
i

A SOFTWARE PRODUCT LINE APPROACH TO

ONTOLOGY-BASED RECOMMENDATIONS IN

E-TOURISM SYSTEMS

BY

JUSTINE OLAWANDE DARAMOLA

(CU05PG000158)

A THESIS SUBMITTED TO THE DEPARTMENT OF COMPUTER

AND INFORMATION SCIENCES TO THE SCHOOL OF

POSTGRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

AWARD OF DOCTOR OF PHILOSOPHY DEGREE OF COVENANT

UNIVERSITY OTA, OGUN STATE, NIGERIA

June 2009

ii

CERTIFICATION

This is to certify that this thesis is an original research work undertaken by

Justine Olawande Daramola and approved by:

1. Name: Professor Mathew Olusegun Adigun

Supervisor

Signature Date:

2. Name: Dr. Charles Korede Ayo

Co-Supervisor

Signature Date:

3. Name: Dr. Ezekiel Femi Adebiyi

Head of Department

Signature Date:

4. Name: Professor Adetokunbo Babatunde Sofoluwe

External Examiner

Signature Date:

iii

DECLARATION

It is hereby declare that this research was undertaken by Justine Olawande Daramola. The thesis

is based on his original study in the department of Computer and Information Sciences, College

of Science and Technology, Covenant University, Ota, under the supervision of Prof. M. O.

Adigun and Dr. C.K Ayo. Ideas and views of this research work are products of the original

research undertaken by Justine Olawande Daramola and the views of other researchers have been

duly expressed and acknowledged.

Prof. M. O. Adigun

Supervisor

Signature Date

Dr. C.K. Ayo

Co-Supervisor

Signature Date

iv

DEDICATION

This thesis is dedicated to God Almighty, the Omnipotent and Omniscient, the giver of

life and the ingenious architect of my destiny for His faithfulness and immense

graciousness towards me.

v

ACKNOWLEDGEMENTS

I am deeply indebted to God my Father and Friend, the author of wisdom and understanding for

His faithfulness and generous endowments of grace that saw me through my doctoral studies.

My deep and sincere appreciation goes to the Chancellor, Dr. David Oyedepo and the members

of the Board of Regents of Covenant University for the vision and mission of the University.

Also, special thanks to the management staff of the University: the Vice Chancellor, the

Registrar, the Deans of the Colleges, the Heads of Department for their commitment to the

pursuit of excellence and sound academic scholarship.

My earnest appreciation goes to my supervisors, Professor Mathew Adigun in his capacity as my

main supervisor who provided the research direction and qualitative guidance for the work. I am

deeply appreciative of the fellowship he offered me to visit his research centre in South Africa,

an adventure that gave focus to my research work, brought immense capacity development and

opened me up to new vistas of academic opportunities and provided a gateway to international

scholarship. I thank Dr. Charles Ayo, my co-supervisor, for his fatherly disposition, ever-ready

willingness to assist and motivate, and more importantly his critical review of the work and

useful suggestions towards its completion.

Thanks to Dr. Ezekiel Adebiyi, for his encouragement, support and motivation, and in his

capacity firstly, as my teacher since undergraduate days and currently in his capacity as the

Acting Head, Department of Computer and Information Sciences. I also thank the Dean of the

College of Science and Technology (CST), Professor James Katende for his support and

encouragement all through the course of the work. I thank the Dean of Post Graduate School,

Professor C.O. Awonuga and all my teachers at the postgraduate school. I thank all my friends

and colleagues in the Department of Computer and Information Sciences for their support and

encouragement all through the course of this work. My special appreciation goes to Dr. Nicholas

Ikhu-Omeregbe whose thesis provided useful guide for my writing. I also thank Dr. Innocent

Chiluwa for helping to proof-read my thesis for grammatical and lexical accuracy.

vi

Lastly, but deliberately I want to pay tribute to a special category of people in my life. I call them

‘My Heroes, My Mentors’. These are the people that God have used to discover, nurture and

deepen my academic career. Firstly, I thank Dr. O.O. Olugbara, my teacher and a friend who

supervised my undergraduate work. The wonderful seeds that he sowed at that time have indeed

germinated into a vibrant growing tree. I also appreciate his contributions to my Ph.D work

particularly at the onset. My thanks, also goes to Professor O.M. Bamigbola who supervised my

masters degree thesis at the University of Ilorin and gave me a sound foundation in academic

scholarship. He also facilitated my association with Professor Mathew Adigun. In the last four

years of my career, I have enjoyed a very impactful and generous relationship with Professor

Mathew Adigun, who has been for me a great mentor, a ladder and a crucial divinely-ordained

connector to my next level. His deep passion and appetite for research and intellectual

innovations are rare and very contagious, for this I am grateful. I am indebted to Dr. Charles Ayo

for providing an atmosphere that facilitated a catalytic lift in my academic career while in office

as the Acting Head of the Department of Computer and Information Sciences. The challenges

and responsibilities delegated to me under his leadership greatly engendered the development of

my academic and leadership potentials. Also, I must not fail to mention crucial incidences of

destiny that brought me across Professor Sofoluwe and Dr. Adegboyega Ojo (Guru) both of the

Department of Computer Sciences, University of Lagos in the early stages of my undergraduate

life. The unique privilege of working as an undergraduate intern at the Joint Konsult Computer

Services Limited, Iwaya, Lagos, offered me the opportunity of being under the tutelage of

Professor Sofoluwe. It was during this period that I caught the dream of an academic career. I

thank Professor Sofoluwe for being a good role model and providing an intellectually stimulating

environment that encouraged a vital seed of destiny to be sown in my young life. I thank Dr.

Adegboyega Ojo (Guru) who I also met at Joint Konsult Limited for helping me to appreciate the

need to develop a hunger for continuous learning and a versatile disposition to the pursuit of

knowledge, Dr. Ojo taught me so much, that I thought he knew everything, for this I remain

grateful.

A very special class of people in my life are those that I call divine gifts. Firstly, my appreciation

goes to my parents, Elder and Dcns. Daramola for investing their lives and resources to provide

for me quality moral and formal education. Finally, my lovely wife Fisayo Oluyemisi and my

vii

two brilliant soldiers David and Davida, it is a privilege to have all of you as mine, thanks for

your support and contributions to the success of this endeavour, God keep you all for me.

viii

ABSTRACT

This study tackles two concerns of developers of Tourism Information Systems (TIS). First is the
need for more dependable recommendation services due to the intangible nature of the tourism
product where it is impossible for customers to physically evaluate the services on offer prior to
practical experience. Second is the need to manage dynamic user requirements in tourism due to
the advent of new technologies such as the semantic web and mobile computing such that e-
tourism systems (TIS) can evolve proactively with emerging user needs at minimal time and
development cost without performance tradeoffs.

However, TIS have very predictable characteristics and are functionally identical in most cases
with minimal variations which make them attractive for software product line development. The
Software Product Line Engineering (SPLE) paradigm enables the strategic and systematic reuse
of common core assets in the development of a family of software products that share some
degree of commonality in order to realise a significant improvement in the cost and time of
development. Hence, this thesis introduces a novel and systematic approach, called Product Line
for Ontology-based Tourism Recommendation (PLONTOREC), a special approach focusing on
the creation of variants of TIS products within a product line. PLONTOREC tackles the
aforementioned problems in an engineering-like way by hybridizing concepts from ontology
engineering and software product line engineering. The approach is a systematic process model
consisting of product line management, ontology engineering, domain engineering, and
application engineering. The unique feature of PLONTOREC is that it allows common TIS
product requirements to be defined, commonalities and differences of content in TIS product
variants to be planned and limited in advance using a conceptual model, and variant TIS products
to be created according to a construction specification. We demonstrated the novelty in this
approach using a case study of product line development of e-tourism systems for three countries
in the West-African Region of Africa.

ix

CONTENTS

Cover Page

Title Page i

Certification ii

Declaration iii

Dedication iv

Acknowledgments v

Abstract vii

List of Figures xiv

List Tables xvi

Abbreviations xvii

CHAPTER ONE: INTRODUCTION

1.1 Background Information ……………………………………………………………... 1

1.2 Statement of the Problem …………………………………………………………….. 4

1.3 Aim and Objectives of the Study …………………………………………………….. 5

1.4 Methodology ………………………………………………………………………….. 5

1.5 Significance of the Study ………………………………………………………………10

1.6 Motivation for the study ……………………………………………………………......10

1.7 Contributions to Knowledge ……………………………………………………………11

1.8 Delimitations of the Scope of the Study …………………………………………..……14

1.9 Thesis organization ……………………………………………………………………...15

CHAPTER 2: E-TOURISM SYSTEMS AND DYNAMIC USER

REQUIREMENTS

2.1 Introduction ……………………………………………………………………………. 16

2.2 Why Intelligent systems for Tourism …………………………………………………...16

2.3 A Case for Recommendation-Intensive TIS ……………………………………………19

x

2.4 An Overview of Recommender System Types and Techniques ………………………..20

2.4.1 Content-based Filtering (CBF) ……………………………………………….....21

2.4.3 Collaborative Filtering (CF) ………………………………………………….....23

2.4.3 Hybrid Approach ……………..…………………………………………………27

2.4.4 Knowledge-based Recommender Systems ……………………………………..28

2.4.5 Evaluation of Recommender Systems …………………………………………..29

2.4.5.1 Accuracy Metrics ………………………………………………………..29

i) Predictive Accuracy Metrics ……………………………………….....30

ii) Decision-Support Metrics …………………………………………….30

2.4.5.2 Non-Accuracy Metrics ……………………………………………….....32

2.4.6. Improving Recommender Systems ……………………………………………...33

2.4 Recommendation Technologies in Tourism …………………………………………….37

2.5.1 Mobile Tourism Recommender Systems ………………………………………..37

2.5.2 Web-based Tourism Recommender Systems …………………………………...38

2.6 Limitations of Existing Recommendation Approaches ………………………………....39

2.7 Ontology-based Tourism Recommendation …………………………………………… 40

2.7.1 What is Ontology? ……………………………………………………………... 41

2.7.2 The Components of an Ontology ………………………………………………. 42

2.7.3 Ontology Development Process ………………………………………………... 43

i) Ontology Management Activities ……………………………………………… 43

ii) Ontology Development Activities ……………………………………………... 44

iii) Ontology Support Activities …………………………………………………… 44

2.7.4 Ontology Development Methods and Methodologies …………………………. 47

2.7.4.1 METHONTOLOGY Methodology ……………………………………. 48

2.7.4.2 Ontology Crossed Life cycles ………………………………………….. 48

2.7.5 Ontology Languages ………………………………………………………….... 50

2.7.6 Ontology Tools ………………………………………………………………… 50

2.8 The Challenges of Dynamic User Requirements in Tourism …………………………….. 51

2.9 SPLE – A Panacea for Management of Dynamic User Requirements in Tourism ………. 52

2.9.1 What is Software Product Line? ………………………………………………. 53

2.9.2 Merits of the SPL Approach …………………………………………………… 54

xi

2.9.3 Product Line Artifacts …………………………………………………………. 55

2.9.4 State of the Art in Software Product Line Research …………………………....56

2.10 Context of this Research ………………………………………………………………….59

2.11 Proposal of Tourism Product Line Architecture for Next Generation TIS ……………… 59

2.11.1 Justification for the TPLA ……………………………………………………... 60

2.11.2 Description of the TPLA ………………………………………………………..61

2.12 Summary and Discussion ……………………..64

CHAPTER THREE: PRODUCT LINE FOR ONTOLOGY-BASED

TOURISM RECOMMENDATIONS (PLONTOREC) APPROACH

3.1 Introduction ……………………………………………………………………………….66

3.2 Overview of the Proposed Solution: PLONTOREC Approach …………………………..66

3.2.1 Limitation and Assumptions …………………………………………………….67

3.2.2 The PLONTOREC Process Architecture ……………………………………….68

3.2.3 Product Line Analysis and Management in PLONTOREC ……………………69

3.2.4 Ontology Engineering in PLONTOREC ………………………………………..73

3.2.5 Domain Engineering in PLONTOREC …………………………………………73

3.2.6 Application Engineering in PLONTOREC ……………………………………..75

3.3 Formal Definition of PLONTOREC ……………………………………………………76

3.4 Tool Support for PLONTOREC …………………………………………………………80

3.5 Application Scenarios ……………………………………………………………………81

3.6 Validation Approach ……………………………………………………………………...82

3.7 Related Work ……………………………………………………………………………..82

3.8 Summary and Discussion ………………………………………………………………….84

CHAPTER FOUR: PLONTOREC IN PRACTICE

4.1 Introduction …………………………………………………………………………….85

4.2 Product Line Management (PLM) in PLONTOREC …………………………………..85

4.2.1 Feasibility and Risk Assessment ………………………………………………..86

4.2.2 Organization, Evaluation and Control ……………………………………….....89

4.3 Ontology Engineering …………………………………………………………………..89

xii

4.3.1 The Destination Context Ontology (DCO) ……………………………………90

4.3.1.1 Using the Methonthology Approach for DCO Development ………....90

1. Management Activities in DCO Development ……………………………90

2. Support Activities in DCO Development …………………………………..91

3. Development Activities in DCO Development …………………………….92

i) Feasibility and Environmental Study …………………………………92

ii) Specification of the DCO ……………………………………………..92

iii) Conceptualization of the DCO ………………………………………..92

iv) Formalization of the DCO …………………………………………….96

v) Implementing Ontology with the Web Ontology Language ………….97

vi) Implementation of the DCO …………………………………………..99

vii) OWL Representation of DCO ………………………………………...102

4.3.2 The Accommodation Ontology (AO) …………………………………………103

4.3.2.1 Using the Methonthology Approach for AO Development …………..103

1. Management Activities in AO Development ………………………….103

2. Support Activities in AO Development ……………………………….104

3. Development Activities in AO Development …………………………104

i) Feasibility and Environmental Study ………………………………….104

ii) Specification of the AO ………………………………………………..104

iii) Conceptualization of the AO …………………………………………..105

iv) Formalization of the AO ……………………………………………….106

v) Implementation of the AO ……………………………………………..107

vi) OWL Representation of the AO ……………………………………….108

4.3.3 Content Evaluation of PLONTOREC Ontologies ……………………………...110

4.3.3.1 Validation and Evaluation with ODEval ………………………………110

4.4 Domain Engineering in PLONTOREC ………………………………………………..113

4.4.1 Domain Analysis ……………………………………………………………….113

4.4.1.1 Domain Requirements Engineering ……………………………………114

4.4.1.2 Domain Scoping ………………………………………………………..114

4.4.1.3 Extracting the Base Requirements of the Product Line ………………..115

4.4.2 Domain Design ………………………………………………………………...116

xiii

4.4.2.1 Feature Modelling of Product Line ……………………………………117

4.4.2.2 Reference Architecture of the Product Line …………………………..118

4.4.2.3 Architecture Modelling and Specification of the TISPLA …………...120

4.4.2.4 Description of the DRS Component ………………………………….125

4.4.2.5 Description of the ARS Component …………………………………128

4.4.2.6 Description of Other Components ……………………………………129

4.4.3 Domain Realization ……………………………………………………………130

4.4.3.1 Implementation Components and Tools ……………………………….131

4.4.3.2 Implementation Details ………………………………………………...134

4.4.4 Domain Testing ………………………………………………………………...135

4.4.4.1 Using Simple Application Strategy (SAS) …………………………….136

4.4.4.2 Using Commonality and Reuse Strategy (CRS) ……………………….136

4.5 Application Engineering in PLONTOREC ……………………………………………137

4.5.1 Application Analysis Process ………………………………………………….138

4.5.2 Application Design Process ……………………………………………………140

4.5.3 Application Realization Process ……………………………………………….142

 4.5.4 Details of Application Testing Process ………………………………………...144

4.6 Summary and Discussion ………………………………………………………………145

CHAPTER FIVE: EVALUATION OF THE PLONTOREC APPROACH

5.1 Introduction

5.2 The Motivation for Usability Evaluation of Tourism Recommender Systems ………..146

5.3 Empirical Usability Evaluation of Recommender System Components ……………....148

5.3.1 Experiment Design for DRS …………………………………………………...148

5.3.2 Post–Experiment Results for DRS ……………………………………………..152

5.3.3 Experiment Design for ARS ……………………………………………….......153

5.3.4 Post–Experiment Results for ARS ……………………………………………..155

5.4 Empirical Usability Evaluation of TIS Products ……………………………………….156

5.5 Evaluation of PLONTOREC Approach ……………………………………………..…158

5.5.1 Estimating Effort of Developing TIS Products using COCOMO II …………..158

5.5.1.1 Determining Function Points …………………………………………160

xiv

5.5.1.2 Determining the Scale Factors ………………………………………...162

5.5.1.3 Determining Cost Drivers (Effort Multipliers) ………………………..163

5.5.2 Estimating Effort in PLONTOREC ……………………………………………166

5.5.3 Result and Discussion ………………………………………………………….167

5.6 Possibilities for Generalization of Results ……………………………………………..169

5.7 Summary and Discussion ………………………………………………………………170

CHAPTER SIX: SUMMARY AND CONCLUSION

6.1 Summary ………………………………………………………………………………171

6.2 Conclusion …………………………………………………………………………….173

6.3 Future Work …………………………………………………………………………...173

REFERENCES

APPENDIX

xv

LIST OF FIGURES

Figure 1.1 A model conceptualization of the methodology of this thesis ……………………9

Figure 1.2 Dependency graph modelling of the components and contributions …………...14

Figure. 2.1 Activities of the ontology development process ………………………………...46

Figure 2.2 The Methontology Development Life Cycle …………………………………...49

Figure 2.3 Activities and deliverables in SPL component development …………………...56

Figure 2.4 A Layered Reference Architecture for Tourism Product Line …………………62

Figure 3.1 The process architecture of PLONTOREC ……………………………………..69

Figure 4.1 A Semantic Graph of Concepts in the DCO ……………………………………95

Figure 4.2 UML Representation of the DCO ………………………………………………96

Figure 4.3 A Snapshot Classes of the DCO in Protégé 3.3.1 …………………………….100

Figure 4.4 A Graphical Model of Classes in the DCO using OWL-Visualization Tool …..101

Figure 4.5 OWL Representation of Classes in the AO …………………………………...102

Figure 4.6 A Semantic Graph of Concepts in the AO ……………………………………..106

Figure 4.7 UML Representation of the AO ……………………………………………….107

Figure 4.8 A Snapshot AO Classes in Protégé 3.3.1 OWLViz – Tab ……………………..108

Figure 4.9 OWL Representation of Classes in the AO ……………………………………109

Figure 4.10 Potential problems that might appear in taxonomies …………………………..112

Figure 4.11 Sub-processes of Domain Engineering ………………………………………...113

Figure 4.12 FODA feature Model for TIS Product Line ……………………………………118

Figure 4.13 The Architecture diagram of the TISPLA ……………………………………..119

Figure 4.14 The c2-style layered View of the TISPLA in Archstudio ……………………..122

Figure 4.15 Structures in the TISPLA ………………………………………………………123

Figure 4.16 xADL Specification of Information Query Component …………………….....123

Figure 4.17 xADL Specification of Optional Language Translation Component ………….124

Figure 4.18 xADL Specification of Destination Recommender Component ……………....124

Figure 4.19 xADL Specification of Destination Context Ontology Component …………...124

Figure 4.20 Schematic Hybrid Architecture of DRS Component …………………………..127

Figure 4.21 Schematic Architecture of the ARS Component ………………………………128

xvi

Figure 4.22 Deployment Architecture of System Components …………………………….135

Figure 4.23 Sub-processes of Application Engineering ………………………………….....137

Figure 4.24 Feature Tree Model of Nigeria-TIS ……………………………………………141

Figure 4.25 Feature Tree Model of Ghana-TIS …………………………………………......141

Figure 4.26 Feature Tree Model of Ivorian-TIS ………………………………………….....142

Figure 4.27 Snapshot of the Destination Recommender System (DRS) - Nigerian-TIS……143

Figure 4.28 Snapshot of the Home Page of the Ghana- TIS (Discover Ghana) …………….143

Figure 4.29 Snapshot of the Cote D’ivoire TIS (Ivorian-Discover) …………………….......144

Figure 5.1 Summary of Background of Participants ………………………………………151

Figure 5.2 Summary of User’s Satisfaction with the DRS ………………………………...153

Figure 5.3 A Graphical View of User’s Satisfaction Index for the System ……………….158

Figure 5.4 Function Points Counting Procedure for Nigerian-TIS ……………………......161

xvii

LIST OF TABLES

Table 4.1 Application-Requirements Matrix obtained from Domain Analysis …………..115

Table 4.2: Overview of the Structure of Tourism Asset Database ………………………..130

Table 5.1 Usability and User Satisfaction Questionnaire for DRS ……………………….149

Table 5.2 Means Scores of Usability Metrics for DRS …………………………………...152

Table 5.3 Usability and User Satisfaction Questionnaire for ARS ……………………….154

Table 5.4 Means Scores of Usability Metrics for ARS …………………………………...156

Table 5.5 Means Scores of Usability Metrics for e-Tourism System Prototype …………157

Table 5.6 Constructing Function Points …………………………………………………..161

Table 5.7 Estimating k Exponent …………………………………………………………163

Table 5.8 Estimating Effort Multiplier (m) ……………………………………………….165

xviii

ABBREVIATIONS

AO Accommodation Ontology

ARS Accommodation Recommender System

CRS Commonality and Reuse Strategy

DCO Destination Context Ontology

DL Description Logics

DRS Destination Recommender System

EJB Enterprise Java Bean

Java EE Java Enterprise Edition

OWL Web Ontology Language

PLONTOREC Product Line for Ontology-based Tourism Recommendations

RDF Resources Description Framework

RRS Restaurant Recommender System

RS Recommender Systems

SAS Simple Application Strategy

SPL Software Product Line

SPLE Software Product Line Engineering

TIS Tourism Information Systems

TRS Tourism Recommender Systems

1

 CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND INFORMATION

One critical challenge sequel to the advent of globalization is information explosion, particularly

with respect to the gamut of information available on the web. This often leads to the

phenomenon of information overload. A typical scenario is where people get too much irrelevant

information alongside relevant ones as a response to queries posed on the web. Intelligent search

agents are a class of software application that has been mostly engaged to solve this problem.

