

04/03/08). 

• Noy, F., Musen, M., “Anchor-PROMPT: Using Non-Local Context for Semantic 

Matching”, In: Gomez-Perez A, Gruninger, M., Stuckenschmidt, H., Unschold, M. 

(eds) IJCAI’01 Workshop on Ontologies and Information Sharing, Seattle, 

Washington, pp. 63-70, 2001.  

• Noy, N and McGuinness, D., “Ontology Development 101: A Guide to Creating Your First 

Ontology”, available at: journal.dajobe.org/journal/posts/2003/03/17/ ontology-

development-101-a-guide-to-creating-your-first-ontology/. 

• Noy, N., Fergerson, R., Musen, M., “The knowledge model of Protégé-2000: Combining 

interoperability and flexibility”, In: Dieng, R. Corby, O. (eds) 12th International 

Conference in Knowledge Engineering and Knowledge Management (EKAW ’00), 

Juan-Les-Pins, France (Lecture Notes in Artificial Intelligence LNAI 1937) Springer-

Verlag, Berlin, Germany, pp. 17-32, 2000. 

• Noy, N., Hafner, C., “The state of the art in ontology design”, AI Magazine, 18(3), pp. 53-

74, 1997. 

• Ogush, M., et al., “Template for Documenting Software and Firmware Architectures”, 

available at http://www.architecture.external.hp.com.  

• ONTOPRISE n.d., How to work with OntoEdit, ONTOPRISE® Provider of Technology 

and Applications Enabling Semantic Solutions, Germany, 

http://www.ontoprise.de/documents/tutorial_ontoedit.pdf (Accessed: 15/10/05). 

• OWL Documentation, http://www.3WC.org. (Accessed 5/05/08) 

• OWL Web Ontology Language Overview, http://www.w3.org/TR/owl-features/ 

• Park, H., Yoo, J., and Cho, S., “A Context-Aware Music Recommendation System Using 

Fuzzy Bayesian Networks with Utility Theory”, 

http://sclab.yonsei.ac.kr/publications/Papers/LNCS/FSKD2006 PHS.pdf, 2006. 



186 
 

• Pashtan, A., Heusser, A., and Scheuermann, P., “Personal service areas for mobile Web 

applications”, IEEE Internet Computing, 8(6), pp. 34 – 39, 2004. 

• Pazzani, M. and Billsus, D., “Learning and Revising User Profiles: The Identification of 

Interesting Web Sites”, Machine Learning, Vol. 27, pp. 313-331, 1997. 

• Pazzani, M., “A framework for collaborative, content-based and demographic filtering”, 

Artificial Intelligence Review, 13, 5-6, pp. 393–408, 1999. 

• Pazzani, M.J., Muramatsu, J. and Billsus, D., “Syskill & Webert: Identifying Interesting 

Web Sites”, (AAAI)/(IAAI), Vol. 1, citeseer.ist.psu.edu/article/pazzani98syskill.html, 

1996. 

• Pellet DIG Reasoner, http://pellet.owldl.com 

• Pennock, D. and Horvitz, E., “Collaborative Filtering by Personality Diagnosis: A Hybrid 

Memory And Model-Based Approach”, Proceedings of the 16th Conference on 

Uncertainty in Artificial Intelligence, San Francisco, 30 June-3 July, Morgan 

Kaufmann, San Francisco, CA, pp. 473-80, 2000. 

• Perry, D., “Generic architecture descriptions for product lines”, In Proc. Of ARES II: 

Software Architectures for Product Families (LNCS 1429), Springer-Verlag, pp. 51-

56, 1998.  

• Pohl, K., Bockle, G., van der Linden, “Software Product Line Engineering: Foundations, 

Principles and Techniques”, Springer-Verlag, 2005. 

• Porter, B., “An exemplar-based learning apprentice”, In Proceedings of the Fourth 

International Workshop on Machine Learning, Irvine, Ca; Morgan Kaufmann, 12-23, 

1987. 