Notable search agents on the web include google (www.google.com), mama (www.mama.com),

and altavista (www.altavista.com) to mention just a few. However, in recent times another class

of intelligent software applications that has gained relevance in addressing the problem of

information overload when searching for relevant information on the web is recommender

systems (Konstan et al., 2004).

 Recommender Systems (RS) are a class of intelligent software applications that offer

suggestions to information-seeking users as a response to user queries or knowledge gained

during interaction with the user. They mostly leverage in-built logical reasoning capability or

algorithmic computational schemes to deliver their recommendation functionality. Over the

years, RS have enjoyed great application in the e-commerce domain because of their ability to

provide assistance to information-seeking users.

In the tourism domain, recommendation services are particularly important because of the

information-intensive nature of the tourism industry where access to relevant and useful

information is advantageous both to the consumer and the marketer of tourism products

(Henriksson, 2005). Tourism Recommender Systems (TRS) are a class of RS that are usually

embedded in Tourism Information Systems (TIS) in order to deliver intelligent travel guide and

planning recommendation functionalities. TIS are software applications that are deployable on

2

the web and on small hand-held devices dedicated to the provision of tourism support services.

TIS share many attributes in common and generally perform similar functions such as providing

useful information to prospective tourists and helping in travel planning and management. They

mainly differ in the nature of local information content they deliver and the scope of tourism

interest that is being promoted. They can be variously engaged in the promotion of tourism at the

local and enterprise, provincial, regional, national, and continental levels. This degree of

observable similarity in TIS makes them good candidates for a product line development

initiative, which seem not yet a prevalent practice in the e-Tourism domain. However, the fact

that Tiscover AG (http://www.Tiscover.com) renders tourism support services for eight different

countries around the world is a clear indication of the viability of Software Product Line

Engineering (SPLE) in the tourism domain.

SPLE is a software development paradigm that enables the strategic and systematic reuse of core

assets in the development of a family of software products that share some features in common.

It leverages the existence of certain core reusable components in order to realise a significant

improvement in the cost and time of development (Daramola et al., 2009). A Software Product

Line (SPL) is a set of software intensive systems that share a common, managed set of features

satisfying the specific needs of a particular market segment or mission and that are developed

from a set of core assets in a prescribed way (Bass & Kazman, 2003).

Generally, prospective tourists want more intelligence in TIS that can make the quality of service

more acceptable. One of the core desirable areas is the aspect of tourism recommendations, as it

relates to travel advisory and planning services. However, literature has revealed that one of the

fundamental problems of existing recommender systems’ algorithms is the issue of

trustworthiness of recommendations (Sarwar et al., 2001; Adomavicius & Tuzhilin, 2005;

Adomavicius, 2005). Customers need recommendations they can trust, one that minimizes false

positive errors - a scenario in which products are recommended (positive), though the customer

does not like them (false). The need for trustworthy tourism recommendations is particularly

compelling because of the intangible nature of the tourism product in which customers cannot

physically evaluate the services on offer until practically experienced.

3

Also, the advent of new emerging technologies like the semantic web and mobile computing is

making the modern day tourist to exhibit highly sophisticated, dynamic and increasing complex

consumer characteristics that is now a concern for the providers of e-tourism services

(Werthner & Klein, 1999; Steinbauer, 2005). What is yet to appear in literature is software

product development approach through which e-tourism systems can be made to evolve

intelligently in tandem with dynamic user requirements. These aforementioned scenarios present

two critical challenges for developers of TRS which are (1) how to boost the quality of tourism

recommendations and make them more dependable to foster users’ confidence and (2) how to

respond to the dynamic nature of user requirements whereby variants of TIS products can evolve

with emerging user needs at minimal time and development cost without performance tradeoffs.

In this thesis, we address these two concerns. First, we have adopted an ontology-based approach

in tackling the challenge of improving the dependability (trustworthiness) of tourism

recommendations. Ontology has been used to introduce multi-dimensionality into tourism

recommendations with the use of contextual information in order to eliminate the limitations of

existing tourism recommendation formalisms which are strictly two dimensional.

 Secondly, we have adopted SPLE-based approach, which explores the similarity in the

functionalities of TIS in tackling the problem of dynamic user requirements in tourism. In this

thesis, SPLE is considered viable and promising in the tourism domain because it enables the

definition of system instances dictated by marketing and product plan specifications from

prospective users and make dynamic software evolution a part of its core practice which tallies

with the dynamism of the e-tourism domain. SPLE is expected to (1) engender the development

of adaptable core reusable components that will deliver desirable tourism recommendation

services; and (2) provide a way to effectively manage emerging user requirements variations

with respect to specific tourism promotion scenarios.

4

1.2 STATEMENT OF THE PROBLEM

Tourism is an information-intensive industry with a long value chain of stakeholders. The

tourism product has an intangible nature which makes it impossible for prospective travellers to

touch the product before the trip. These two factors make the need for dependable

recommendations in tourism most compelling. However, one of the fundamental concerns of

existing recommender systems is the need to improve the trustworthiness of recommendations

(Adomavicius & Tuzhilin, 2005; Adomavicius, 2005). Therefore, in order to obtain dependable

tourism recommendations, the recommender systems that are employed in tourism must

necessarily tackle the issue of trustworthiness of recommendations. The advent of new

technologies such as the semantic web and mobile computing has introduced additional dynamic

challenges to e-tourism requirements and increased the sophistication and complexity of

consumer behavior in tourism (Werthner & Klein, 1999; Steinbauer, 2005). These dynamic

challenges must be addressed by next generation TIS if they are to outperform existing TIS

platforms (Staab et al., 2002; Steiner, 2002). Next generation TIS are those that are equipped

with semantic web, context-aware and content-sharing capabilities that can cater for the dynamic

challenges of the e-tourism domain. (Staab et al., 2002; Daramola et al., 2008).

The research presented in this thesis is intended to address the challenge of improving the

dependability of tourism recommendations and providing timely response to dynamic user

requirements in e-tourism. Concisely, the research questions investigated in this thesis are:

• How do we improve the dependability of tourism recommendations in a way that foster

users’ confidence? And

• How can a TIS developer organization build such intelligent TIS in tandem with the

dynamic nature of user requirements in e-tourism?

1.3. AIM AND OBJECTIVES OF THE STUDY

The aim of this research work is to evolve a new product line approach that will engender

improved dependability of tourism recommendations and dynamic software evolution of TIS.

To achieve this aim, the following objectives were formulated:

5

• To create a theoretical and product-oriented framework from which credible African-

based tourism promotion initiatives can evolve in tandem with state-of-the-art practices

in the global e-tourism domain;

• To demonstrate the potential of the software product line engineering paradigm in

responding to the dynamism of the e-tourism industry, by evolving a generic reference

architecture for intelligent component services in e-tourism;

• To build an infrastructural asset-base of intelligent components for tourism

recommendations. This will include a suite of tourism ontologies and tourism

recommender system components;

• To investigate the possibility of improving the quality and dependability of tourism

recommendations by using an ontology-based approach; and

• To validate the plausibility of the novel approach by using a case study of product line

development for a west-African tourism context.

1.4 METHODOLOGY

In setting out to achieve the stated objectives of this thesis, first we selected to pursue a PL

approach as a candidate solution model to realizing improved intelligence in TIS and proactive

management of dynamic user requirements in e-tourism. This was aimed at creating a

foundational platform for developing reusable components with intrinsic intelligent attributes

that can be leveraged in the development of next generation TIS. To realize this, we analysed the

state-of-the-art in the tourism domain, through an extensive review of literature, a study of many

existing TIS, and identification of the base requirements for TIS. This culminated in the creation

of generic reference Tourism Product Line Architecture (TPLA) that is proposed as a potential

platform for the evolution of intelligent component services in e-tourism, and particularly next

generation TIS.

Secondly, using the proposed TPLA as a platform, this thesis introduces a novel unified solution

approach called Product Line for Ontology-based Tourism Recommendations (PLONTOREC)

in order to facilitate improved dependability of tourism recommendations from TIS and

6

proactive evolution of such TIS in response to dynamic user requirements in tourism. The

PLONTOREC approach is a hybrid of software product line engineering and ontology

engineering that is dedicated to the production of recommendation-intensive TIS. The

PLONTOREC development lifecycle (discussed in Chapter 3), which consists of Product line

management, Ontology engineering, Domain engineering and Application engineering was

systematically demonstrated to realize the objectives of this thesis.

During the product line management phase, the feasibility and risk assessment of the PL-based

approach was attended to. Also, issues of configuration management, organization, evaluation,

and control of product line process were considered based on established product line practice

models. Next, ontology engineering was undertaken. Our approach to improving the quality of

tourism recommendation favoured the use of ontology, so as to engender the leveraging of deep

concrete knowledge of tourism objects for the purpose of generating intelligent and dependable

recommendations. The use of ontology was also intended to engender knowledge reuse and

semantic interoperability within specific tourism value chains. Hence a suite of relevant

ontologies for the tourism domain was developed using the methontology approach (Gomez-

Perez et al., 2004). Specifically two Knowledge Representation (KR) ontologies were

implemented in the Web Ontology Language (OWL) using the Protégé 3.3.1 Ontology

development tool (http://www.3WC.org). These are: 1) The Destination Context Ontology

(DCO): in which probable tourist locations were represented using city, town, and village

abstractions. The ontology is a semantic model of the social context information of specific

destination types and the concrete semantic relationships that exist among them; 2) The

Accommodation Ontology (AO): which contained the semantic descriptions of services,

facilities, attractions, gastro outfits and location of all category of accommodation types relevant

to tourism. This includes hotel categories (1-star, 2-star, 3-star, 4-star, 5-star), guesthouses, and

rented apartments.

In domain engineering, the core components of the product line were constructed. Specifically,

two tourism recommender systems were constructed, which are notably a Destination

Recommender Systems (DRS) component and an Accommodation Recommender Systems

(ARS) component. Detailed domain requirements about these two aspects of tourism

7

recommendations were obtained from literature and the prominent existing commercial products,

in order to formulate appropriate design for the systems and establish a basis for possible

extensions. During domain realization, the recommender system components were implemented

as parameterized components that can be instantiated with different tourism information contents

and contextual information (as captured in specific knowledge-bases) to suit different tourism

promotion scenarios. The recommender components were implemented using a combination of

Java Servlet technology, Enterprise JavaBeans (EJB) component technology, and Java Protégé

ontology API. The DRS is based on a hybrid architecture that combines content-based and case-

based reasoning techniques for its recommendations (Vozalis & Margaritis, 2003; Konstan et al.,

2004). The DRS makes use of the destination context ontology and a database of national

tourism assets (http://www.nigeriatourism.net) to deliver its recommendations. The ARS does

ontological filtering of information contained in the accommodation ontology to generate its

recommendations. Other components such as reusable web layout templates and content

management components were also constructed during domain realization. Additionally, the

constructed core components and particularly the tourism recommender components were tested

and evaluated. Empirically evaluation was undertaken using usability metrics to certify their

efficiency and fitness for product line compositions. The content evaluation of the two ontologies

was also undertaken.

Also, application engineering was undertaken, during which time the tourism recommendation

component infrastructures were instantiated with application-specific requirements and used in

generating three variant TIS prototypes (for: Nigeria, Ghana and Ivory Coast).

Lastly, an evaluation of the PLONTOREC approach and its products was undertaken in order to

access how well it fulfils its set objectives. Thereafter, the result of the evaluation experiments

were analysed in order to establish a basis for the generalization of our results. A schematic

model of the methodology of this thesis using a UML activity diagram is shown in figure 1.1.

8

Figure 1.1: A model conceptualization of the methodology of this thesis

Domain
Engineering

Investigation of the
features of next
generation TIS

Process
Evaluation

Domain
Components
Design and
Construction

Derivation of the
PLONTOREC
Approach

Identifying Research
questions / statement
of the problem

 Testing of
Domain
Components

Products
Composition

 (TIS)

Application
Specific
Requirements

Products
Evaluation

Components
Evaluation

Ontology
Engineering

Proposition of TPLA
as a viable solution

Application
Engineering

Product Line
Management

Ontology
Evaluation

Result Analysis

Result
Generalization

9

1.5 SIGNIFICANCE OF THE STUDY

This research work has direct bearing on the tourism industry and particularly e-tourism because

of the following:

• The creation of a reusable asset base of intelligent tourism recommendation components

offers a response to the quest for reasonably improved intelligence and dependability of

recommendations by TIS;

• The study demonstrates the feasibility of PL approach to engineering TIS as none is

known to have been reported in literature as yet. Also, PL approach provides a better way

to manage the dynamic nature of user requirements in the e-tourism domain; and

• An ontology-based approach will provide a platform for data interoperability, knowledge

reuse, and business model standardization within a specific tourism value chain

community;

• A novel software research effort in the area of e-tourism will provide the quality boost

needed especially in most parts of Africa where tourism is largely undeveloped;

• The study provides a platform for increased publicity and promotion of tourism as a

veritable tool for economic development in developing countries.

1.6 MOTIVATION FOR THE STUDY

The tourism industry has emerged as a veritable tool for economic advancement in many parts of

the world, especially in Europe, the Caribbean Islands and Far East Asia. In Western Europe,

tourism is indeed a big industry contributing significantly to the annual GDP (Staab et al., 2002)

and is also perceived as a viable tool for continental integration. This further justifies the huge

funds being expended by the EU on tourism-based research. However, tourism is still largely

undeveloped in most parts of Africa despite the enormous tourism potentials of most African

countries. Drawing from the scenario presented above, the motivation for this work is two-fold.

The first stems from trends in the global e-tourism domain, while the second is derived from

events in the local African tourism context.

10

In recent years, e-tourism, which entails the promotion of tourism interest through the electronic

media, particularly the web, has become a very popular and convenient medium for tourism

business transactions. The requirements and expectations of users have become very dynamic

and getting increasingly complex due to the advent of new emerging technologies particularly

the semantic web. Prospective users of TIS wants more advanced functionalities in tourism

support systems that can possibly eliminate the need for human travel agents, in order words

there is a quest for smarter and more intelligent systems. One of the areas where improvement is

desired is tour recommendations, and travel advisory and planning services, which is still an

open issue to which this thesis is making a contribution (Steiner, 2002).

Secondly, there is a dearth of e-tourism research-focused activities geared at advancing the cause

of tourism from an African-based context. This thesis seeks to create both a theoretical and

product-oriented framework from which credible African-based tourism promotion initiatives

can evolve in tandem with state-of-the-art practices in the global e-tourism domain. This desire

informed our decision to adopt a software product line-based approach to engineering e-tourism

systems in this thesis.

1.7 CONTRIBUTIONS TO KNOWLEDGE

The specific contributions of this work apply to the e-tourism domain at the local and global

levels.

Firstly, although the demand imposed on TIS by the advent of new technologies and user

dynamism has received significant attention in the areas of personalized and context-based

services, mobility and embedded intelligence, and semantic interoperability, relatively minimal

efforts have been made in other areas (Staab, 2002; Steinbauer, 2005). What is missing in

literature is a viable product development model that can cause TIS products to evolve

intelligently. The traditional software engineering approaches will not suffice because of the

heavy intelligence requirements that must be fulfilled by next generation TIS. Also conventional

artificial intelligence approaches cannot achieve much without being complemented by core

technologies of the Internet architecture, the web, telecommunication, and software engineering.

11

The predictable functional characteristics of TIS and their context specific nature make them

attractive for a SPLE development approach. The existence of organization such Tiscover AG

(http://www.Tiscover.com) and Ectrl Solutions (http://www.etrlsolutions.com) that has

successfully deployed TIS in different national contexts allude to the fact that substantial

software reuse exist in the e-tourism industry, though the degree or mode of such reuse remain

very obscure. To the best of our knowledge the use of SPL as a potential product development

approach for solving the problem of dynamic user requirements in e-tourism is being attempted

for the first time. Hence, this study presents software product line engineering as a viable

solution approach to solving the problem of dynamic user requirements in e-tourism.

Secondly, thus far traditional recommendation formalisms have followed a strictly two-

dimensional approach which is based on the user’s preferences and the products description. This

thesis introduces a third dimension that engages the use of contextual information about the

social attributes of destinations as an integral factor in destination recommendation. The value of

this approach is that it allows the use of domain specific knowledge relative to specific tourism

contexts for destination recommendations which have the potential to improve the dependability

and utility of destination recommendation. By doing this, intelligence and semantic web

capabilities easily become incorporated into destination recommendation by using the concept of

ontology. This is indeed an innovation in destination recommendation relative to existing

approaches.

Thirdly, domain specific knowledge where available can be reused and shared and this might

enhance interoperability. To the best of our knowledge this work provides within the West

African tourism value chain the first suite of tourism ontologies for generating semantic web

content.

Lastly and notably, this thesis presents a first attempt to create a product line of

recommendation-intensive TIS products. To do this, the Product Line for Ontology-based

Tourism Recommendations (PLONTOREC) approach was introduced. PLONTOREC is a novel

software product line approach that enables the creation of dependable and intelligent

12

recommendation-intensive TIS products and also facilitates the proactive evolution of such TIS

products in tandem with dynamic user requirements.

The interdependency between the core subject components and the contributions of this thesis

are shown in Figure 1.2 using a dependency graph (Ziegler, 2005). The graph consists of six

nodes (four subject component nodes and two contribution nodes marked with concentric

circles). Edges point from nodes exerting an impact on those they influence. Hence, our

approach of building a suite of tourism ontologies, affects the quality of recommendations of the

tourism recommender systems. Similarly, the ontologies and tourism recommender systems

become valuable reusable assets for the pursuit of a PL initiative using PLONTOREC.

PLONTOREC is used to produce variant TIS products, through the customization and

integration of existing reusable infrastructures in the asset base such as tourism recommender

systems and ontologies. TIS developers that adopt the PLONTOREC approach leveraging the

infrastructures available in the asset base can evolve TIS products that can proactively evolve

with emerging user needs at minimum time and cost. Also, users can have access to more

dependable recommendations from TIS because of improved intelligent behaviour due to

ontological enabling of such systems with specific domain knowledge that is based on contextual

information about real world scenarios and phenomena.

13

1.8 DELIMITATION OF THE SCOPE OF THE STUDY

The main focus of this thesis is to demonstrate the feasibility of a PL approach to engineering

TIS and the creation of a platform for intelligent and dependable tourism recommendations.

However, although the theoretical concepts canvassed in this study are applicable to both the

mobile and the web-based TIS, the prototype implementations in this work are limited to the

web-based TIS.

Figure 1.2: Dependency graph modelling of the components and contributions of this thesis.

Tourism

Recommender

Systems

PLONTOREC

Approach

Tourism

Information

Systems

Suite of

Tourism

Ontology

 Managing

Dynamic

Requirements

 Dependable

Recommendat

ions

14

1.9 THESIS ORGANIZATION

Chapter One of this thesis presents a general introduction, highlighting the motivation for the

research, the aim and objectives of the work and its contributions.

Chapter Two undertakes a critical review of the domain of e-tourism systems and challenges of

dynamic user requirements in tourism. The chapter presents a review of related work and defines

the context of the research undertaken in this work by indentifying the gaps that exist in

literature. The chapter concludes with the proposal of a generic product line architecture for next

generation TIS in response to the dynamic challenges of e-tourism systems.

Chapter Three, introduces the Product Line for Ontology-based Tourism Recommendations

(PLONTOREC) approach a unified solution platform to solving the research questions raised in

this thesis.

Chapter Four presents the details of a case study of product line development that was

undertaken to validate the PLONTOREC approach. Specifically, the description of the product

line management, ontology engineering, domain engineering, and application engineering

activities in PLONTOREC are discussed.

In Chapter Five, the details of the evaluation procedure for the PLONTOREC process and its

products are discussed.

Finally, in Chapter Six, we give the summary, conclusion and a discussion of the future research

outlook of this thesis.

15

CHAPTER TWO

 E-TOURISM SYSTEMS AND DYNAMIC USER

REQUIREMENTS

2.1 INTRODUCTION

The issue of intelligent-enabling of TIS is one that has continued to attract interest in e-

tourism research because of the increasing potentials for new intelligent possibilities as a result

of the advent of new technologies, such as the semantic web and mobile computing. This is

further amplified by the growing complex nature of user requirements, which is evolving rapidly

with new emerging technologies that place a heavy demand on TIS developer organizations.

Today, most users will readily jettison the services of human-agents for their travel transactions

in preference for a software agent-oriented approach, if the recommendations available on e-

tourism platforms become more dependable.

Our approach in this thesis explores the ontological enabling of TIS as a basis for intelligent

recommendations in a SPL development context. This is to engender the generation of

dependable tourism recommendations and the evolution of relevant TIS products in tandem with

dynamic user requirements in the e-tourism domain. In this section, we discuss relevant research

issues that define the context of this thesis and the basis for its contributions.

2.2 WHY INTELLIGENT SYSTEMS FOR TOURISM?

Tourism is a global information-intensive industry that has a long chain of stakeholders

including service providers, marketers, managers, and consumers. The information-driven nature

of the tourism industry and the advent of the World Wide Web make e-Tourism the most

convenient platform for the advancement of the tourism business industry. This has also brought

about the advent of TIS that are offering various tourism support services on the web and mobile

computing platform.

16

However, the active human-machine interaction afforded by the e-tourism platform compels TIS

to exhibit increasingly high level of intelligence to earn the required level of acceptability in

terms of performance. This has also made the need for improved intelligent behaviour in TIS

more compelling. The notion of intelligent TIS is a highly attractive area of e-tourism research,

as lots of potentials are not yet fully exploited (Felfernig et al., 2006). A survey of literature

reveals some of the areas where a greater measure of intelligence is required or currently non-

existent in e-tourism. These include semantic interoperability and medicated architectures; e-

business frameworks supporting processes across virtual organizations; mobility and embedded

intelligence; natural multi-lingual interfaces; personalization and context-based services; data

mining and knowledge management (Staab et al., 2002). Evidence from literature reveals that the

most significant research efforts have been in the areas of personalization and context-based

services, mobility and embedded intelligence while relatively minimal efforts have been made in

other areas.

Some of the research projects on intelligent systems for tourism include AMBIESENSE (Lech et

al., 2005), which entails the development of ambient intelligence application systems for mobile

users in travel and tourism. AMBIESENSE technology provides travel and tourism support

services to mobile users that are ambient, ubiquitous, personalised, and sensitive to individual

user’s context. The system leverages a system architecture that enables ambient information

services to be delivered to mobile users. CAPITALS ITTS

(http://cordis.europa.eu/data/PROJ_FP5/ACTIONeqDndSESSIONeq112422005919ndDOCeq40

5ndTBLeqEN_PROJ.htm) is an acronym for Capitals Providing Integrated Travel and Tourism

Services. It was designed as a ubiquitous and intelligent info-mobility and geo-information

systems. The CAPITALS ITTS Project provided a platform for Integrated Travel and Tourism

Services (ITTS) for users in five EU capitals (Brussels, Berlin, Madrid, Paris and Rome) with

well-developed mobility service platforms. CRUMPET (http://www.eml-

development.de/english/research/crumpet/index.php) is an acronym for Creation of User-friendly

Mobile services Personalised for Tourism. The CRUMPET project was implemented to validate,

and trial tourism related value-added services for nomadic users (across mobile and fixed

networks) using agent technology. The implementation was based on FIPA-OS: a standards-

17

compliant open source agent framework, extended to support nomadic applications, devices and

networks. DIETORECS (Pühretmair et al., 2002) is the project code for Intelligent

Recommendation for Tourist Destination Decision Making. It is an Intelligent System for

Improved Tourism and Travel Services that implements a recommendation system for

destination decision-making. The system is web-based and integrates data managed by two

existing tourist portals. DIETORECS provides personalized recommendations based on user

profile and contextual information. It is a conversational system adapting the dialogue process as

it learns more about the user. CATIS (Pashtan et al., 2004) is a context-aware tourist information

system on mobile devices that leverages Web Services and XML technologies for its

implementation. The CATIS incorporates a number of context variables relating to mobility,

such as time and location, and type of device. The profile of other tourism-centred EU projects

can be found in (ftp://ftp.cordis.europa.eu/pub/ist/docs/transport

environment/intelligentsystems_for_tourism_en.pdf).

In (Henriksson, 2005) the profile of some ontology-based EU projects that were aimed at

enabling semantic web capabilities and semantic interoperability between e-tourism services and

resources are given. This includes the following: The HARMONISE project (Dell’Erba et al.,

2002), which is a prominent ontology-based solution for the interoperability problems in the

European travel and tourism market. The Harmonise project is aimed at providing a knowledge

sharing and ontology mediation platform for the diverse e-commerce applications within the

European e-tourism market sphere. The ontology used focussed specifically on the events and

accommodation sub-domains of tourism. HI-TOUCH

(http://icadc.cordis.lu/fepcgi/srchidadb?CALLER=PROJ_IST&

ACTION=D&RCN=63604&DOC=20&QUERY=3) is the acronym for e-organisational

metHodology and tools for Intra-European sustainable Tourism. The aim of the Hi-Touch project

is to develop software tools to be used by travel agency sales assistants for providing a tourist

prospect with the best-adapted offer. The developed tools leverage ontological databases and

semantic descriptors, and multi-lingual thesaurus to deliver their functionalities. SATINE

(http://www.srdc.metu.edu.tr/webpage/projects/satine/) is an acronym for Semantic-based

Interoperability Infrastructure for Integrating Web Service Platforms to Peer-to-Peer Networks.

The ongoing project will be used to create a semantic based infrastructure that will enable the

18

Web Services on well-established service registries like UDDI or ebXML to seamlessly

interoperate with Web Services on P2P Networks. Relevant travel ontologies will be developed

and the semantics of the Web Services will be based on standard specifications like the one

produced by Open Travel Alliance. The semantic infrastructure will be used to develop an

innovative business pilot application in the tourism industry. IM@GINE IT

(http://dbs.cordis.lu/fepcgi/srchidadb?ACTION=D&

SESSION=296320041126&DOC=53&TBL=EN_PROJ&RCN=EP_RPG:508008&

CALLER=PROJ_IST) is the acronym for Intelligent Mobility AGents, Advanced Positioning

and Mapping Technologies INtEgration Interoperable MulTimodal, location based services. The

IM@GINE IT project aims to develop one and single access point, through which the end user

can obtain location-based, intermodal transport information, mapping and routing, navigation

and other related ubiquitous services in Europe, at anytime, and in a personalized way. The

technology will rely on a common transport and tourism ontologies for semantic web

applications to be developed.

The inference that can be drawn from the survey of intelligent systems in tourism is that the

growing complexity of user requirements as a result of the advents of new technologies like the

semantic web and mobile technologies has brought about new dynamic challenges in e-tourism.

Therefore, providers of e-tourism support services must evolve new approaches for developing

intelligent e-tourism systems that can cater for these dynamic challenges.

2.3 A CASE FOR RECOMMENDATION-INTENSIVE TIS

The dilemma that a typical user go through during the process of products selection from diverse

alternatives in travel and tourism domain could be minimized if many more of the existing e-

tourism support platforms are equipped with intelligent recommendation services. The inclusion

of tourism recommender systems functionalities in Tourism Information Systems would ensure

that users receive intelligent guides when making decisions on important tourism and travel

concerns such as accommodation, destinations, and travel plan packages. Current statistics

revealed that not many of the existing TIS platforms go beyond just providing tourism related

information and booking services (Felfernig et al., 2005). Tiscover AG

19

(http://www.Tiscover.com) and Expedia (http://wwww.expedia.com) are prominent among the

relatively few and popular e-tourism platforms where such recommendation services are

available. This scenario makes it very compelling for many more of the existing e-tourism

supports platforms to provide recommendations on various tourism objects of interest, in order

words become more recommendation-intensive. Hence, the challenge of producing

recommendation-intensive Tourism Information Systems that is capable of enhancing users’

decision-making process and gaining their trust is one to which developers of TIS must respond.

2.4 AN OVERVIEW OF RECOMMENDER SYSTEM TYPES AND

TECHNIQUES

Recommender systems (RS) are a class of information filtering systems that act as a personalized

decision guide for users, aiding them in decision making about matters related to personal taste.

RS generally rely on in-built logical reasoning capability or algorithmic computational schemes

to deliver their recommendation functionality. RS (Resnick et al., 1997) have found a great deal

of significance in a variety of applications. These include music, online communities, web stores

and general e-commerce. In most cases, people tend to associate recommender systems with e-

commerce sites, where recommender systems are extensively used to suggest products to the

customers and to provide customers with information to help them decide which products to

purchase.

The two fundamental algorithmic techniques for computing recommendation are Content-based

Filtering (CBF) and Collaborative Filtering (CF). A CBF system selects items based on the

correlation between the content description and the user's preference, while a CF system chooses

items by correlating the similarity in the rating of an item by several people. The hybrid

approach is a third technique that tries to alleviate the limitations of the content-based and

collaborative filtering approaches.

2.4.1 Content-based Filtering (CBF)

Content-based filtering (CBF) correlates the content description of items with the preferences

selected by the user for generating recommendations. It allows automatic categorization and

20

recommendation of information to a user based on the user's personal preferences (Herlocker,

2000). To achieve this, the content descriptions of candidate items are compared with the

specified user preferences and the best-matching items are recommended.

The two most prominent content-based filtering techniques were derived from information

retrieval and information filtering. The first is by computing nearest-neighbor vector-space

similarity between the items vector and vector containing information about the user. An

example is Term Frequency Indexing (Salton & Buckley, 1998), which is used in document

retrieval, where vectors are used to represent the documents and user preferences. A one-

dimensional vector space is used to represent each word in the database with each part of the

vector containing the frequency of occurrence of the respective word in the document or the user

query. The document vectors that are found to be the closest to the query vectors are considered

most relevant to the user's query. The similarity is computed using the cosine similarity metric

(Balabanovi´c & Shoham, 1997; Baeza-Yates & Ribeiro-Neto, 1999) based on the Term

Frequency/Inverse Document Frequency (TF-IDF) weights obtained. In order words a document

D is represented as an m dimensional vector, where each dimension corresponds to a distinct

term and m is the total number of terms used in the collection of documents. The document

vector is written as D = (w1,…,wm), where wi is the weight of term ti indicating its importance. If

document D does not contain term ti then weight wi is zero. Using the TF-IDF scheme the term

weights of each ti can be determined. In this case the weight of a term depends on how often a

term appears in a particular document and how frequently it occurs in the entire document

collection. This is computed as:

 







=

i

ii
df

n
tfw log. (2.1)

where tfi is the number of occurrences of term ti in document D, n is the total number of

documents in the collection and dfi is the number of documents in which term ti appears at least

once. The assumptions behind TF-IDF are based on two characteristics of text documents. First,

the more times a term appears in a document, the more relevant it is to the topic of the document.

Second, the more times a term occurs in all documents in the collection, the more poorly it

discriminates between documents. Also, user profiles can be represented just like documents by

21

one or more profile vectors. The degree of similarity between a profile vector P, where P =

(u1,…,uk) and the Document D can be determined by using the cosine measure:

22 .

.

.

.
),cos(

k
k

k

k
kk

wu

wu

PD

PD
PD

∑

∑
== (2.2)

Consequently, given a user whose profile indicates a preference for reading software engineering

articles, a recommender system using the cosine similarity measure will assign higher similarity

score cos(D.P) to documents that that have high-weighted software engineering terms in wk and

lower similarity score to the articles where software engineering terms are weighted less.

Examples of content-based recommender systems that are based on nearest-neighbour vector

space techniques include: Fab (Balabanovi´c & Shoham, 1997; Baeza-Yates & Ribeiro-Neto,

1999) and the systems reported in (Alspector et al., 1998; Pazzani, 1999; Ferman et al., 2000;

Mukherjee et al., 2001).

Another prominent content-based approach is the use of Bayesian classifiers where

recommendation is seen as a classification task. A Bayesian classifier learns content features to

classify unseen items into a positive class c1 (relevant to the user) or a negative class c2

(irrelevant to the user) (Pazzani & Billsus, 1997). Bayesian classifiers use Bayes’ theorem of

conditional probability:

()
() ()

()MP

QPQMP
MQP

.
= (2.3)

They also make the naive assumption that product description features are independent, which is

usually not the case. For a particular class Qi, the probability of a product pk belonging to class

Qi, given its n feature values M1, . . . , Mn, is defined as follows:

 () () ()∏Ω =

=
n

j
iiini QMPQPMMQP

1
1 ..

1
,..., (2.4)

Variable Ω represents a scaling factor only dependent on M1, . . . , Mn. Probabilities P(Qi) and

P(Mj |Qi) can be estimated from training data. Examples of approaches based on Bayesian

classifiers include: (Lang, 1995; Lam et al., 1996; Sollenborn & Funk, 2002; Ghani & Fano,

2002; Lam & Riedl, 2004).

22

Other content-based techniques that have their root in IR systems include Boolean search

indexes, where keywords in a query are combined with Boolean operators (Cleverdon, 1967;

Herlocker, 2002); and natural language query interfaces, where queries are specified in natural

sentences (Lewis & Sparck-Jones, 1996). Examples of content-based filtering recommender

systems include: Letizia (Lieberman, 1995), which is a user interface that assists users browsing

the web. The system tracks the browsing behaviour of a user and tries to anticipate what pages a

particular user may find interesting. Syskill & Webert (Pazzani et al., 1996) is a system that

predicts web pages that a user will find interesting based on a user's rating of web pages over

time. Higuchi (Jennings & Higuchi, 1992) recommends news items to users using a neural

network model.

2.4.2 Collaborative Filtering

Collaborative Filtering (CF) uses the ratings of an item by several other users to generate

recommendation for a new user after sufficient similarity has been established (Goldberg et al.,

1992). Therefore CF uses valuation instead of analysis, by categorizing information based on the

user's opinion instead of the information itself. CF algorithms typically operate on a set of users

U = {u1, u2, . . . , un}, a set of products P = {p1, p2, . . . , pm}, and partial rating functions ri: P →

[−1, +1] Ψ for each user ui ∈ U. Negative values ri(pk) denote dislike, while positive values

express ui’s liking of product pk. When ri(pk) = Ψ it means that ui has not rated pk. With this

characteristic CF offers some comparative advantages over CBF. First, it is possible to generate

recommendations that are independent of the content itself. Second, it is possible to filter and

recommend information based on social attributes of the user, such as taste or quality, and

thirdly, it is possible to receive useful but unexpected recommendations that are relevant to the

user. Lastly, CF helps to create user communities, which is not possible with CBF.

However, CF systems have two drawbacks, first is the fact that recommendations are made to

users based on the approximations of other humans, which means that they cannot always be

accurate and objective, especially when dealing with non-commodity items, where human

preference are very personal (e.g. services, tourism etc.). Another problem is the issue of

23

sparsity, in which calculations are based on sparse and incomplete data, which means the

recommendation cannot be trusted because it is based on too few data. These two reasons explain

why the recommendations given by CF systems are generally correct, but sometimes very

wrong. Due to this fact, CF recommendations are not usually engaged in domains where a higher

risk is associated with the acceptance of a recommendation. CF and CBF are combined in many

cases into an integrated hybrid filtering solution in order to override the limitations of the

individual approaches. Examples of CF implementation projects reported in literature include

GroupLens (Resnick et al., 1994; Konstan et al., 1997), Ringo (Shardanand & Maes, 1995),

Video Recommender (Hill et al., 1995) and MovieLens (Dahlen et al., 1998). Commercial

websites such as: Amazon (www.amazon.com), CDNow (www.cdnow.com), MovieFinder

(www.moviefinder.com) and Launch (www.launch.com) make use of collaborative filtering

approaches for recommendation.

The two main approaches to achieving collaborative filtering are the memory-based (user-based)

collaborative filtering and the model-based (item-based) collaborative filtering.

i) Memory-based CF approach

This is also known as the nearest-neighbor approach (Goldberg et al., 1992; Lang, 1995; Pazzani

& Billsus, 1997; Linden et al., 2003). It predicts a user's interest in an item based on the ratings

for that item by other users who have similar profiles. It is an implementation of the “Word of

Mouth" phenomenon, because a database of all known preferences of all users is kept and some

computation carried out on the stored users’ preferences to generate the prediction.

To implement this, the rating function obtained after a user di has rated all items of interest is

denoted by the vector ri. Thereafter, the similarities c(di, dj) between all pairs (di, dj) ∈ D×D are

computed using either the Pearson Correlation Similarity (Konstan et al., 1997) or the

Cosine/Vector Similarity metrics (Baeza-Yates & Ribeiro-Neto, 1997), which are the main

proximity metrics employed in the recommender systems literature. The cosine similarity

measure is widely used in information retrieval to quantify the similarity between two vectors by

estimating the cosine of their angles (See equation 2.2 in section 2.3.1).

24

Pearson correlation is a common statistical correlation coefficients derived from a linear

regression model (Konstan et al., 1997), it is similar to cosine similarity, but measures the degree

to which a linear relationship exists between two variables. If symbols ūi, ūj denote the averages

of vectors ui, uj, then the Pearson correlation metric between ui and uj is given as:

 ()
() ()

() ()∑ ∑

∑

=

=

−⋅−

−⋅−
=

B

k jkjiki

B

k jkjiki

ji

uuuu

uuuu
uusim

0

2
,

222
,

0 ,,
, (2.5)

After using the cosine similarity measure or Pearson correlation to compute similarities c(di, dj)

between all user pairs (di, dj) ∈ D×D, neighborhoods prox(di) of top-M most similar neighbors

are built for every peer di ∈ D. After this, predictions are computed for all products bk that di’s

neighbors have rated, but which are yet unknown to di, i.e, predictions wi(bk) for bk ∈ { b ∈ B | Ǝ

dj ∈ prox(di) : rj(b) ≠ Ψ (no rating) }:

 ()
∑

∑

∈

∈
⋅−

+=
)(

)(

),(

),())((

ij

ij

dproxd ji

dproxd jijkj

iki
ddc

ddcrbr
rbw (2.6)

Predictions are thus based upon weighted averages of deviations from di’s neighbors’ means. For

top-N recommendations, a recommendation list of items Pwi:{1, 2, . . . ,N} → B is computed,

based upon predictions wi. Pwi is a ranked list of recommendations in descending order, giving

highest predictions first. Examples of memory-based CF systems include: The Tapestry system

(Goldberg et al., 1992), GroupLens (Konstan et al., 1997) and Ringo (Shardanand & Maes,

1995). Some of the shortcomings of memory-based CF are (Sarwar et al., 2001; Hofmann,

2004):

• Sparsity: This is a scenario where the active users have purchased or rated very limited

products out of the available total. This leads to the problem of insufficient ratings for

such items i.e. sparse user-item matrices, inability to locate sufficiently close neighbors

and ultimately weak recommendations.