• Prankatius, V., Oberweis, A., and Stucky, W, “Product Lines for Digital Information 

Products”, Information Systems, 32(6), pp. 909-939, 2007 

• Protégé: An Ontology Editor and Knowledge-Base Framework, http://protege.stanford.edu/ 

• Pühretmair, F., Rumetshofer, H., Schaumlechner, E.,  “Extended Decision Making in 

Tourism Information Systems”, Lecture Notes In Computer Science, 

Proceedings of the Third International Conference on E-Commerce and Web 

Technologies, Vol. 2455, pp. 57 – 66, 2002. 

• Requirement  Tools: http://easyweb.easynet.co.uk/~iany/other/vendors.htm#Doors 



187 
 

• Resnick, P. and Varian, H.R., “Recommender systems, Volume 40. ACM Press, 

http://doi.acm.org/10.1145/245108.245121, 1997. 

• Resnick, P., Iacovou, N.,  Suchak, M., Bergstorm, P. Riedl, J., “GroupLens: An Open 

Architecture for Collaborative Filtering of Netnews”, Proceedings of ACM 

Conference on Computer Supported Cooperative Work, 

citeseer.ist.psu.edu/resnick94grouplens.html, 1994. 

• Riihiaho, S., “Experiences with Usability Evaluation Methods”, Thesis at the Helsinki 

University of Technology, Laboratory of Information Processing Science, 2000. 

• Rosset, S., Neumann, E. Eick, U. Vatnik, N.  and Idan, Y., “Customer Lifetime Value 

Modeling and Its Use for Customer Retention Planning,” Proc. Eighth ACM SIGKDD 

Int’l Conf. Knowledge Discovery and Data Mining,  pp. 332-340, 2002.  

• Salton, G. and Buckley, C., “Term-Weighting Approaches in Automatic Text Retrieval”, 

Information Processing and Management, 25(8), pp. 513-523, 1988. 

• Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. “Item-based collaborative filtering 

recommendation algorithms”, In Proceedings of the Tenth International World Wide 

Web Conference, Hong Kong, China, 2001. 

• Sarwar, B., Karypis, G., Konstan, J., and Riedl, J, “Analysis of recommendation algorithms 

for ecommerce”, In Proc. of ACM conference on Electronic Commerce, pp. 158-167, 

2000. 

• Sarwar, B.M., Sparsity, Scalability, and Distribution in Recommender Systems, Ph.D. thesis, 

University of Minnesota, 2001. 

• Satine project at http://www.srdc.metu.edu.tr/webpage/projects/satine/ 

• Schafer, J., Konstan, J. and Riedl, J., “E-Commerce Recommendation Applications”, Data 

Mining and Knowledge Discovery, 2001, 

citeseer.ist.psu.edu/schafer01ecommerce.html.  

• Schein, A., Popescul, A., Ungar, L., and Pennock, D., “Methods and metrics for cold-start 

recommendations”, In Proceedings of the 25th Annual International ACM SIGIR 

Conference on Research and Development in Information Retrieval, ACM Press, 

Tampere, Finland, pp. 253–260, 2002. 

• Schmittlein, D.C., Morrison, D.G. and Colombo, R. “Counting Your Customers: Who Are 

They and What Will They Do Next ?”, Management Science, Vol. 33, No. 1, 1987. 



188 
 

• Schwanke, R. and Lutz, R.,”Experience with Architectural Design of a Modest Product 

Family”, Software Practice and Experience, 34(13), 1273-1296, 2003.  

• Shardanand, U. and Maes, P., “Social information filtering: Algorithms for automating 

“word of mouth”. In Proceedings of the ACM CHI Conference on Human Factors in 

Computing Systems, ACM Press, Denver, CO, USA, pp. 210–217, 1995. 

• Shaw, M., Garlan, D., “Software Architecture: Perspectives on an Emerging Discipline”, 

Prentice-Hall, Upper Saddle River, NJ, USA, 1996. 