• Scalability: The nature of a user-based approach to CF is such that the number of users

and items will grow over time, which is bound to increase the complexity of computation.

Because of this, a typical memory-based CF system with millions of users and items will

25

suffer from serious scalability problems as the number of user and items continue to

grow.

• Learning: The memory-based CF is not based on any explicit statistical model, and as

such nothing is learned about users or items that can provide a basis for generalization for

future predictions.

ii) Model-based collaborative filtering

The shortcomings of memory-based CF systems, especially the lack of scalability and learning

have led to the emergence of the concept of model-based CF approach (Sarwar et al., 2001;

Karypis, 2001; Deshpande & Karypis, 2004) Model-based CF has the advantage of improved

computational complexity characteristics and the ability to separate the model building process

from actual computation of recommendation. Particularly, in instances where there are far

greater number of users than products i.e. |U| >> |P|, the model-based CF has been shown to have

better computational performance compared to user-based CF (Sarwar et al., 2001). Just like the

memory-based CF, recommendation computation is based on the ratings ri(pk) that users ui ∈ U

provide for products pk∈ P, but, unlike memory-based CF, similarity values sim are computed

for products rather than users, hence sim: P × P → [−1, +1]. In this wise, two products pk and pn

are considered similar, i.e., have large sim (pk, pn), if they get identical ratings from many users

or user who rate one of them tend to also rate the other. This is followed by the computation of

the neighbourhood of pk using the Cosine similarity metrics or the Pearson correlation similarity

metrics i.e. prox(pk) ⊆ P of top-M for each pk. Predictions wi(pk) are computed as follows:

()

∑
∑

∈

∈
⋅

=
'

'

),(

)(),(
)(

kn

kn

Pp nk

Pp nink

ki
ppsim

prppsim
pw (2.7)

where

P’k := {pn ∈ P | pn ∈ prox(pk) Λ ri(pn) ≠ Ψ}

This approach emulates the real-life behaviour of users, whereby a user ui judges the value of an

unknown product pk by comparing pk to known, similar items pn and considering how much ui

appreciated items pn. Finally, a top-N recommendation list Lwi is generated by arranging

26

recommendations according to wi in descending order. Typical examples of commercial systems

that are based on model-based CF are: success Amazon.com (Linden et al., 2003) and TiVO

(Ali, K. & van Stam, 2004).

2.4.3 Hybrid Approach

The hybrid approach is a combination of CBF and CF techniques in order to eliminate certain

limitations of both techniques (Adomavicius & Tuzhilin, 2005). There are four main approaches

for combining the two techniques into a hybrid recommender system. These are:

• Combining separate recommender systems

In this approach predictions from separate implementations of content-based and

collaborative techniques are combined within a single system framework (Pazzani, 1999;

Claypool et al., 1999). To give a final result, the ratings obtained from the individual

recommender systems are combined into a final recommendation, or the best

recommendation chosen after a quality assessment of recommendations from both

systems have been carried out.

• Adding content-based characteristics to the collaborative approach

In this approach some content-based characteristics are integrated into the collaborative

approach. Content attributes and not the commonly rated items are used to calculate the

similarity between two users. This innovation helps to overcome some of the sparsity-

related problems of a purely collaborative approach, since in most cases it is not common

for two users to have a significant number of commonly rated items between them

(Pazzani, 1999). Another benefit is that accurate recommendation can be obtained

directly when the content attributes of an item match the user’s profile and not until when

an item gets rated by a similar user.

• Adding collaborative characteristics to the content-based approach

In this approach some collaborative characteristics are integrated into the content-based

approach. One way to achieve this is to create a collaborative view of a collection of user

profiles represented by term vectors (Soboroff & Nicholas, 1999). This will result in

performance improvement when compared to a purely content-based approach.

27

• Developing a single unifying recommendation approach

In this approach a general framework that incorporates both content-based and

collaborative characteristics is created. For example in (Basu et al., 1998), the use of

content-based and collaborative characteristics was proposed, such as the age or gender

of users or the genre of movies, in a single rule-based recommendation classifier.

2.4.4 Knowledge-based Recommender Systems

Knowledge-based recommenders, though sometimes regarded as fundamentally content-based

systems are a class of recommender systems that exploit deep knowledge about the product

domain in order to determine recommendations. They make use of knowledge about users and

products to generate a recommendation and reasoning about what products meet the user’s

requirements. A knowledge-based recommender system avoids the problem of sparsity

associated with both CBF and CF systems (Pazzani, 1999). The recommendations of knowledge-

based recommender systems do not depend on a base of user ratings. It does not have to gather

information about a particular user because its judgements are independent of individuals’ tastes.

These characteristics make knowledge-based recommenders very valuable systems when used

independently and also when used to complement other types of recommender systems.

Examples of knowledge-based recommender systems include: The PersonalLogic recommender

system that offers a dialog that effectively walks the user down a discrimination tree of product

features (Bhargava et al., 1999). The restaurant recommender entree (Burke et al., 1996; Burke

et al., 1997) makes its recommendations by finding restaurants in a new city similar to

restaurants the user knows and likes. The system allows users to navigate by stating their

preferences with respect to a given restaurant, thereby refining their search criteria. Other

implementations of knowledge-based recommender systems are discussed in (Burke, 2000;

Thompson et al., 2004; Herlocker et al., 2004; Felfernig & Kiener, 2005; Jiang et al., 2005).

However there two major drawbacks of knowledge-based recommender systems, which are the

expensive nature of knowledge engineering endeavours which makes them more costly to

implement, and the static nature of their suggestions ability (Burke, 2000).

28

2.4.5 Evaluating Recommender Systems

An evaluation of recommender systems is crucial in order to access the quality of

recommendations made by them. Recommender Systems evaluation methods can be broadly

classified as accuracy metrics and non-accuracy metrics. The different evaluation schemes that

have found relevance in these two categories are discussed as follows:

2.4.5.1 Accuracy Metrics

Accuracy metrics can be classified as those designed to assess the accuracy of single product

predictions and those that are meant for decision-support in order to evaluate the effectiveness of

the system in helping users to distinguish between high-quality items and the rest of the product

items. These metrics operate on the assumption that a binary rating scheme is preferred in rating

products (Ziegler, 20005). Accuracy metrics are classified as:

i) Predictive Accuracy Metric

Predictive accuracy metrics measures the closeness of the predicted ratings of a product by a

system to true user ratings. In order words, how much predictions wi(pk) for products pk deviate

from user di’s actual ratings ri(pk). The most prominent and widely used is the mean absolute

error (MAE) (Shardanand & Maes, 1995; Herlocker et al., 2004). MAE is an efficient metric for

the statistical accuracy of predictions wi(pk) for sets Pi of products:

i

Pp kiki

P

pwpr
E ik

∑ ∈
−

=
)()(

 (2.8)

Another metric closely associated to MAE, is the mean squared error (MSE), which squares the

error before summing. So that large errors become much more pronounced than small ones.

Although MAE and MSE are very efficient for predicting recommendations, they are not suitable

for evaluating the quality of top-N recommendations (Herlocker et al., 2004).

ii) Decision-Support Metrics

The adjusted concepts of Precision and Recall, borrowed from information retrieval, are used to

assess how relevant a set of ranked recommendations is for the active user in making decision.

29

Recall, Precision, FI Measures

In RS the goal is to retrieve a fixed number of N relevant items to be suggested as part of a list.

To compute recall and precision, first the data is divided into two disjoint sets, the training set

and the test set. Then the filtering algorithm employed by the system is made to work only on the

training set to generate a ranked list of recommended items (say the top-N set). Thereafter, the

test set which represents the portion of the initial data set that was not used by the recommender

system is now used with the algorithm to generate recommendations. The two recommendations

are then compared to find items in the test set that are also included in the generated top-N set.

The set of items that appear in both sets will become members of a special set, called the hit set.

Therefore, recall and precision for top-N recommendation systems can now be defined as

follows:

• Recall is the ratio of hit set size over the test set size:

test

Ntoptest

settestofsize

sethitofsize
recall

−
==

I
 (2.9)

• Precision is the ratio of hit set size over the top-N set size:

N

Ntoptest

setNtopofsize

sethitofsize
precision

−
=

−
=

I
 (2.10)

The denominator in equation 2.10 becomes N because the size of the top-N set is N. One

peculiarity of the recall-precision metric is that increasing the size of number N usually results in

an increase of recall, while at the same time precision is decreased. But since both measures are

important in evaluating the quality of systems that generate top-N recommendations, the two can

be combined into a single metric, called the F1 metric.

The standard F1 metric is a widely used metric in information retrieval and recommender

systems research (Sarwar et al., 2001; Herlocker et al., 2004), which assigns equal weight to both

recall and precision:

30

precisionrecall

precisionrecall
F

+
=

**2
1 (2.11)

To use this metric, F1 is computed for each individual user and then, the average over all users

are computed to represent the score of the top-N recommendation list (Sarwar et al., 2000;

Sarwar et al., 2001).

Breese Score

The Breese score (also known as weighted recall) is an extension to the recall metric proposed by

Breese et al. (1998). The concept is based on the understanding that the expected utility of a

recommendation list equates to the probability of viewing a recommended product contained in

that top-N list multiplied by its utility, which is either 0 or 1 for binary ratings. Breese score,

further assumes that each successive item in a list is less likely to be viewed by the active user

with exponential decay. To determine the expected utility of a ranked list Pwi, the test set and

training set is first obtained just as in the case of the ordinary recall, then expected utility of Pwi

is computed as:

 ∑ = −−
= i

i

Q

k kiw QPU
1)1/()1(2

1
),(

α
 (2.12)

where Qi = {q1,q2,..qf} is the test set, while parameter α denotes the viewing half-life. Half-life is

the number of the product on the list such that there is a 50% chance that the user, represented by

training set Ri, will review that product. Finally, the weighted recall of Px
i with respect to Qi is

defined as follows:

∑ = −−

⋅
=

i

i

Q

k k

iw

i
x

i

QPU
QPBScore

1)1/()1(2
1

),(100
),(

α

 (2.13)

 Breese score is identical to unweighted recall when the assumption α = ∞ is made. The Receiver

Operating Characteristic (ROC) is another form of decision-support metric ROC (Good et al.,

1999; Schein et al., 2002; Melville et al., 2002). It measures the extent to which an information

filtering system is able to successfully distinguish between signal and noise. The NDPM

(Balabanovi´c & Shoham, 1997), which compares two different, weakly ordered rankings, is

another decision-support metric that is less frequently used.

31

2.4.5.2 Non-Accuracy Metrics

Non-accuracy metrics are intended to assess other aspects of a recommender system that the

accuracy metrics are unable to capture. Examples include the usability of the system and

satisfaction, which are different from the correctness, or usefulness of recommendation. So far,

non-accuracy metrics have been used as important supplements for accuracy metrics. The

various forms of non-accuracy metrics include:

i) Coverage

Coverage is the most widely used non-accuracy evaluation metrics (Good et al., 1999; Herlocker

et al., 1999; Middleton et al., 2004). Coverage measures the percentage of elements part of the

problem domain for which predictions can be made. For instance, in the memory-based (user-

based) collaborative filtering approach, the coverage for the entire set of users is computed as

follows:

DP

ratingnoprdproxdPp
Coverage

Dd jjj
i

⋅

≠∈∃∈⋅
=

∑ ∈
)}()(:)({100 ψ

 (2.14)

ii) Novelty and Serendipity

The novelty and serendipity metrics measure the non-obviousness of recommendations made by

a recommender system. There are instances when recommendations are accurate but useless in

practice; an example is for a system to suggest bananas to customers in a grocery store. Although

this is accurate, but it is still useless because people do not require a recommendation to purchase

bananas, since it is a very popular product, most people will likely buy bananas without a

recommendation (Terveen & Hill, 2001). However the recommendation of a product in the same

store that is not ordinarily desired by a user but relevant is a good mark of novelty and

serendipity attribute of the recommender system concerned (Herlocker et al., 2004).

2.4.6 Improving Recommender Systems

Although significant advancements have been made in the development of recommender

systems, there yet exist the need to improve on the capabilities of existing recommendation

techniques and technologies. Some of the desired improvements are discussed as follows:

32

Non-intrusiveness

Intrusiveness is a measure that defines the degree of user’s intervention that is required for a

recommender system to generate accurate recommendations. Most recommender systems are

intrusive, requiring a great deal of user involvement before recommendations can be constructed.

It is often time consuming when users have to explicitly indicate their preferences for specific

items using a binary or numerical scale. The use of a binary scale only helps the user to indicate

whether an item is liked or disliked while using a numerical scale, helps the user to express in

more detail, the degree of preference for an item. For example, Syskill & Webert (Pazzani et al.,

1996) is an intrusive system that uses binary rating to capture a user’s impression about a website

visited (either liked or disliked), while the GroupLens system (Konstan et al., 1997) is an

intrusive system that allows users to rate Netnews articles on a numerical scale of one (bad) to

five (good) after reading it. Nonintrusive systems use implicit approach to limit the extent of user

involvement in capturing the rating of items. To achieve this, a nonintrusive system interprets

user behaviour or selections gathered over time. This could be when browsing data in web

applications, purchase history in web stores, or other types of information access patterns.

However the drawback of nonintrusive ratings is that they are often inaccurate and cannot fully

replace explicit ratings provided by the user. Therefore, there remains the need to evolve

recommendation formalisms that will minimize intrusiveness while maintaining a satisfactory

level of accuracy.

Contextual Information

Recommender systems need to give accurate recommendations in order to foster users’

confidence in them, which will also increase their utility. The current generation of recommender

systems operates in two-dimensional User x Item space. They focus only on user and item

information to generate recommendations and do not consider the use of additional contextual

information, which may be crucial in some applications (Adomavicius & Tuzhilin, 2005). This

two-dimensional approach is also at variance with reality because in many cases, the items

preferred by a user may change depending on the context; therefore conventional systems have

inherent problems. Context is any information that can be used to characterize the situation of an

entity. An entity can be a person, place or object that is considered relevant to the interaction

33

between a user and an application, or relevant to both the user and applications themselves (Dey,

2001). In reality the utility of certain recommended item depends on time and/or location. It also

depends on the person with whom the recommended item will be shared, and under what

circumstances. For example, a travel recommender system should not only recommend some

vacation spots based on what a user and other similar users liked in the past. It should also

consider the time of the year, persons the user is traveling with, and other relevant contextual

information (social, environmental, political etc.). To introduce the use of contextual

information in recommender systems, the content to be recommended needs some meta-data

attached to it, which should be a formal description of the different contexts in machine-readable

form. Formal meta-data models such as formal logics, ontology, and knowledge bases come to

mind in this respect to improve the accuracy and dependability of recommendations in

recommender systems (Park et al., 2006). This is one aspect of contribution that is explored in

this thesis.

Comprehensive Understanding of Users and Items

In most of the existing recommendation methods only limited knowledge of the user and item is

exploited in generating recommendations. The systems do not take full advantage of the

information in the user’s transactional histories and other available data. For example, classical

collaborative filtering methods do not use user and item profiles at all for recommendation

purposes and rely exclusively on the ratings information to make recommendations

(Adomavicius & Tuzhilin, 2005). Although some attempts have been made to incorporate user

and item profiles into the implementation of some recommender systems (Pazzani, 1999; Billsus

& Pazzani, 2000; Pennock & Horvitz, 2000), these profiles still tend to be quite simple and do

not utilize some of the more advanced profiling techniques. In addition to using traditional

profile features, such as keywords and simple user demographics (Billsus & Pazzani, 2000;

Mooney & Roy, 2000), more advanced profiling techniques based on data mining rules (Fawcett

& Provost, 1996; Adomavicius & Tuzhilin, 2001), sequences (Mannila et al., 1995), and

signatures (Cortes et al., 2000) that describe a user’s interests can be used to build user profiles.

Also, in addition to using the traditional item profile features, such as keywords (Pazzani, 1999,

Bhargava et al., 1999), similar advanced profiling techniques such as data mining can also be

used to build comprehensive item profiles. Once user and item profiles are built, the most

34

general ratings estimation function can be defined in terms of these profiles that will improve the

accuracy of recommendations (Adomavicius & Tuzhilin, 2005).

Evaluating Recommender Systems

The most commonly used metrics to measure the effectiveness of recommendations (Herlocker

et al., 2004) are the coverage and accuracy metrics. Coverage metrics is used to determine the

percentage of items for which a recommender system is capable of making predictions. For

accuracy statistical or decision-support measures (Herlocker et al., 2004) are used to evaluate

recommender systems. Statistical accuracy metrics uses techniques such as mean absolute error

(MAE), root mean squared error and correlation between predictions and ratings to compare the

estimated ratings against the actual ratings. While decision-support measures determine how well

a recommender system can make predictions of items that would be highly relevant to the user.

The most dominant approach to do this is the use of the precision and recall metrics. Precision is

the measure of truly high ratings among those that were predicted to be high by the recommender

system, while recall is the measure of correctly predicted high ratings among all the ratings

known to be high.

Despite the popularity of these measures, they have certain limitations. First, is the fact that they

can only provide an evaluation of the system on the items that have been rated by the users and

not item that are not rated. This gives a false impression of preferences because users tend to rate

the items they like, not the items that they dislike. Thus, evaluation results only show how

accurate the system is on items that have been rated by users, other than the general ability of the

system to properly evaluate an item.

Secondly, the accuracy and coverage metrics do not capture the "quality" and "usefulness" of

recommendations. Imagine a recommender system for a supermarket. Recommending obvious

items such as milk and bread that the users are likely to buy, will give high accuracy rates.

However, it will not be very useful for the customer. It is therefore important to develop

measures that also capture the business value of recommendations such as return on investments

(ROI) and customer lifetime value (LTV) measures (Schmittlein et al., 1987; Dwyer, 1989;

Rosset et al., 2002).

35

Other improvements

Other research issues within recommender systems include multicriteria rating (Statnikov &

Matusov, 1995; Ehrgott, 2000), scalability (Sarwar et al., 2001; Schafer et al., 2001),

explainability (Herlocker et al., 2000), trustworthiness (Dellarocas, 2003) and privacy (Herlocker

et al., 2000).

2.5 RECOMMENDATION TECHNOLOGIES IN TOURISM

Tourism Recommender Systems (TRS) are the class of intelligent systems that render tourism-

related information services in the form of guides and suggestions to users. This class of systems

can be broadly classified as web-based tourism recommender systems and mobile recommender

systems. An overview of the existing mobile and web-based tourism recommender technologies

is given in the sequel sections.

2.5.1 Mobile Tourism Recommender Systems

Mobile Tourism Recommender Systems (MTRS) are intelligent systems that deliver valuable

tourism contents and information to users’ mobile phones or PDAs. Thus far in the MTRS arena,

concentration had been on the delivery of personalized context-aware information notification

services for users in ubiquitous fashion. For example Cyberguide (Abowd et al., 1997) is a

mobile guide system that displays point of interests (POIs) on an interactive map. The

development of an electronic tour guide for the city of Lancaster was described in (Cheverst et

al., 2000). COMPASS (van Setten et al., 2004) is a system that provides context-aware route

guide recommendations which was implemented in the Netherlands. MobiDenk (Krösche et al.,

2004) is a multimedia-enriched location-aware information system for the conservation of

historic sites. Berlintainment (Wohltorf et al., 2005) offers information guide on the location of

entertainment tourism resources in the city of Berlin. The etPlanner system, which is currently

being developed by Austrian Network for E-Tourism (ANET), is a MTRS that is designed to

render relatively more substantial recommendations. It targets widespread use among tourists by

eliminating the need for client-side installation requirements. It allows two types of

36

communication with its users, which is one of its novelties. First, information seekers have

personalized browsing access to categories like events, sights, restaurants or accommodations. In

a second step, users may also receive personalized push messages that inform them about

changing weather conditions if they are out hiking or make them propositions on leisure

activities based on their preferences. A first version of the system has already been deployed for

public use and there are plans to extend the scope of its recommendations (Felfernig et al., 2005).

Other examples of MTRS initiatives include CATIS (Pashtan et al., 2004), CRUMPET

(http://www.eml-development.de/english/research/crumpet/index.php), and AMBIESENSE

(Lech et al., 2005), which have been described in section 2.2.

2.5.2 Web-based Tourism Recommender Systems

Web-based Tourism Recommender Systems (WTRS) are intelligent systems that are usually

embedded in e-Tourism portals (i.e. TIS) in order to deliver travel information guide, travel

advice and travel planning recommendations. A survey of most of the existing web sites revealed

that very few go beyond pure booking system functionalities to providing intelligent

recommendations (Felfernig et al., 2005). In the travel and tourism domain, the two most

successful recommender system technologies are TripMatcher (used by www.ski-europe.com,

etc.) from Triplehop, and Me-Print (used by travelocity.com), which is an expert advice platform

from VacationCoach (Staab et al., 2002). The implementation of these two recommender

systems emulates the interaction of a travel agents and a user in which the user inquires on a

possible holiday destination. They largely use a content-based approach for generating

recommendations, as they allow the capturing of user’s travel preferences and constraints before

constructing intelligent recommendations of a list of possible destinations. Me Print from

VacationCoach exploits user profiling by asking the user to identify with one of the available

specific travel activity classes (for example, as a “culture creature,” “beach bum,” or “trail

trekker” etc.) in order to induce implicit needs that the user does not provide. The user can also

input precise profile information by completing the appropriate form. In TripMatcher a more

sophisticated approach is used to reduce user input. The system guesses the importance of

attributes that the user does not explicitly mention. It then combines statistics on past user

37

queries with a prediction computed as a weighted average of importance assigned by similar

users (Staab et al., 2002).

Another successful travel and tourism recommendation technology though relatively new is the

trip@dvice (http://www.nutking.ectrldev.com/nutking/), which has been applied in some e-

tourism portals (e.g. visiteurope.com) (Venturini & Ricci, 2006). It is the product of the 5th EU

Framework Programme project ‘DIETORECS’ (Pühretmair et al., 2002) which is now being

managed by ECTRL Solutions (http://www.ectrlsolutions.com). Trip@dvice predominantly uses

Case-Based Reasoning (CBR) as its recommendation technology. CBR is a problem-solving

paradigm that is based on solving new problems based on past experiences, premised on the

belief that similar problems have similar solutions. At the instance of a new problem, a past,

already solved similar case is retrieved, and then used to solve the current one (Vozalis &

Margaritis, 2003). In Trip@dvice every completed travel plan is stored in the Case Base as an

instance of good example, so that during a new user’s travel recommendation session, the system

retrieves cases similar to the one under construction. The similarity function uses the current

information and historic users’ profiles and travel characteristics to generate highly personalized

results. Additionally, it uses a ranking technology that sorts suitable items from a catalogue and

presents candidate trips by using the user input and the satisfaction of other users on similar trips.

This ranking is applicable to complete travels packages as well as for single travel products such

as destination, accommodation, and services (http://www.ectrlsolutions.com).

2.6 LIMITATIONS OF EXISTING APPROACHES

A study of existing tourism recommendation technologies conducted in the course of this

research work reveals some limitations of existing approaches. Firstly, elaborate

recommendation functionalities have not been implemented on the mobile platform. This

limitation derives from the limited computational processing capacity of mobile devices and the

smallness of the screen size (Goren-Bar, 2004). On the web platform, Me-Print and TripMatcher

technologies are content-based approaches that leverage knowledge to deliver recommendations.

However, the two platforms are limited to destination recommendations. Recommendations on

other forms of tourism objects such as accommodation, cruises, services etc. were not covered

38

(Staab et al., 2002). Another successful recommendation technology is the trip@dvice (see

http://www.nutking.ectrldev.com/nutking/), which has been applied in some e-tourism portals

(e.g. visiteurope.com) (Venturini & Ricci, 2006). Trip@dvice predominantly uses case-based

reasoning as its recommendation technology but unlike TripMatcher and Me Print offers a range

of recommendation services on several tourism objects. One characteristic common to all of

these implementations is the fact that the parameters used for destination recommendation were

strictly two-dimensional (i.e. the user’s travel preferences and the description catalog of travel

destinations). This imposes a limitation of the quality of recommendations because it fails to

capture other important dimensions that are crucial to the provision of credible recommendation.

Specifically, the use of relevant contextual information that can improve the quality and

dependability of recommendations was not considered (Adomavicius & Tuzhilin, 2005;

Adomavicius, 2005). For example the use of the social and environmental attributes information

of destinations as an additional factor for destination recommendations have the potential to

improve the dependability of generated recommendations. This is because inclusion of such

important contextual information about a place to visit would ensure that recommendations are

based on deeper knowledge of the destination domain in a way that closely model reality. The

dependability of tourism information is most important because the tourism product by its nature

is intangible, one that the traveler cannot touch before the trip. This is one major reason why

recommendations on destination, accommodation, and other travel services must be accurate and

credible, one that fosters a user’s confidence, an attribute that existing tourism recommendation

formalisms do not yet possess.

Hence, recommendation formalisms that exploit deep knowledge of both the user and the

tourism object, and other relevant contextual information in a way that closely model reality is

required in order to improve the dependability of existing approaches. This is one of the cardinal

objectives of this research work and to which this thesis makes a contribution.

39

2.7 ONTOLOGY-BASED TOURISM RECOMMENDATIONS

This thesis posits that one way to achieve dependable tourism recommendations is to engage

knowledge representation formalisms that can sufficiently capture all relevant facts about

tourism objects in a domain on which approaches to rendering tourism information services can

be based. An ideal approach to achieve this is the use of ontologies which provide the platform

on which recommendation formalisms that exploit deep knowledge of the user, tourism objects,

and other relevant contextual information can be built.

The use of ontologies has the potential to solve a number of problems in tourism. First, the fact

that it allows the sharing of domain knowledge using a common vocabulary across

heterogeneous platforms means it can be used to solve interoperability problems (Dell’Erba et

al., 2002). Secondly, ontology enables the sharing of common understanding of the structure of

information among people and software agents (Noy & McGuinness, 2003); this also can help to

standardize business models, business processes and knowledge architectures in tourism.

Thirdly, ontology serves as a model of knowledge representation from which knowledge bases

that describes specific situations can be built. These reasons motivated our notion of ontology-

enabled TIS. This is premised on the belief that an ontology-based framework that enables the

leveraging of factual knowledge about a specific tourism context for recommendations has

potentially high tendency to enhance the quality and credibility of tourism recommendation

services for such a context.

2.7.1 What is Ontology?

The word ‘ontology’ was originally taken from the field of philosophy and is concerned with the

study of the nature of being. In the context of Artificial Intelligence (AI), there exist sundry

definitions of ontology (Gomez-Perez et al., 2004; Noy & Hafner, 1997; Noy & McGuinness,

2003), each one trying to introduce its own emphasis. However, one of the most common

definitions of ontology in literature is that: ‘An ontology is a formal explicit specification of a

shared conceptualisation of a domain’. Conceptualisation entails the use of abstract models to

40

depict what is understood about entities in a domain of interest. Explicit means that the concepts

used and the constraints on them are clearly defined while formal means that entities in the

ontology are represented in full or semi-machine processable form. Also, the fact that it is shared

means that the knowledge captured in the ontology is mutually agreeable to a group of people.

In this thesis, we define ontology as: A formal model of a domain of interest that depicts the

domain as an aggregation of its known relevant elemental concepts and the semantic

relationships between them that provides a platform for knowledge sharing and reuse. This

connotes that an ontology is a deliberate semantic description of what is generally known about

some real world phenomena in a domain of interest using concepts and relationship abstractions

in a way that is readable by both man and machine.

2.7.2 The Components of an Ontology

An ontology essentially consists of a vocabulary of terms in a domain of interest and their

meanings. This includes definition of concepts, the properties of the concepts, and the

interrelationship between concepts. Ontologies are classified into lightweight and heavyweight

categories based on the nature of their composition (Gomez-Perez et al., 2004). The main

components of a lightweight ontology are the concepts of a domain, the interrelationship

between concepts, and the properties of each concept. However heavyweight ontologies consist

of concepts, concept properties and concepts interrelationships just like lightweight ontologies

but have also included in their definition the axioms and restrictions on concepts, concepts

properties and concepts relationships. Generally, the notion of concepts (sometimes called

classes) in ontology is akin to classes in the object-oriented paradigm. The properties of a

concept (sometimes called slots) are the features and attributes of that concept which can take

specific value types (e.g. boolean, integer, string, float, date, etc.). The restrictions are formal

logics constraints that are defined on the properties of a concept or on inter-concepts

relationships.

The taxonomic relationships between classes in an ontology are mostly defined through

inheritance using ‘ISA’ relationships which specifies a subclass A as ‘a kind of’ the superclass B.

For example, if the class Location defines all kinds of places where people live, then all

41

addresses will be an instance of class Location. However, City, Town, and Village are different

kinds of location where people live, each of which can be represented as a subclass of the

Location. Other kinds of relationship like ‘part-whole’ (“PartOf") or synonym ("SynOf").

Additionally, other application specific relationships that might exist can be represented in an

ontology (Necib & Freytag, 2005).

In practical terms, developing an ontology is no more than 1) defining classes in the ontology; 2)

arranging the classes in a taxonomic (subclass–superclass) hierarchy; 3) defining properties of

classes and describing allowed values for these properties; and 4) supplying the values for the

properties for the instances. Therefore it is possible to create a knowledge base by defining

individual instances of these classes, filling in specific property value information and additional

property restrictions.

2.7.3 Ontology Development Process

An ontology can be built either from scratch, through the re-engineering of other existing

ontologies or by a process of ontology merging or ontology learning approach. In 1997, a

proposal that emulates the IEEE standards for software development was formulated as the

ontology development process, which was based on the framework of the METHONTOLOGY

methodology for ontology construction (Gomez-Perez et al., 2004). The ontology development

process refers to the set of activities involved in building ontologies. These activities have been

categorized into three, which according to (Gomez-Perez et al., 2004) are:

i) Ontology Management Activities: The sub-activities that fall into this category include

scheduling, control and quality assurance activities.

• Scheduling activity: This entails the identification of the tasks to be performed, the

arrangement of the tasks and the time and resources that are needed for the completion of

the tasks. Scheduling is particularly important for ontologies that reference ontologies

stored in ontology library or for ontologies that require a high level of abstraction or

generality.

42

• Control activity: This moderates the entire development process to ensure that scheduled

tasks are executed as planned.

• Quality assurance activity: This is designed to ensure that the quality of every product of

the ontology development process (ontology, software and documentation) is

satisfactory.

ii) Ontology Development Activities: The sub-activities that fall into this category are pre-

development, development and post-development activities.

• Pre-development: This encapsulates the processes of environmental study and feasibility

study. The environmental study is used to identify where the ontology will be used and

the types of applications that will be integrated with the ontology. During feasibility

study, the possibility and the suitability of building the ontology is critically examined

prior to further investment of time and resources.

• Development Phase: This consists of the specification, conceptualisation, formalization

and implementation activities. During the specification activity, the reason for building

the ontology, its intended uses and prospective end-users of the ontology are stated.

During the conceptualisation activity, abstraction models are used to represent knowledge

of the domain in a meaningful way. The formalization activity entails the transformation

of the conceptual model into a formal or semi-formal model that is machine-readable.

The implementation involves building the formal model in a particular ontology

language.

• Post Development: This consists of the maintenance, usage and reuse phases of the

ontology development. The maintenance activity involves updating and making

corrections to the ontology after it has been built. The use and reuse of the ontology by

other ontologies or applications is also considered as activities of post development.

iii) Ontology Support Activities: These are the set of activities that are carried out

simultaneously with development activities of the ontology development process without which

building the ontology would be impossible. Its sub-activities include knowledge acquisition,

evaluation, integration, merging, alignment, documentation, and configuration management.

• Knowledge acquisition activity: This entails sourcing for domain knowledge to be stored

in the ontology from domain experts or through ontology learning (Kietz et al., 2000).

43

• Ontology Evaluation activity: This involves a procedure for the technical assessment of

various aspects of the ontology such as its components, software environment, and its

documentation (Gomez-Perez et al., 1995).

• Ontology Integration activity: This involves the establishment of relevant mappings

between terms of different ontologies. Integration activity is a necessity when existing

ontologies are being reused in the development of a new one.

• Ontology Merging activity (Gangemi et al., 1999; Noy & Musen, 2001; Stumme &

Maedche, 2001): Ontological merging entails bringing together several ontologies in the

same domain to create a new one that unifies the concepts, vocabulary, restrictions of the

source ontologies. This merging can be done either at run- time or at design-time.

• Ontology Alignment activity: This activity is used to establish different kinds of links

(mappings) between ontologies that are to be integrated. Ontology alignment preserves

the original ontologies and does not merge them.

• Documentation activity: This entails generating sufficient documentation of products of

the ontology development process and the various stages involved.

• Configuration Management: This keeps an inventory of the various versions of the

ontology and their documentation. It takes care of version control for change

management purposes.

In figure 2.1 a schematic view of the activities of the ontology development process is presented

using UML activity diagram notations. The activity graph in figure 2.1 consists of three activity

swimlanes that are used to depict the three parallel development activities (i.e. management,

development-oriented and support). The ontology development process starts with scheduling

which is a management activity. Thereafter the control activity starts, which bears relevance

right from the predevelopment phase and throughout the entire ontology development process.

Transition flow goes from quality assurance activity node to core development activities node to

show that it guards the core development activities after the stages of predevelopment. The

support activities are also shown to directly complement the core development activities using a

directed transition flow. Also, the various component subactivities of the management,

development and support activities are shown using the subactivity state notation of UML

activity diagram.

44

Figure 2.1 Activities of the ontology development process: Adapted from (Gomez-Perez et al., 2004)

Scheduling
activity

Development
Activities

Post
Development

Conceptua
-lization

Specific-
ation

Use/Reuse Maintenance

Formalizat
-ion

Implement
-ation

Pre-
Development

Feasibility
study

Environment
-al study

Quality
Assurance
activity

Control
activity

Support Activities
Development oriented

Activities Management

Activities

Knowledge
acquisition

Evaluation

Integration Documentation

Configuration
Management

Alignment

Support
Activities

45

2.7.4 Ontology development methods and methodologies

According to Noy & McGuinness (2003), there is no absolutely one correct way or methodology

for developing ontologies. However there are some fundamental rules in ontology design that

can help to make wise design decisions. These are given as follows:

• There is no one correct way to model a domain- there are always viable alternatives. The

best solution almost always depends on the application that one has in mind and the

extensions that are anticipated.

• Ontology development is necessarily an iterative process.

• Concepts in the ontology should be close to objects (physical or logical) and relationships

in the domain of interest. These are most likely to be nouns (objects) or verbs

(relationships) in sentences that describe the domain.

Several classical methodologies and methods for building ontologies have been reported in

literature. Some of these serve to build ontologies from scratch or by reusing other ontologies.

They include:

1) The Cyc method (Lenat & Guha, 1990);

2) The Uschold and King’s method (Uschold & King, 1995);

3) The Gruninger and Fox’s methodology (Gruninger & Fox, 1995);

4) The KACTUS approach (Bernaras et al.,1996);

5) METHONTOLOGY (Gomez-Perez, 1996);

6) The Sensus method (Swartout et al., 1999); and

7) The On-To-Knowledge methodology (Staab et al., 2001).

In this research thesis the two KR ontologies developed were built using the

METHONTOLOGY methodology. This is because METHONTOLOGY is one of the most

detailed approaches to ontology development, with the most accurate description of its activities

and very good tool support (Gomez-Perez et al., 2004).

46

2.7.4.1 METHONTOLOGY Methodology

The METHONTOLOGY methodology (Fernandez-Lopez et al., 1997; Gomez-Perez, 1998;

Fernandez-Lopez et al., 1999) was developed within the Ontology group at Universidad

Politecnica de Madrid. It facilitates the construction of ontologies at the knowledge level.

Methontology was derived from the main activities of the software development process and the

knowledge engineering methodologies (Gomez-Perez et al., 2004). The core characteristics of

this methodology include: 1) identification of the ontology development process; 2) a life cycle

that is based on evolving prototypes; and 3) techniques to carry out each activity in the

management, development-oriented and support activities (Gomez-Perez et al., 2004). The

methodology has adequate support tool to aid the ontology development process. ODE

(Blazquez et al., 1998), WebODE (Arpirez et al., 2003), Protégé (Noy et al., 2000; Knublauch et

al., 2003), OntoEdit (Sure et al., 2003), etc. are some of the available tools that give automation

support to the methodology.

2.7.4.2 Ontology crossed life cycles

The ontology development process (see figure 2.1) was based primarily on the framework of

METHONTOLOGY and refers only to those activities performed during ontology building but

fails to identify the order in which such activities should be performed. However, the ontology

life cycle defines the order of activities in the ontology development process. The

METHONTOLOGY approach proposes an ontology construction life cycle that is based on

evolving prototypes. It allows the stepwise refinement of the components of the ontology as new

versions or prototypes evolve which makes the ontology to be very dynamic and susceptible to

change and growth (Gomez-Perez et al., 2004).

As a rule, METHONTOLOGY begins with the schedule activity that identifies the tasks to be

performed, their arrangement, and the time and resources needed for their completion. After that,

the ontology specification activity starts and simultaneously several activities such as the

management activities (control and quality assurance) and support processes (knowledge

47

acquisition, integration, evaluation, documentation, merging, alignment, and configuration

management) also start. All the management and support activities are performed in parallel with

the development-oriented activities (specialization, conceptualization, formalization,

implementation and maintenance) during the whole life cycle of the ontology (Gomez-Perez et

al., 2004).

After the first prototype has been specified, the conceptual model is built within the ontology

conceptualization activity. Thereafter the formalization (though not mandatory) and

implementation activities are carried out. The activities are iterative such that if there is a need

for modifications they can be revisited. The figure 2.2 below shows the ontology development

life cycle in METHONTOLOGY (Gomez-Perez et al., 2004). The figure shows the composition

of the three main activities. The subactivities of the management and support activities are

executed simultaneously with the development subactivities. Also, the figure also reveals that

much of the efforts in support activities go into the knowledge acquisition and evaluation tasks.

Figure 2.2: The Methontology Development Life Cycle (Gomez-Perez et al., 2004)

 Development activities

 Specialization Conceptualization Formalization Implementation Maintenance

 Knowledge acquisition

 Integration

 Evaluation

 Documentation

Support activities

 Schedule

Management activities

 Control

Quality Assurance

48

2.7.5 Ontology Languages

In selecting a language for developing an ontology, the preference of the developer is paramount.

However factors such as the level of expressiveness of a language, its underlying knowledge

representation paradigm and the reasoning mechanism attached to it must rank highest in the

consideration of an ontology language.

Over the years, several AI-based languages for implementing Ontologies have been created

(Gomez-Perez et al., 2001; Su & Ilebrekke, 2002; Gomez-Perez et al., 2004). Ontolingua, which

is based on the knowledge representation paradigm of frames and first order logic is the most

complete of the ontology languages and the one considered as a de facto standard by the

ontology community. Other languages that have been used for implementing ontologies include:

KIF, CARIN, LOOM, CycL, OCML, FLogic, OKBC, etc. These languages are underlined by

diverse knowledge representation paradigms such as: frames, description logics, first order

logic, and production rules.

In the recent years, the advent of the Internet has brought about the creation of new web standard

formats for information exchange such as XML and RDF. As a result, new XML-based ontology

specification languages such as XOL, OIL, OML, DAML+OIL, OWL, RDF Schema and XML

Schema have also emerged. These new languages have two roles: The first is that they can be

used to provide the semantics of information contained in electronic documents; and the second

is that they can be used for the exchange of ontologies across the web. SHOE is another web

ontology language that is not based on XML but rather combines frames and rules. It is an

extension of HTML because its original specification was presented very early in 1996.