• Soboroff, I and Nicholas, C. “Combining Content and Collaboration, in Text Filtering,” 

Proc. Int’l Joint Conf. Artificial Intelligence Workshop: Machine Learning for 

Information Filtering, 1999. Citeseer.ist.psu.edu/259060.html 

• Sollenborn, M. and Funk, P., “Category-based filtering and user stereotype cases to reduce 

the latency problem in recommender systems”, In Proceedings of the Sixth European 

Conference on Case-based Reasoning. LNCS, Vol. 2416. Springer-Verlag, Aberdeen, 

UK, pp. 395–405, 2002. 

• Staab, S., Schnurr H., Studer, R., Sure, Y., “Knowledge Processes and Ontologies, IEEE 

Intelligent Systems”, 16(1), pp. 26-34, 2001. 

• Staab, S., Werther, H.,  Ricci, F., Zipf, A., Gretzel, U.,  Fesenmaier, D.R.,  Paris, C., and 

Knoblock, C., “Intelligent systems for tourism”, IEEE Intelligent Systems, Volume 

17, Issue 6, Nov/Dec, pp. 53-66, 2002. 

• Statnikov, R. and Matusov, J., “Multicriteria Optimization and Engineering”, Chapman & 

Hall, New York, 1995. 

• Steinbauer, A., “Consumer Behaviour in e-Tourism”, Doctoral Thesis, Department for 

Information Systems and e-tourism Ludwig-Franzens-Universität Innsbruck, 2005. 

• Steiner, T, “Software Agents in Tourism Industry – Prototypes and Prospects”, 

Informatik.Informatique, Vol. 1, pp. 33-38, 2002.  

• Stumme, G., Maedche, A., “FCA-MERGE: Bottom-up Merging of Ontologies”, Bernhard 

Nebel (ed.) Proceedings of the Seventeenth International Joint Conference on 

Artificial Intelligence (IJCAI, 2001), Seattle, Washington. Morgan Kaufmann 

Publishers, San Francisco, California, pp. 225-234, 2001. 



189 
 

• Su, X., Ilebrekke, L., “A Comparative Study of Ontology Languages and Tools”, In 

Proceeding of the 14th Conference on Advanced Information Systems Engineering 

(CAiSE'02), Toronto, Canada, 2002. 

• Sure, Y., Erdmann, M., Angele J., Staab, R., Wenke, D., “OntoEdit: Collaborative Ontology 

Engineering for the Semantic Web”, Lecture Notes in Computer Science (LNCS 

2342), Springer-Verlag, Berlin, Germany, pp. 221-235, 2002.  

• Svahnberg, M., Gurp, J., Bosch, J., “On the Notation of Variability in Software Product 

Lines”, Proceedings of the Working IEEE/IFIP Conference on Software Architecture, 

pp. 45-55, 2001. 

• Swartout, B. Ramesh, P., Knight, K, Russ, T., “Toward Distributed Use of Large-Scale 

Ontologies. In: Farquhar, A. Gruninger, M, Gomez-Perez, A., Uschold, M, van der 

Vet, P (eds) AAAI’97 Springer Symposium on Ontological Engineering, Stanford 

University, California, pp. 138-148, 1997. 

• Szyperski C., Gruntz D., Murer S., “Component Software ─ Beyond Object-Oriented 

Programming”, Second Edition, Addison-Wesley, 2002. 

• Terveen, L. and Hill, W., “Beyond recommender systems: Helping people help each other”, 

In Human-Computer Interaction in the New Millennium, J. Carroll, Ed. Addison-

Wesley, Reading, MA, USA, 2001. citeseer.ist.psu.edu/417017.html 

• The Eclipse Foundation, available at: http://www.eclipse.org. (Accessed:  13/03/2007). 

• Thiel S., & Hein A., “Systematic Integration of Variability into Product Line Architecture 

Design”, Proceedings of the Second International Conference on Software Product 

Lines, pp. 130-153, 2002. 