2.7.6 Ontology Tools

Broadly speaking ontology tools can be classified into three categories: web-based, computer-

based and client-server tools. Generally ontology tools serve to minimize the complexity of the

ontology development process by aiding different aspects of the ontology development process

49

such as conceptualization, implementation, consistency checking and documentation (Duineveld

et al., 1999; Fensel & Perez, 2002; Gómez-Pérez et al., 2004). Particularly, they enable the

creation, editing, and managing of ontologies written in the various languages. Examples of

Web-based tools are: Ontolingua, WebOnto, OntoSaurus, WebODE, SymOntoX, APECKS,

IKARUS and CO4. Computer-based tools include Protégé-2000, ODE, KADS22, OntoEdit,

OilEd, JOE, Apollo, CODE4, DOE, DUET, GKB-Editor, IODE, KAON Tool Suite, OCM,

Ontology Editor and VOID. Finally examples of client-server tools include LinKFactory and

OpenKnoME.

2.8 THE CHALLENGE OF DYNAMIC USER REQUIREMENTS IN TOURISM

The tourism product is intangible, heterogeneous (i.e. a trip may have many parts) and non-

persistent (i.e. tourism services and product cannot be reserved for a particular consumer for

long) (Henriksson, 2005). These core characteristics inevitably influence the nature of

information exchange within the tourism value chain which includes: tourist, tour operator, travel

agent, hotelier, government, destination management organizations (DMO), Airlines and so on

(Henriksson, 2005). e-Tourism which is the use of ICT applications for enabling the effective

flow of information and business transaction in tourism faces a big challenge because of: 1) the

unique nature of the tourism product, 2) the long tourism value chain; and 3) the heterogeneous

nature of ICT infrastructures.

The most important stakeholder in the tourism value chain is the consumer, who is at the end of

the value chain and whom all efforts and services in tourism are constructed to benefit.

According to Steinbauer (2005), the modern tourist is prone to the following characteristics: 1)

become more mobile and critical; 2) become less loyal and frequently change their product

preferences; 3) look for more specialized products and ask for better service; 4) want more and

better information; 5) compare more products in more detail; 6) have fast changing needs and

belong to different niches at the same time; and 7) tend to make more but shorter vacations.

These complex and dynamic characteristics of tourism consumer behaviour portend critical

challenge for providers of e-tourism services (Steinbauer, 2005; Werthner & Klein, 1999).

50

Notably, the characteristics listed as 2 to 6 above, are particularly relevant to the context of this

thesis, because it raises the concern of how developers of tourism support systems can

effectively respond to the trends in consumer behaviour. The question that comes to mind is: Is

there a software development approach or methodology that could be engaged to tackle this

dynamic nature of consumer behaviour? This therefore provides the basis for the second

research question of this thesis (see Section 1.2), to which this thesis also provides an answer.

2.9 SPLE - A PANACEA FOR MANAGING DYNAMIC USER

REQUIREMENTS IN TOURISM?

A candidate software development paradigm that possesses the potential to cater for the

challenge of dynamic user requirements in e-tourism is Software Product Line Engineering

(SPLE). A software product line approach by its characteristics enables the definition of

system instances dictated by marketing and product plan specification from prospective users

(Bass & Kazman, 2003). It also engenders software evolution within a family of closely related

software products by ensuring that the inter-product commonalities and variabilities among

products are well exploited for versioning and maintenance purposes (Gamma et al., 2005; Shaw

& Garlan, 1996). This suggests that if a tourism market niche that cuts across segments of a

specific tourism value chain with minimal variations and predictable change patterns is identified

by a software development organization then the feasibility of a carefully planned SPL approach

can be explored. This will enable a software development organization to manage the dynamism

of e-tourism requirements that pertain to that domain.

Further to this argument is the fact that generally TIS share many attributes in common and

mostly perform similar functions. They mainly differ in the nature of local information content

they deliver and the scope of tourism interest that is being promoted whether at the national,

continental, regional, state, local and enterprise levels. The similarity in TIS functionalities

makes them good candidates for a product line development, which seems not yet a prevalent

practice in the e-Tourism domain (Daramola et al., 2008). However, the fact that Tiscover AG

(www.Tiscover.com) among others renders tourism support services for eight different countries

51

of the world, with same set of functionalities but unique contents is a clear indication of the

viability of Software Product Line Engineering (SPLE) in the tourism domain.

2.9.1 What is Software Product Line?

A Software product line (SPL) is a set of software intensive systems that share a common,

managed set of features satisfying the specific needs of a particular market segment or mission

and are developed from a common set of core assets in a prescribed way (Bass & Kazman, 2003;

Ezran et al., 2002).

It entails the production of a set of software products using common core assets. This core asset

may be a software component, a process model, a plan, a document or any other useful resource

for building a system. For example, one of the most important core assets in a product line is the

software architecture. Another important one is the product line’s scope, which is a statement of

what products the core assets are intended to support. The scope defines the commonality and

variability (ways in which they differ from each other) that defines every product in the software

product line. Software architecture provides a context in which other assets can be developed

with the right flexibility to satisfy the products in the product line.

Software Product Line Engineering (SPLE), which is based on exploring inter-product

commonality, is rapidly emerging as a viable and important software development paradigm.

Also, it facilitates the production of tailor-made systems built specifically for the needs of

particular customers or customer groups by exploiting the commonalities shared by software

products to realize order-of-magnitude improvements in time-to-market, cost, productivity,

quality and other business drivers. It also enables rapid market-entry and flexible response, and

provides a capability for mass customization of software products.

A product in the software product line is formed by taking applicable components from the base

of common assets, tailoring them as necessary, through pre-planned variation mechanisms such

as parameterization or inheritance, adding any new component that may be necessary and

52

assembling the collection according to the rules of a common reference architecture. This

connotes that building a system in a product line becomes more of assembly or generation than

of creation. The predominant activity also becomes integration rather than programming.

There are other terms that have been used in literature that convey essentially the same meaning

as the set of terms used in this thesis. In some cases, the term product family has been used to

refer to a product line; platform is used to refer to the set of core assets, and the term

customizations is used to refer to the products of the SPL. The term domain engineering is used

to refer to core asset development and application engineering is used to refer to product

development. Typically, the technical practice of software product line engineering can be

defined as:

SPLE = Domain Engineering + Application Engineering

Where domain engineering consist of the aspects of core assets development, while application

engineering entails the generation of the multiple products that constitute the SPL using reusable

components in the asset repository.

2.9.2 Merits of the SPL Approach

The adoption of SPL approach for the engineering of TIS has significant merits. However, for

SPL to engender systematic and strategic reuse within an organization, it must be actively

supported with adequate managerial policy to back the technical initiative. For example an

organization will need to migrate from developing a single product to developing product

families. Hence product family-oriented abstractions must be developed from requirements, and

relevant core reusable assets built that can be subsequently leveraged in the development of

variant products by the organization. This offers significant advantage in terms of cost and time

of development when compared with traditional reuse approaches.

Another advantage of SPL over traditional reuse is that the cost of maintenance is reduced

because the products are built on a common platform, all products using the platform can share

the maintenance costs of the platform, while cost of maintaining the variability in products is

relatively minimal.

53

2.9.3 Product Line Artifacts

The key artifacts of a product line are the product line requirements, the product line architecture

(PLA) and the product line components. These three artifacts differ from their single product

equivalent and are described as follows:

Product Line Requirements: These are base requirements that span several products in contrast

to their single product equivalent. It defines the basic limits that must be satisfied by each

component in the PLA. This means that the product line requirements must be written with

variation points to be able to capture variations between individual products within the product

line. Product line requirements can be classified as “Non-reusable”, “directly reusable”,

‘variable” or “obsolete” (Mannion et al., 2000).

Product Line Architecture: The software architecture of a program or computing system is the

structure or structures of the system, which comprises software elements, the externally visible

properties of those elements, and the relationships among them. The externally visible properties

refer to those assumptions other elements can make of an element (component), such as its

provided services, performance, characteristics, fault handling, shared resource usage and so on

(Bass & Kazman, 2003). The success of any software project depends on the architecture

because it is an important fundamental artifact of a system. Also, the quality and attributes of a

system such as performance, modifiability, reliability and usability are all derived directly from

the architecture. In a product line, the dominant core asset is the reference architecture for the

product line, which is used at every product instantiation. It defines a set of explicitly allowed

variation that represents the individual products that can be built with a product line. A number

of variability mechanisms exist of which the FORM and FAST methods are prominent examples

(Svahnberg et al., 2001; Thiel & Hein, 2002). Also, some of the Product line architecture design

methods available in literature include: COPA, FAST, FORM, KobrA and QADA (Matinlassi,

2004).

Product Line Components: The components in a PL can either be part of the core assets or they

can be developed for product specific reasons. Even though PL development draws significantly

from component-based development (CBD) (Szyperski et al., 2002), the notion of components in

the two concepts differs. This is because:

• Product line components are typically not independently deployed as CBD components;

54

• Product line components are assembled in a prescribed way specified by their production

plan and the PLA; and

• Product line components implements variability mechanism specified by the product line

architecture (Thiel & Hein, 2002).

Figure 2.3 shows an overview of the activities and artifacts necessary for component design and

implementation in a SPL paradigm context.

2.9.4 State-of-the-art in Software Product Line Research

The trend of current research activities in SPL has among its main emphasis issues involving the

design and evaluation of product line architectures, definition of product line scope through the

specification of feature variability and dependency among products, automatic creation of

generic product line architecture from requirements, model driven product line architectures

(MDPLA), support tools for model driven development (MDD) for product lines and industrial

case study reports of product line practices.

A number of product line architecture design methods have been discussed in literature this

includes: Component-Oriented Platform Architecting (COPA) (America et al., 2000), Family-

oriented Abstraction, Specification and Translation (FAST) process (Weiss et al., 1999), Feature-

Figure 2.3: Activities and deliverables in SPL component development (Bosch, 2000)

55

Oriented Reuse Method (FORM) (Kang et al., 1998), KobrA (Atkinson et al., 2002) and Quality-

driven Architecture Design and Architecture (QADA) Analysis (Niemelä, 2006).

Perry (1998) suggests useful ways of ‘genericizing’ architectural descriptions with an analysis of

the strengths and weaknesses of each approach. Among those suggested are: 1) use of software

architectural style, 2) defining a variance-free architecture, 3) use of a parametric description

using varying binding times, 4) use of service-oriented description for selective provisioning and

5) use of under-constrained architecture. The generic architecture for Tourism Product Line

Architecture (TPLA) proposed in this thesis is a product of an integration of all five underlining

concepts, which makes it sufficiently generic for the tourism domain. A description of a reusable

architecture for federated client/server systems is given in (Gomaa & Farrukh, 1999) although

not specifically dedicated to a product line paradigm.

The work by Deng et al, (2007) deals with the challenges of evolution in Model-Driven Software

Product-line Architectures. The Koriandol system (Balzerani et al., 2005) is product line

architecture for general web applications. The special feature of Koriandol in contrast to other

component-based systems is that its components have variability handling mechanism built into

them. Koala is an implementation of software component model designed for creating a large

variety of products (van Ommering, 2002). It is specifically dedicated to the modelling of

embedded systems. The modelling and specification of a PLA for a family of meshing tools is

given in (Bastarrica et al., 2006). Meshing tools are pieces of software that are used to generate

and manage discretization of a domain that find application in mechanics design and medicine.

The PLA was modelled with ArchStudio tool and formally specified using xADL (Dashofy et

al., 2001). Among the reported case studies on architectural analysis and design of product lines

include (Lutz & Gannod, 2003), which is an evaluation of an existing product line of

Interferometers. The work in (Schwanke & Lutz, 2003) is an experiences report on the

architectural design of a modest product family in this case some medical image processing

products. A number of other case studies were reported in (Bosch & Svahnberg, 1999) and

(Clement & Northrup, 2002), but none of these reports is specific to the tourism domain.

56

ATAM (Architecture Trade-off Analysis Method) is a popular scenario-based architecture

analysis method that is discussed in (Kazman et al., 1998) and a survey of several software

architecture analysis methods can be found in (Ionita et al., 2002).

The modelling of feature variability and dependency is an important aspect of product line

practice. Feature-Oriented Domain Analysis (FODA) feature diagram (Kang et al., 1990) and

Feature-Oriented Reuse Method (FORM) (Kang et al., 2002) are few of the popular approaches

mostly used. Ye and Liu (Ye & Liu, 2005) initiated a newer feature modelling approach, which

captures both the feature tree view of product line components, and a dependency view.

Also of interest are the various approaches for documenting the different views of software

architecture. Kruchten presented the “4+1” views model in (Krutchen et al., 1995), while in

(Hofmeister et al., 2001) the views model of Hofmeister et al. was presented. Other prominent

approaches to documenting views of architecture are the Software Engineering Institute’s (SEI)

Views and Beyond Approach (V&B) (Clements, 2005), IBM Standard for Architecture

Description (ADS) (Youngs et al., 1999) and the HP (Hewlett-Packard) Template for

Documenting Views of Software and Firmware Architectures (Ogush et al.,

http://www.architecture.external.hp.com)

2.10 THE CONTEXT OF THIS RESEARCH

From the foregoing issues, a number of gaps exist in literature which defines the context of this

research. The first is the need for the generation of more dependable tourism recommendations

which have not been adequately addressed by existing TIS platforms. The second is the problem

of managing dynamic user requirements in tourism to which literature has not been able to

provide a product development-based solution approach till date. These two gaps become the

premise for the central research question being investigated in this thesis, which is:

57

How do we facilitate more dependable recommendations in TIS and at the same time

cause such systems to evolve in tandem with the dynamic nature of user requirements in

e-tourism?

For adequate explication, the central question has been split into the following two research

questions:

1. What methods are needed to enable dependable recommendations in TIS in order to

foster users’ confidence?

2. Given the frequently changing and growing nature of user requirements in tourism, what

approach is required by TIS developer organizations to facilitate the proactive evolution

of their products in order to cater to dynamic user requirements?

This thesis aims at proposing a viable solution to these questions.

2.11 PROPOSAL OF TOURISM PRODUCT LINE ARCHITECTURE

(TPLA) FOR NEXT-GENERATION TIS

The advent of new technologies such as the semantic web and mobile computing have offered

new transactional possibilities that have complicated the nature of e-tourism requirements, a

challenge that currently eludes the capability of existing TIS (Staab et al., 2002; Felfernig et al.,

2005). Hence, next generation TIS must be equipped with semantic web, personalization,

context-aware and content-sharing capabilities that can cater for the dynamic challenges of the e-

tourism domain.

As an aftermath of a detailed study of the emerging user requirements and technology needs in

the e-tourism domain, a generic reference architecture for Tourism Product Lines (TPLA) is

proposed. The TPLA is conceptualised as a platform for evolving intelligent component services

in TIS in response to the dynamic challenges of the e-tourism domain. It is a layered architecture

of core reusable components that can be leveraged for the development of TIS product family.

This is the one of the new perspectives offered by this thesis (see Daramola et al., 2008), which

also serves as a springboard for the rest of the work.

58

2.11.1 Justification for the TPLA

A detailed study of tourism domain clearly reveals that most TIS share similar visions, objectives

and similar functionalities. Also, a survey of the e-tourism domain and literature shows that the

features found in TIS can be grouped into three main functional service categories namely: 1)

Information services: these involve the provision of relevant information content to the user,

content sharing and content syndication (Hammersley, 2003). The information service provider

builds its content and publishes or shares it for specific purposes, 2) Transaction Service: here

the service provider may receive inputs that are consumed in the process of constructing

something of value for an actor with specified minimum level of quality and may also initiate

other transactions at run-time (B2B transactions) and 3) Third Party Service: these are services

provided by e-Business and e-Commerce entities that are external but interoperate with the TIS

through web services.

SPL by the nature of its characteristics is intrinsically suited to handling some of the dynamic

challenges, which the next generation TIS must address. For the realization of a product line

objective in tourism a reference architecture for the product line is crucial. The success of any

software project depends on the architecture because it is a primary and important fundamental

artifact of a system from which its quality attributes are derived. Essential quality attributes of a

system such as performance, modifiability, reusability and usability are all dependent on

software architecture of a system (Bass & Kazman, 2003). In a product line, the dominant core

asset is the reference architecture of the product line, which shows the configuration of core

components that are used at every product instantiation.

2.11.2 Description of the TPLA

(A significant part of this section, has been published in (Daramola et al., 2008): Information

and Communication Technologies in Tourism 2008)

The reference architecture for e-Tourism product line (TPLA) (see Figure 2.4) is a layered

architecture consisting of five layers. Each layer represents specific infrastructural abstractions of

59

the product line architecture. The description of the specific layers is given as follows (Daramola

et al., 2008):

1. Client Layer: The client layer abstraction is comprised of client devices through which the

services of the TIS can be requested. This includes PDA, web browser (through Laptop and PC)

and i-Mode device. Components at this level consume the services of the architecture.

Client Services Layer

Client Components: Laptop, PC, PDA, i-Mode

Technology Service Layer (Augmented with Utility Services)

 WAP Server / Web Server/i-Modes

User Profile and
Request GUI

Data Mining
GUI

Context sensor
GUI

Query result
Personalization

Web Service
discovery, binding

Knowledge
discovery,
knowledge filtering

Semantic analysis,
context-awareness
knowledge filtering

Variant Services Layer

 Information Services Transaction Services Third Party Services

Location-based
information Service
(news, weather, history,
places, events etc.)

Search / Query
Engine

Tour Recommender
system (s)

Route Advisor Map guide

--Hotels
-Car rentals
-Airlines
-Book shops

-Retail store etc.

Semantic Information Layer

Semantic Ontology + Meta-data (WSDL-S, WSMO, OWL-S).

Data Layer

Data

Repository
 UDDI

Registry

 External

Third Party

Databases

Figure 2.4 A Layered Reference Architecture for Tourism Product Line (Daramola et

al., 2008)

Supplier and Services
Data GUI

60

2. Technology Service Layer: The Technology Service layer defines the implementation

platform for all the services in the PLA. This can be WAP for WAP-enabled mobile

applications, i-mode for i-mode-enabled applications or HTTP for web clients. The

Technology Service layer is augmented with the implementation of a set of four graphic user

interfaces (GUI) collectively referred to as Basic Utility Services. These are:

• User profile and request interface: responsible for collection of information on the

preferences of users and rendering personalized services by exploiting the knowledge

gained from previously stored user profile.

• Data mining interface: responsible for knowledge discovery services using in-built

association rule mining, collaborative filtering and classification algorithms.

• Supplier and services data: responsible for content upload and data storage services.

• Context sensor services: responsible for the tracking of the environment, social, task,

and spatio-temporal (time, location, direction, speed, shape) contexts of the user. A

comprehensive context list is built by this component and is used to aid the delivery of

services.

These four distinct functionalities in the Technology Service are provided for every system in

the product line. Every system in the product line (PL) must be able to hold a conversation

with Technology Service before it can request any of the utility services in line with the

principle of conversation before composition. This is for the determination of appropriate

communication protocol depending on the nature of requesting client and the provision of data-

aware and context-aware services, which only Technology Service is mandated to provide on

demand.

3. Variant Services Layer: The Variant Services Layer consists of the class of all services that

are not basic to the architecture. This set of optional services can be further sub-classified into

information services, transaction services and third party services. Information services

component represent a loci of computation that are responsible for the provision of location-

based information contents such as: news, events, places, accommodation and weather reports.

Transaction services are logic components that are responsible for the delivery of services such

as travel recommendation, destination recommendation, route advisory services, query search,

map guide, etc. While third party services are the external e-Commerce sites, which provide

61

web services that can be discovered and consumed by the TIS. Examples of these include car

rental services, hotel accommodation booking services, bookshops, shopping stores, etc.