• Thompson, C., Göker, M. and Langley. P., “A Personalized System for Conversational 

Recommendations”, Journal of Artificial Intelligence Research, Vol. 21, pp. 393–428, 

2004. 

• Tichy, W.F., “Programming-in-the-Large: Past, Present and Future, In Proceeding of   14th 

International Conference on Software Engineering   (ICSE ’92), NY, USA, ACM 

Press, pp. 362-367, 1992. 

• Tiscover AG, http://www.Tiscover.com. (Accessed 6/06/07). 

• UML, MDA Tools, www.modelbased.net/mda_tools.html (Accessed 15/05/2007) 



190 
 

• Uschold, M., King, M., “Toward a Methodology for Building Ontologies”, In: Skuce, D. 

(eds.) IJCAI’95 Workshop on the Basic ontological Issues in Knowledge sharing, 

Montreal, Canada, pp. 6.1-6.10, 1995.  

• van Ommering, R. C., “Building product populations with software components”, In 

Proceedings of the 22nd International Conference on Software Engineering, ICSE, 

Orlando, Florida, USA, pp. 255–265, 2002.  

• van Ommering, R. C., van der Linden, F., Kramer, J., and Magee, J.,”The Koala Component 

Model for Consumer Electronics Software”, IEEE Computer, 33(3): pp. 78–85, 2000. 

• van Setten, M.,  Pokraev, S. and Koolwaaij, J., “Context-Aware Recommendations in the 

Mobile Tourist Application COMPASS”, International Adaptive Hypermedia Conf., 

LNCS 3137, pp. 235–244, 2004. 

• Venturini, A. and Ricci, F., “Applying trip@dvice recommendation to visisteurope.com”, In 

Brewka, G., Coradeschi, S., Perini, A., and Traverso, P., (eds.). Proceedings of the 

17th European Conference on Artificial Intelligence (pp. 607-611), Amsterdam, IOS 

Press, 2006 

• Vozalis, E., & Margaritis, K., “Analysis of Recommender Systems’ Algorithms”. In 

Proceedings of the 6th Hellenic-European Conference on Computer Mathematics and 

its Applications (HERCMA), Athens, Greece, pp. 732-745, 2003. 

• W3C, http://www.w3.org/TR/owl-ref/ 

• Weiss D., Lai C., Tau R., “Software product-line engineering: a family-based software 

development process”, Addison-Wesley, 1999. 

• Werthner, H. and Klein, S., “Information Technology and Tourism—A Challenging 

Relationship”, Springer-Verlag, New York, 1999. 

• Whitehead Jr., E. J., Robbins, J. E., Medvidovic, N. and Taylor, R. N., “Software 

Architectures: Foundation of a Software Component Marketplace”, In Proceedings of 

the First International Workshop on Architectures for Software Systems, pp. 276—

282, 1995. 

• Wohltorf, J., Cissée, R. and Rieger, A., “BerlinTainment: An Agent-Based Context-Aware 

Entertainment Planning System”, IEEE Communications, 43(6), pp. 102-109, 2005. 

• xADL 2.0 – A Highly-extensible Architecture Description Language for Software and 

Systems, http://www.isr.uci.edu/projects/xarchuci/ 



191 
 

• Ye, H. and Liu, H., “Approach to modelling feature variability and dependencies in software 

product line”, IEEE Proc-Software, 152(3), pp. 101-109, 2005.   

• Youngs, R., et al., “A Standard for Architecture Description”, IBM Systems Journal, 38(1), 

pp. 32-50, 1999.  

• Zanker, M., Fuchs, M., Hopken, Tuta, M and Muller, N., “Evaluating Recommender 

Systems in Tourism – A Case  Study from Austria”, In   P. O’ Connor, W. Hopken 

and U. Gretzel (eds.) Information and Communication Technologies in Tourism (pp. 

24-34), Springer Wien New York, 2008. 