4. Semantic Information Layer: This layer of abstraction defines the semantic awareness that is

exhibited by all components in the architecture. The components of this layer are the various

middleware semantic models of knowledge representation specifically designed to enable

intelligent attributes like context-awareness, personalization and semantic awareness in the

logic components of the TPLA. Candidate semantic models available in this layer include

ontologies, knowledge bases, OWL-S, WSMO, WSDL-S, and XML. The implementation of

these semantic models will facilitate improved query processing, information exchange and

cross platform interoperability among various information systems yielding high quality

services. Three of the specific services that will be provided at this layer of abstraction include:

i) Context-awareness: this refers to the ability of a system to make use of information about the

device platform, the user, and the surrounding environment in the delivery of its services.

ii) Personalization: this is a form of context-awareness in which the system gathers user-

information during interaction with the user in order to construct a response that uniquely fits the

user’s preferences.

iii) Semantic Web Services: this will enable the automatic annotation, advertisement, discovery,

composition and execution of inter-organization business logic, making it possible for several

organizations and individuals to communicate with each other to carry out various commercial

activities and to provide value-added services (Cardoso, 2004).

5. Data Layer: The data layer is composed of a set of database abstractions that stores the

information content delivered by the TIS. These include data repositories, the UDDI registry

from which third party web services are discovered, and all other external databases to which the

TIS can bind.

2.12 SUMMARY

The chapter presents the issues that define the research context of this thesis. It started with a

discussion of the necessity for intelligent systems for tourism and the progress made so far in the

course of intelligent enabling of e-tourism systems. Secondly, an argument for recommendation-

intensive TIS is presented as justified by the information intensive nature of the tourism industry

62

and the intangible nature of the tourism product which makes it impossible for customer to touch

a product before a trip. This is followed by an overview of recommender system types and

techniques. The key aspects discussed include content-based, collaborative filtering, knowledge-

based, and hybrid recommender system. Thereafter, the chapter specifically reviews the

recommendation technologies in tourism, and the limitations of existing approaches and the gaps

that this thesis attempts to fill. Next is the subject of ontology-based tourism recommendations as

a way of improving the dependability of tourism recommendation. After this the subject of

dynamic requirements in tourism is critically examined with the identification of the Software

Product Line Engineering (SPLE) paradigm as a possible panacea for managing dynamic

requirements in tourism. The chapter closes by formally articulating the research context of this

thesis and the proposal of a Tourism Product Line Architecture (TPLA) as a means for handling

dynamic challenges in next generation TIS.

63

CHAPTER THREE

PRODUCT LINE FOR ONTOLOGY-BASED TOURISM

RECOMMENDATIONS (PLONTOREC) APPROACH

3.1 INTRODUCTION

The Product Line for Ontology-based Tourism Recommendations (PLONTOREC) approach is

the proposed solution to the two research questions posed in this thesis. The chapter presents an

overview of PLONTOREC as a novel hybrid of software product line engineering and ontology

engineering dedicated to the development of recommendation-intensive TIS. It gives insight into

its strategy and underlining assumptions, its process architecture, and its main sub-processes. In

addition the modalities for the validation of the PLONTOREC approach are discussed. The

chapter closes with a summary and discussion on expected results.

3.2 OVERVIEW OF THE PROPOSED SOLUTION: PLONTOREC

APPROACH

The vision of Product Line for Ontology-based Tourism Recommendations (PLONTOREC)

approach originated from the generic tourism product line architecture (TPLA) presented in

section 2.10. It is a product realization concept for TIS that share in the attributes of the generic

TPLA proposed in (Daramola et al., 2008). PLONTOREC is a novel hybridization of ontology

engineering and software product line engineering concepts that is dedicated to the development

of TIS. It is a specialized software development approach that thrives on carefully planned

knowledge reuse and software reuse initiatives that are designed to enable dependable and

intelligent tourism recommendations in TIS. It is also aimed at providing a platform for such TIS

to evolve proactively in tandem with dynamic user requirements. PLONTOREC is proposed as a

unified approach to tackling the two research questions that have been highlighted in this thesis.

It is designed as a software development approach that facilitates the creation of

64

recommendations-intensive TIS products in TIS development organizations that brings a boost in

productivity and minimizes cost. Further details on the PLONTOREC approach are presented

next.

3.2.1 Limitation and Assumptions

The application of PLONTOREC for the development of TIS is constrained by a set of

preconditions that assures of its feasibility in a given domain. These are:

1. All developed TIS belong to the same organization or a consortium of collaborating

organizations;

2. The content configurations of different variants of TIS products within the product family

are known and predetermined in advance;

3. The process description for developing specific kinds of TIS product is also

predetermined; and

4. Planning of the structure of components and reuse context is done proactively in advance.

In Addition, PLONTOREC is based on the following assumptions:

1. New products evolve by composition, using existing components in the common asset

base;

2. New versions of TIS products are variations of existing ones, having many things in

common with the old versions; and also

3. The points of variability are minimal and predictable;

PLONTOREC is designed for specialized unified knowledge and software reuse-oriented

development of TIS. It does not address the general-purpose reuse context. As such, the

limitation and assumptions of PLONTOREC are all directly derived from the principles that

govern the practice of SPL initiatives (Shaw & Garlan, 1996; Gamma et al., 2005). The

limitation is meant to provide a guide on how the technical and organizational aspects of the

product line should be managed. The set of assumptions on the other hand are those that

65

facilitate the highest payoffs in PL development and specify the scenario when PLONTOREC is

optimally applicable.

3.2.2 The PLONTOREC Process Architecture

The PLONTOREC process architecture provides insights into the activities involved in the

creation of TIS products using the PLONTOREC approach (see Figure 3.1). It is an adaptation of

the software product line and ontology development process life cycles, which are the two

standard system development practices encapsulated in PLONTOREC. The SPL practice is

divided into three component processes: Product line management, Domain engineering and

Application engineering, while the ontology development activities which is the fourth

component process represents the Ontology engineering practice in PLONTOREC.

The flow of activities in PLONTOREC is not necessarily sequential and it is possible to iterate

through the different processes. PLOTONREC is initiated from product line management to

ontology engineering, domain engineering and terminates with application engineering. After

each stage of domain engineering and application engineering, product line management process

is repeated in order to re-evaluate the PLONTOREC approach with updated data from domain

analysis. This is to ascertain whether the process should proceed or be halted.

66

Figure 3.1. The Process Architecture of PLONTOREC

Scheduling

Control

Quality
Assurance

Management
Activities

 Development Activities

Feasibility/
Environmental Study

Specification

Conceptualization

Formalization

Implementation

 Maintenance

 1) Product Line
Management

3) Domain
Engineering

4) Application
Engineering

2) Ontology
Engineering

Domain Analysis

Domain Design

Domain Realization

Domain Testing

Feasibility/
Risk Assessment

Economic Evaluation

Configuration
Management

Organization

Evaluation/
Controlling

Application
Realization

Application
Testing

Application
Analysis

Application
Design

Knowledge
Acquisition

Configuration
Management

Evaluation

Support Activities

Alignment/
Merging

 Learning

Integration

Documentation

67

3.2.3 Product Line Management in PLONTOREC

The product line management sub-process in PLONTOREC defines the set of activities that

provides the necessary managerial guide and organizational control that complements the

technical aspects of domain engineering, application engineering and ontology engineering of the

PLONTOREC approach. Product line management is carried out at specific interval periods or at

the end of each sub-process. The main activities of product line management include:

i) Feasibility and Risk Assessment: This involves an assessment of the technical and

organizational viability of the PLONTOREC approach and a determination of the risks

associated with it. The tools used for these activities include results obtained from interviews,

surveys, observations, market analysis, domain field studies and product reviews. Qualitative

assessment methods such as questionnaire or quantitative assessment methods such as

measurements and estimation are used to achieve this. A product line management overview

document is generated at the end of the exercise, which contains the general information

about the product line that is to be created (Thiel & Hein, 2002; Gamma et al., 2005).

ii) Economic Evaluation: This involves the evaluation of the economic viability of the

PLOTONREC approach. In order to do this a quantitative comparison of the situation where

PLONTOREC is used and when not used is required. The measurement is done on the basis

of effort in person months involved in the cases with PLONTOREC and without

PLONTOREC. The metric is assumed to have direct impact on the economic factors such as

cost, net present value etc. The model for estimating effort in PLONTOREC is derived from

the standard model already developed for SPL (Bockle et al., 2004). This is given as:

 Cf = Corg + Ccab +
n
∑i=1(Cunique(Pi) + Creuse(Pi))

Where Corg ,Ccab , Cunique , Creuse are cost functions.

The effort in PLONTOREC is estimated as follows:

Eplontorec = Eorg+ Edom+ Eonto+Eontoupdate + N *(Ereusewith+Euniquewith+J*Eupdatewith)

Where

Eorg: Effort to introduce the product line, adapt the organization, train staff etc.

Edom: Effort expended in domain engineering for the development of core assets, cost of

commonality and variability analysis

68

Eonto: Effort expended in the development of relevant ontologies

Eontoupdate: Effort expended in updating content of ontologies after initial development and its

maintenance

N: Number of TIS products in the product line

Ereusewith: Average effort in application engineering for the reuse of existing core assets e.g.

choosing, configuration, searching and integration of core assets.

Euniquewith: Average effort to extend core assets base with core assets unique to a product,

effort with manual adaptations of core assets after creation.

J: Average planned number of content update cycles for one TIS product

Eupdatewith: Average effort of updating the product-related core assets in the core asset base;

For a well-designed PLONTOREC approach Ereusewith+Euniquewith should be relatively small

compared to Eorg+ Edom+Eonto as similarly applicable to well-engineered product line

initiative.

The effort without PLONTOREC can be estimated as follows:

Ewithout = N * (Euniquewithout + J*Eupdatewithout)

Where

N: number of individual TIS products in the product line;

Euniquewithout: Average effort to create one unique TIS;

J: Average planned number of content update cycles for one information product;

Eupdatewithout: Average effort of updating one TIS product.

In order to determine the economic justification for PLONTOREC, we adopt a similar model

as used for conventional SPL (Bockle et al., 2004). Hence for a well designed PLONTOREC

approach, Ereusewith+Euniquewith < Euniquewithout, and Eupdatewith < Eupdatewithout, and

Ereusewith+Euniquewith. It must be noted that PLONTOREC must first invest Eorg + Edom + Eonto,

which will prove advantageous after several TIS are realized. A significant and unique

advantage of PLONTOREC is the improved dependability of intelligent recommendations

from TIS products, which may also provide good justification for the initial efforts expended

on domain engineering and ontology engineering. In all cases PLONTOREC will be

considered successful or viable if the Eplontorec ≤ Ewithout .

69

Nevertheless, the cost differential between Eplontorec and Ewithout becomes less significant when

the benefit of more dependable recommendations in TIS offered by the PLONTOREC

approach is considered.

iii) Configuration Management: The essence of configuration management is to ensure that

changes in the products of the product line are well managed. A configuration represents a

fixed arrangement of a set of items at some point. A configuration item is the smallest unit of

change. The description of a configuration that gives the details of each item that belong to

that configuration is called a baseline (Tichy, 1992). Configuration management in

PLONTOREC ensures that changes that need to be made to products by way of upgrade and

versioning are carefully planned in a way that makes them technically realizable without

disrupting the design of the product line. Some of the issues determined during configuration

management include identifying: the core asset to be upgraded, the new core assets to be

added to the core asset base, the new products that need to be added to the product line based

on market demands or trends in consumer behaviour, and the versions of core asset artifacts

that must be used to implement specific TIS.

iv) Organization Aspects: This represents the set of organizational initiatives that are

implemented to guarantee the effectiveness of all the technical sub-processes of

PLONTOREC and its overall success. The activities expected in the context of an

organization include: assigning appropriate role responsibilities to groups and individual

staff, providing necessary infrastructure, defining clear and measurable goals and objectives.

Role responsibilities are defined in a general way by assigning every staff member to the

specific subprocesses (i.e. product line management, ontology engineering, domain

engineering, and application engineering). For some product lines, only one employee can be

responsible for all subprocesses, if the effort required is relatively small.

v) Evaluation and Controlling: This provides an avenue for the evaluation and controlling of

the entire PLONTOREC approach. Periodical evaluations are carried out at specific points,

notably after ontology engineering, domain engineering and application engineering to

determine whether the process should proceed. Results obtained from the feasibility and risk

assessment are used, with the same question asked repeatedly concerning the status of

development in the product line. If all answers to questions related to feasibility are

affirmative then feasibility is certified, if any of the answers is negative then PLONTOREC

70

should not be used. If any of the answers is uncertain then it should be resolved to yield

positive or negative answer, so that the decision of whether to continue with PLONTOREC

or not can be taken. In the same way risk assessment is carried out together with cost and

benefit evaluation. Also, for control purposes the configuration management schedules are

renewed based on emerging market and product views in order to ensure that correct steps

and decisions that will facilitate the objectives of PLONTOREC are taken (Tichy, 1992).

Product line management is generally concerned with the management and organizational issues

of PLONTOREC at initiation and throughout its entire lifecycle. It ensures that accurate

decisions are made based on current realities for the success of the product line initiative.

3.2.4 Ontology Engineering in PLONTOREC

Ontology engineering is the sub-process that focuses on developing the reusable knowledge

artifacts needed for the execution of the PLONTOREC approach. During this period, the suite of

ontologies that are relevant to the goals of the product line development are either constructed

from scratch or built by re-engineering existing ontologies. Ontology engineering starts with the

scheduling activity during which time the task to be performed, the arrangement of such tasks,

the time and resources needed for their completion are all identified. Thereafter the development

activity starts with the specification of the ontology, at the same time the various management

activities (i.e. control, quality assurance) and support activities (i.e. knowledge acquisition,

ontology learning, ontology evaluation, ontology merging, documentation, and configuration

management) also starts. Section 2.6.3 can be referenced for further details on the key activities

of ontology engineering. Also the details of the development of two knowledge representation

ontologies are discussed in sequel sections (Chapter 4) of the case study part of this thesis.

3.2.5 Domain Engineering in PLONTOREC

Domain engineering is the sub-process of PLONTOREC that is concerned with the construction

of all reusable software assets that are used for building the variant TIS products in the product

line. The artifacts created during domain engineering are the core assets that makeup the core

71

assets repository for the product line development. During domain engineering, the reference

architecture for the product line is created that consists of the core components of the product

line. Also during domain engineering the components are constructed, tested and certified for

deployment in application engineering. The details about key activities in domain engineering

are discussed as follows:

i) Domain Analysis: This is the activity carried out at the beginning of domain

engineering to systematically analyse the problem domain and to structure the

knowledge in a way that is useful for other phases of the product line development

process. The most important sub-activities of domain analysis are domain requirements

engineering and domain scoping (Arango, 1994). During domain analysis in

PLONTOREC, the requirements that span the entire scope of the tourism domain under

consideration are captured, while domain scoping (Pohl et al., 2005) is also carried out

to identify what should be in the product line and what should not. It is also at this

point, that the configurations of all possible variants of products that will constitute the

product line are determined. The inputs for the domain analysis include results of

interviews, market surveys, existing systems and other requirements documents in the

specific domain.

ii) Domain Design: This activity generates the reference architecture for the product line

based on the requirements gathered from domain analysis, and additional abstraction

models that facilitate the development of TIS products. The different aspects of domain

design include: conceptual design, logical design and physical design. The dominant

artifacts of conceptual design are: 1) Conceptual product line model: which is a model

of the reference product line architecture which incorporates the basic and optional

features available, and from which TIS products in the product line are instantiated; and

2) Content component model: which defines the details of content components such as

modules, functions, logic components, subsystems, database etc. The logical design

consists of: 1) Core asset version graph model: which defines the available versions of

core assets that can be used in different TIS product configurations. It specifies the

uniform way in which core assets are to be versioned in order to engender the evolution

of core assets in tandem with dynamic requirements or improvements in core

functionalities; and 2) Product map template: which enables systematic management of

72

the use of core assets in realizing specific TIS products. Data obtained during

application engineering and from the reference product line architecture are used to

determine the configuration of core assets to be used in the composition of specific TIS

products. It is implemented as a two-dimensional matrix of a listing of features and

variant TIS products. Additionally, the physical design consists of 1) Construction

specification: which defines the construction workflow model that is used to create

every possible TIS product in the product line; and 2) Workflow design patterns: which

are pre-constructed and tested pieces of reusable workflow patterns that can be relevant

in domain engineering. In addition, design of other software artifacts relevant to the

course of development are also implemented during domain design.

iii) Domain Realization: This activity involves the platform specific implementation of

core assets that are used in application engineering. The inputs received from domain

design are engaged in the actual construction of all content components (core assets)

according to the specification of the content component model. Other software assets

such as helper programs and general interface layouts are also realized.

iv) Domain Testing: This activity involves the certification of constructed core assets and

ensuring quality assurance. The constructed domain core assets are tested, analysed and

evaluated. Syntax checking, content validation, integration testing and validation

testing are carried out under specified conditions to ascertain the quality of constructed

core assets. This activity provides the certification for the engagement of created core

assets in application engineering.

3.2.6 Application Engineering

Application engineering is the sub-process of PLONTOREC that is concerned with the creation

of specific TIS products through the reuse of core assets created in domain engineering. The core

activities of application engineering are application analysis, application design, application

realization, and application testing. These activities are described as follows:

i) Application Analysis: The objective of application analysis in PLONTOREC is to capture

the specific requirements of individual TIS products that will be created using the core assets

73

created during domain engineering. The requirements are obtained from customers or group

of customers who demand for products with specific content configurations. The input to

application analysis includes domain requirement specification, domain design models,

application specific interviews and surveys, and feedbacks from application testing.

ii) Application Design: This activity is used to determine the configuration of specific products

in the product line. It involves the creation of application-specific design models and a

product map based on the conceptual product line model and the core asset graphs developed

in domain engineering. The configurations of specific products are obtained from the

conceptual product line model while the product map documents the selected configurations

for specific TIS products. It also determines the versions of specific core assets that are to be

used for realization of specific TIS products. Additionally, the application analysis document

is used as input to application design.

iii) Application Realization: This involves the generation of TIS products based on their

specific configuration design using the core assets created in domain engineering. The

predefined construction workflow model already specified in domain engineering is used to

realize specific products in the product line. It primarily deals with product composition and

assembly of variant TIS products leveraging the reusable core assets already developed in

domain engineering.

iv) Application Testing: This is concerned with the quality assurance of generated TIS

products. The TIS products are tested and validated using the domain requirements

documents, application requirement documents, and domain test artifacts and application test

artifacts. Some of the tests carried out include syntax checks, integration tests, validation

tests etc. The output of application testing includes feedback to application analysis, feedback

to domain testing, and the tested and validated TIS products.

3.3 FORMAL DEFINITION OF PLONTOREC

Based on the conception of PLONTOREC as a formal process that specializes software product

line practices for the development of TIS, a formal and precise definition of the PLONTOREC

approach is necessary. In order to achieve this, the definition of SPL given in (Prankatius et al.,

74

2007) has been adopted but adapted to fit the specific context of our approach, which hybridizes

software product line and ontology engineering.

A PLONTOREC-generated product line TISPLplontorec (F, FTree, O, Pr, As, Cs) consist of:

• A set F of features, such that f ∈ F: F = (name, type, annotation); i.e. each feature has a

name, a type and an annotation. Feature types are classified as common, optional or

alternative i.e. type ∈ {common, optional, alternative}.

It is distinguished between the sets of

- common features CF: = {f ∈ F | type(f) = common} with CF≠ ø

- optional features OF: = {f ∈ F | type(f) = optional}

- alternative features AF: = {f ∈ F | type(f) = alternative}.

 annotation is a description of feature in a natural language.

• The features are organized in a feature tree FTree with nodes Q. Each node

ni ∈ Q, except the root node nr ∈ Q, has a type and contents, i.e. ni = (type, contents) with

node type ∈ { common, optional, alternative}. Every node is linked to features in F

through its contents, and each feature occurs in exactly one node. The root node nr

however has no corresponding feature in F as an exception. The connection between a

node ni and features is given as follows:

- contents (ni) = f ∈ CF , if type(ni) = common;

 f ∈ OF ,if type(ni) = optional;

 (Y, min, max) ∈ N with

 Y ⊆ AF; min, max ∈ N , if type(ni) = alternative;

- if type(ni) = alternative then ni must be a leaf in FTree.