• Ziegler, C. Towards, “Towards Decentralized Recommender Systems”, PhD Thesis, Albert-

Ludwigs-Universitat, Freiburg, 2005. 

• Zins, A., Bauernfeind, U., Missier, F., Mitsche, N., Ricci, F., Rumetshofer, H. & 

Schaumlechner, E., “Prototype testing for a destination recommender system: steps, 

procedures and implications”, In Frew, A. J. (ed.): Information and Communication 

Technologies in Tourism (pp. 249-258), Vienna-New York, 2004. 

• Zins, A., Bauernfeind, U., Missier, F., Venturini, A & Rumetshofer, H.,  “An Experimental 

Usability Test for Different Recommender Systems”, In Frew, A. J. (ed.): Information 

and Communication Technologies in Tourism (pp 228-238), Springer, Vienna-New 

York, 2004. 

 



a 
 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

APPENDIX 
 

 

 

 

 

 

 

 



b 
 

 

Record 
Element 
Types 

Data 
 Element 
Types 
 

Data  
Element 
Types 
 

Data 
Element 
Types 

 1 - 19 
 

20 - 50 
 

51 - 
   <2 

 
Low Low Low 

  2-5 Low Average High 

 > 5 Average High High 

                                                                                  
   Complexity of ILF and EIF 

 
File Types 
Referenced 
(FTRs) 

Data 
 Element 
Types 
 

Data  
Element 
Types 
 

Data 
Element 
Types 

 1 - 4 
 

5 - 15 
 

15 - 
   <2 Low Low Low 

  2 Low Average High 

 > 2 Average High High 

    
                                                 Complexity of EIs 

File Types 
Referenced 
(FTRs) 

Data 
 Element 
Types 
 

Data  
Element 
Types 
 

Data 
Element 
Types 

 1 - 5 
 

6 - 19 
 

20 - 
   <2 Low Low Low 

  2-3 Low Average High 

 > 3 Average High High 

 
                                                 Complexity of Eos  
 

Table 2.  Unadjusted Function Points Table 
 

 Low 
 

Average 
 

High 

   EI X 3 
 

X 4 
 

X 6 
    EO X 4 X 5 X 7 

   ILF X 7 X 10 X 15 

   EIF X 5 X 7 X 10 

   EQ X 3 X 4 X 6 

Table 1.  Complexities in Function Point Components 



c 
 

List of Publications from the Thesis 

 

Publication of Chapters in Books / Refereed Conference Proceedings: 

1. Daramola J.O, Adigun, M.O, and Olugbara, O.O. , “A Product-Line Architecture for 

Evolving Intelligent Component Services in Tourism Information Systems”, In   P. O’ 

Connor, W. Hopken and U. Gretzel (eds.): Information and Communication 

Technologies in Tourism (pp. 117-145). Proceedings of the International Conference 

(ENTER ’08) in Innsbruck, Austria, Springer Wien New York, 2008.  

2. Daramola Olawande, Adigun Mathew and Ayo, Charles, “Building an Ontology-based 

Framework for Tourism Recommendation Services”, In W. Hopken, M. Sigala, and U. 

Gretzel (eds.): Information and Communication Technologies in Tourism (pp. 135-147). 

Proceedings of the International Conference (ENTER ’09) in Amsterdam, Netherlands, 

Springer Wien New York, 2009. 

3. Daramola Olawande, Adigun Mathew, and Ayo, Charles, “A Hybridized Product Line 

Approach for Developing Recommendation-Intensive Tourism Information Systems”, 

Proceedings of the International Conference on Enterprise Information Systems (ICEIS 

’09) Milan, Italy (May, 2009) - Accepted. 

Journal Publication 

1. Daramola J.O, Adigun M.O., Ayo, C.K. and Olugbara, O.O. (2009): Improving the 

Dependability of Destination Recommendations using Information on Social Aspects, 

TOURISMOS: An International Multidisciplinary Journal of Tourism (Accepted; In 

Press; Vol. 5, No. 1) – GREECE. 

 