• A set of ontologies O = {o1 …ot} and for o ∈ O: o = (oid, name, type, annotation,

ONTO) with

− oid is a unique identifier for the ontology oi

− a name, a type and an annotation (which is a description in natural language).

− a representation ONTO = {G(V,E), β, α, N, T} with

75

� a set β ={c1,…cn} where ci ∈ β is a concept name;

� a set α = {r1…rm}, where ri ∈ α is the type of the binary; relation relating

two concepts, such that ci and ri are non-null strings);

� a directed graph G(V, E) representing the ontology, where V is a finite set

of vertices and E is a finite set of edges: Each vertex of V is labelled with

a concept and each edge of E represents the inter-concept relationship

between two concepts. Such that the label of a node v ∈ V is defined by a

function N (v) = ci that maps v to a string ci from β. The label of an

edge e ∈ E is given by a function T(e) = ri that maps e to a string ri from α.

• A set of TIS software products Pr = {p1, …pk} and for p ∈ Pr: p = (pid, FTreep, Fp)

where

- pid is a unique identifier for the software products p.

- FTreep is a feature tree for the product p, which is an instance of FTree. In order

words FTreep is a subtree of FTree, with root node nr that is by default included

into FTreep;

- a node ni of the type common in FTree has to be included in FTreep if its

immediate predecessor was included, i.e. for an included node, all immediate

successor of type common have to be included in FTreep;
- From a node na of type alternative in FTree, not all alternative features must be

chosen for FTreep. The corresponding node na
’ = (type’, contents’) in FTreep has

type’ = alternative and contents’ (na
’) = X ⊆ Y with min ≤│X│≥ max, i.e. at least

and at most max alternative feature have to be chosen from the set Y

- The set Fp = CFp ∪ OFp ∪ AFp denotes all common, optional and alternatives

features in FTreep which are finally in the contents of the included nodes, these

features will realize the functionality of the product p.

• A set of core assets As := {a1…aj} which are used to build a feature or a subset of

features in FTree. Furthermore, for a ∈ As: a = (aid, content, annotation), which means

that a core asset can conceptually consist of

- a unique identifier aid;

76

- some content which can be for example a document, code, a model etc.

- some annotations related to the content, e.g. natural language descriptions, metadata,

process specification for its construction etc.

• A construction specification Cs = (model, annotation, B) which specifies how to create

every possible product in the TIS product line from core assets. In particular:

- there is a model which describes the overall construction;

- an annotation adds additional information e.g. as natural language descriptions;

- B is the built-in-from-relation B ⊆ P x A indicating which TIS product are built using

core assets.

The definition above characterizes a PLONTOREC product line as consisting of a set of features

F that are organized in a feature tree FTree, a suite of ontologies O relevant to specific tourism

objects of interest, a set of TIS products Pr that are built from reusing a set of core assets As, and

a construction specification model Cs that defines how individual recommendation-enabled TIS

products are built from the core assets leveraging specific ontologies. The components of the

definition as further explicated as follows:

Features (F): The features in the product line are strictly classified into three crisp sets of:

common features, optional features and alternative features. In the feature tree each node is

connected to a feature, and a feature must occur in only one node. The set of features must not be

empty, and there must be sufficient commonalities among the features of products in the domain

to justify the need for a product line. The types for features and nodes are used to impose

constraints on the choice of features for particular products.

Feature Tree (FTree): The feature tree is used as an organization structure for features and as a

means to model feature dependencies and constraints. Also, the feature configuration of every

concrete product exists as an instance of the feature tree, FTree. For the creation of such an

instance, it is assumed that starting with the root which is always included in every product only

those nodes from FTree are chosen which contain features that should be implemented in a

product. For a specific product, the resulting instance FTreep is also a tree. The selection process

of features in the nodes of the tree FTree is influenced by already chosen parents and by the type

of a node (Bosch & Svahnberg, 1999).

77

Ontologies (O): The suite of ontologies provides the basis for intelligent knowledge-based

recommendation that is inherent in every product in the TIS product line. The features

configuration of specific products determines the set of ontologies that are relevant to each of

them. Such ontologies are also built and maintained (updated) as the feature configuration of

associated TIS products evolve.

Products (Pr): These are the end products of PLONTOREC; the variability among products is

determined by their distinct features configurations. This also determines the specific intelligent

recommendation attribute inherited by such TIS products.

Core Assets (Cs): Each core assets has a unique identifier, a content part and annotation part.

The content part can be for example a code component, an architecture, a design diagram, a text

case etc. The annotation part can be for example metadata, a natural language description with

details on how to use the asset during the construction of a product, or even a more precise

process specification for application engineering.

Construction Specification (Cs): The construction specification is the product line scope that

defines how each TIS in the product line will be constructed. It is a construction model for the

whole product line. This also includes relevant annotation in natural language, which may

contain non-model information of the production plan. The built-in-from-relation B defines how

specific core assets are used to build specific products.

3.4 TOOL SUPPORT FOR PLONTOREC

In order for PLONTOREC to evolve into a standardized and repeatable practice that is

industrially applicable, adequate tool-support for implementing the approach is essential. An

expansive tool-support base for the execution of the PLONTOREC approach has been identified,

which is drawn mainly from the fields of software engineering and ontology engineering. These

tools have been classified into functional categories as follows:

• Requirements Engineering: DOORS, Accept 3600, Accompa, RequisitePro, SpeeDev,

TigerPro, Raven, Gmarc etc. (http://easyweb.easynet.co.uk

/~iany/other/vendors.htm#Doors);

78

• Software Architecture Specification and Modelling: xADL (Dashofy et al., 2001), ACME

(Garlan et al., 1997); ArchStudio 4.0 (http://www.isr.uci.edu /projects/archstudio),

Ménage (Garg et al., 2003) etc.

• Software design: UML-based tools (Microsoft Visio, Rational Rose, ArgoUML etc.),

MDA tools (Eclipse Modelling Framework (EMF) (http://www.eclipse.org), Visual

Paradigm, Enterprise Architect, AndroMDA (www.modelbased.net/mda_tools.html) etc.

• Software Programming: Integrated Development Environments (IDEs) e.g. NetBeans 5.x,

Eclipse 3.x, Microsoft .Net etc.

• Ontology Development: Protégé 3.x (http://protege.stanford.edu/), OntoEdit

(http://www.ontoprise.de/documents/tutorial_ontoedit.pdf), Ontolingua (Farquhar &

Fikes, 1996), Ontology learning tools (Kietz et al., 2000).

Some of these tools were engaged in the case study section (chapter 4) of this thesis in

detailing the practical application of the PLONTOREC approach.

3.5 APPLICATION SCENARIOS

The PLONTOREC approach is designed to find application in contexts where several similar

TIS products are to be developed with minimal variations among them. The following are typical

examples:

1. A TIS developer organization that has the responsibility of developing tourism promotion

solutions for different countries. For example West Africa, Central Africa, Southern

Africa or North Africa. A scenario akin to what obtains at TISCOVER AG

(http://www.Tiscover.com), which has implemented tourism solution for 8 countries of

the world. The TISCOVER tourism portal is a multi-lingual website which delivers

exactly the same set of functionalities for all 8 countries but with unique local contents.

This kind of scenario presents a good ground for product line development. Therefore, a

PLONTOREC approach that will enable the development of recommendation intensive

TIS by profitably exploiting the commonalities and variabilities that exist between the

different countries can be adopted. The variabilities could be in terms of the language of

79

information presentation (e.g. English, French, Portuguese, Swahili, Hausa etc),

information contents (local to each country), context information and web interfaces that

reflects peculiar national identities. In the same vein, the commonalities will be in the

predefined functionalities that are made available in all products in the product line.

2. Instances of an organization having to provide tourism support solution for a set of states

or regional governments within a country. This kind of scenario also allows exploiting

what these governments have in common and the variabilities that exist among them

using the PLONTOREC approach.

3. Instances of having to implement tourism support services solutions for a particular

category of tourism service providers. For example hotels, restaurants, café etc.

4. Implementing tourism promotion solutions for Destination Management Organizations

(DMO). Examples include city DMO, Site DMO, Regional DMO etc.

3.6 VALIDATION APPROACH

In order to validate the plausibility of the proposed solution approach, a case study of product

line development using the PLONTOREC approach will be reported in chapter 4 to show the

practical real-life application scenario of the PLONTOREC approach. This is done to validate

the hypothesis that: The PLONTOREC approach provides an integrated process platform to

enabling dependability of intelligent TIS recommendations and proactive management of

dynamic user requirements in e-tourism within the context of TIS development organization.

3.7 RELATED WORK

So far, to the best of our knowledge, there is no research effort in product line development that

is specific to tourism that has been reported in literature. This is irrespective of the fact that there

are ample evidences of the viability of a product line approach in the tourism domain. However,

the Koriandol system (Balzerani et al., 2005) is a product line architecture for general web

applications of which TIS is a subset. The special feature of Koriandol is that its components

80

have variability handling mechanism built into them in contrast to other component-based

systems. The flexibility of the Koriandol architecture gives the impression that it could be

specialized to fit for a tourism product line context with some kind of effort if so desired.

Another related work is the CWAdvisor (Felfernig et al., 2006), which is an integrated

environment for the development of knowledge-based recommender applications. The

CWAdvisor is presented as a domain-independent, knowledge-based recommender environment,

which assists users by giving intelligent recommendations to ensure that appropriate choices are

made, additional selling opportunities are identified, and explanations provided for suggested

solutions in customer-oriented sales transactions. The CWAdvisor environment can be

configured for a specific application domain in order to obtain knowledge-based

recommendations. The similarity between CWAdvisor and the PLONTOREC approach

proposed in this thesis is that they both provide an integrated framework for the generation of

knowledge-based recommendations leveraging deep knowledge of customer and products.

However, the differences are as follows: 1) While CWAdvisor presents a software environment

for users to obtain knowledge-based recommendations, PLONTOREC offers a software

development process that enable the building of knowledge-based recommendation-intensive

systems; 2) While CWAdvisor presents a customer-oriented software environment that can be

configured for specific application per time, PLONTOREC presents a developer-oriented

product line process for generating series of knowledge-based recommender products for the

tourism domain; and 3) While CWAdvisor makes use of a in-built recommender knowledge-base

consisting of product properties, customer properties (obtained at run time) and constraints,

PLONTOREC makes use of formal knowledge representation ontologies that can be used by

other semantic web applications; 4) While PLONTOREC is specialized for the tourism domain,

the plausibility of the CWAdvisor in the tourism domain cannot be ascertained because the two

application scenarios discussed in (Felfernig et al., 2006) belong to the commodity item

category, where the tourism product does not belong because of its unique nature (Henriksson,

2005).

81

Another related work is the PLANT approach as reported in (Prankatius et al., 2007). PLANT is

an acronym for Product Lines for Digital Information Products. It is a dedicated software product

line development process for the generation of families of digital information products such as

product lines for e-learning courses, product lines for e-books, product lines for e-news and

product lines for audio-based products. The PLONTOREC approach proposed in this thesis

bears similarity with the PLANT approach in that they are both specialized concepts of product

line development dedicated to specific product domains. However, while the PLANT approach

thrives solely on software reuse, PLONTOREC is a hybridization of software reuse and

knowledge reuse concepts.

Hence, the PLONTOREC approach is unique and novel, offering a unified solution platform for

enabling intelligent and dependable recommendations in TIS and managing of dynamic user

requirements.

3.8 SUMMARY AND DISCUSSION

In this chapter the concept of Product Line for Ontology-based Tourism Recommendations

(PLONTOREC) approach has been presented as an integrated solution model for the two

research questions posed in this thesis. PLONTOREC is a specialized product line engineering

approach for creating families of TIS products. In PLONTOREC, software reuse and knowledge

reuse concepts are engaged to enable intelligent and dependable recommendations in TIS and

also facilitate the evolution of such TIS products in an organized way in response to the dynamic

nature of user requirements. In addition, the PLONTOREC approach provides a platform for the

realization of a family of recommendation-intensive TIS without incurring undue cost overruns

while in pursuit of good quality. The practical application of PLONTOREC will be discussed in

the subsequent chapters.

82

CHAPTER FOUR

PLONTOREC IN PRACTICE

4.1 INTRODUCTION

This chapter presents details of a case study of a real-life product line development scenario

where the PLONTOREC approach has been applied. The core motivation of this case study is to

demonstrate the PLONTOREC approach in practice so as to validate the approach and provide a

basis for its evaluation.

In order to achieve this, a SPL project was undertaken within the framework of the Software

Engineering Research Group of Covenant University (SERCU). This was aimed at developing

recommendation-intensive TIS platforms for an enhanced and more sophisticated approach to

the promotion of tourism in the ECOWAS region of West Africa. Three countries adjudged to

have the greatest tourism potentials within the geographical region were selected. These are

Nigeria, Ghana and Cote D’ivoire (Ivory Coast). Currently there is not one e-tourism platform

that offers intelligent recommendations about available tourism products that exist within the

region (http://www.touringghana.com; http://www.viewghana.com; http://www.tourisme. com;

http://www.nigeriatourism.net)

This chapter reports the practical application of the PLONTOREC process life cycle as

undertaken in a case study aimed at validating the plausibility of the PLONTOREC approach.

4.2 PRODUCT LINE MANAGEMENT (PLM) IN PLONTOREC

The PLONTOREC was initiated with the PLM. The essence of the PLM activities was to

provide the necessary managerial guide and organizational control that complements the

technical aspects of the PLONTOREC approach. PLM was carried out at the end of each sub-

process of PLONTOREC to determine whether the PL endeavour should continue.

83

4.2.1 Feasibility and Risk Assessment

The first thing that was done during PLM was to undertake feasibility assessment and risk

assessment. In the feasibility assessment four specific pertinent questions to determine whether

there exist sufficient grounds for a SPL pursuit were asked following the guideline provided in

(Prankatius et al., 2007). The four questions were rated on an ordinal scale of 1-5, with 5

representing the highest level of consent and 1 the lowest i.e.

The rule used for decision-making are stated as follows:

1. PLONTOREC should only be used if the answers to four questions are all in the

affirmative with a selection of options 4 or 5.

2. If options 1or 2 is selected for any then PLONTOREC should not be used.

3. If any case of indecision arises (i.e. selection of option 3), then PLONTOREC should not

proceed until the question has been resolved to a selection of either 4, 5, 1 or 2.

An overview of the content of the PLM documentation produced after the exercise that captures

the questions, and answers and justifications is given as follows:

i) Is a PL approach technically feasible in the case at hand?

1) Totally infeasible; 2) Almost infeasible; 3) Not sure; 4) Almost totally feasible; 5) Totally

feasible.

Answer: Totally feasible (5).

Justification: The three countries share a lot in common in terms of concept and orientation

of tourism. The central objective of tourism promotion platform in the countries considered is

to create a platform for the discovery and increased awareness of their untapped tourism

potential to boost trade and economic development. Therefore, reusable functional

component models of TIS systems that are based on observed generic characteristics can be

built. These components can then be subsequently customized and adapted by using carefully

planned reuse and specialization schemes like code reuse, parameterisation, composition,

and inheritance to suit the specific needs of each country.

ii) Do commonalities exist among products that can be technically exploited?

84

1) No known commonalty that can be technically exploited; 2) Very few commonalities exist

that can be technically exploited; 3) Not sure; 4) Sufficient commonalities exist that can be

technically exploited; 5) Several commonalities exist that can be technically exploited.

Answer: Sufficient commonalities exist that can be technically exploited (4).

Justification: The TIS platforms have common characteristics and are intended to be

functionally identical. In terms of offering information services, recommendation services

about similar tourism objects such as accommodation, destination, restaurants etc.

iii) Are the variable points in product already known?

1) Variable points are not known or unpredictable; 2) Very few variable points are known;

3) Not sure; 4) Most variable points are known or predictable; 5) All variable points are

known in advance.

Answer: All variable points are known in advance (5).

Justification: The points of differences in the products are all known in advance. The

content composition of each of the TIS must be local and peculiarly relevant to the particular

country concerned, the web layouts must also be peculiar to each country. All service

rendering components must be customized to fit specific national instances. Also services are

designated as common or optional depending on state of infrastructure in each country.

Information services are common, while some categories of recommendation services are

optional. The optional services are those that may not be relevant to some specific TIS

platforms based on the limited level of development in the country concerned.

iv) Is there a commitment from the developer organisation to adopt a PL approach?

1) No management support; 2) Very little management support; 3) Not sure; 4)

Sizeable management support with approval; 5) Strong and encouraging

management support and approval.

Answer: Strong and encouraging management support and approval (5).

Justification: Since this was being undertaken as a research endeavour motivated by the

desire to make quality contribution to knowledge, the support from all concerned

stakeholders (student, supervisors, and collaborators) was total and encouraging.

85

Risk assessment was undertaken in order to compare the expected investments in PLONTOREC

with the possible benefits that can be gained from the pursuit of a PL initiative. The concern at

this stage was to determine the level of predictability of demand for products in the PL and the

rate at which products in the PL are expected to evolve. The typical questions asked are as

follows:

In the tourism domain where PLONTOREC will be applied, how often are radical changes

expected to occur?

Answer: Changes occur but they are not radical in most cases.

Explanation: Changes occur regularly in the tourism domain as an advent of growth and

development but are seldom radical in nature. Trends in the economy, politics and emerging

technologies tend to affect the behaviour of tourists but not necessarily the status of tourism

objects in many places. Hence tourism products are expected to evolve with time based on new

requirements that emerge from consumer behaviour.

Is the demand for tourism information predictable?

Answer: Predictable.

Explanation: The core objectives of users are to obtain travel information about specific

tourism objects such as events, destinations, accommodation etc. This will provide a basis for the

adoption of a PL approach where reuse and variability schemes can be built on these

predictable requirements.

Are there strategic advantages that can be derived from taking to a PL approach?

Answer: Strategic advantages are expected.

Explanation: A PL-based approach will provide a flexible platform for the evolution and

maintenance of products through carefully planned reuse and versioning schemes (Bosch &

Svahnberg, 1999; Clement & Northrup, 2002).

86

4.2.2 Organization, Evaluation and Control

Based on collective experience in software development within our research group and expert

opinion of a TIS development expert from Tiscover AG (http://www.Tiscover.com), we were

able to do an approximate initial estimation of the cost of a PLONTOREC endeavour relative to

single TIS product development based on the modified SPL economic evaluation model that we

derived in Section 3.2.3. The conclusion at the end of the PLM phase including economic

evaluation and configuration management encouraged the pursuit of the PLONTOREC

approach.

4.3 ONTOLOGY ENGINEERING IN PLONTOREC

Since the central objective of the PLONTOREC approach is to enable dependable

recommendations in TIS, an ontology-based approach that will provide a platform for the

leveraging of deep knowledge about the tourism domain of interest was favoured. A key concept

of the PLONTOREC approach is to build specific knowledge representation ontologies that

relate to specific classes of tourism objects in a domain of interest that will provide a basis for

obtaining knowledge-based recommendations about them. Typical examples of such tourism

objects include accommodation, travel destinations, restaurants, transportation routes, and

events.

In this regard, an ontology is conceived as a formal semantic representation of what is known

about specific tourism objects in a particular tourism domain (e.g. national, regional, local etc.).

The ontology defines all concepts about and around the tourism object that have touristy value,

and the semantic relationships between the concepts. It also offers a platform for sharing and

reuse of its stored knowledge within a specific tourism value chain. This connotes that the

PLONTOREC ontologies are deliberate semantic descriptions of what is generally known about

some real world phenomena in a domain of interest using concepts and relationship abstractions

in a way that is readable by both man and machine. In the specific instance of our case study

two tourism-related ontologies were developed. These are the Destination Context Ontology

(DCO) and the Accommodation Ontology (AO).

87

4.3.1 The Destination Context Ontology (DCO)

The motivation for the DCO was the quest to engage a multi-dimensional approach to destination

recommendation with the use of contextual information different from the 2-dimensional

approach currently engaged in most of the existing recommendation platforms (Adomavicius &

Tuzhilin, 2005; Adomavicius, 2005). Indeed, many of the existing DRS have placed more

emphasis on user’s travel activity preferences, the facilities and services, and the type of

accommodation available at specific destinations without much consideration for the social

attributes of such destinations. The social attributes of a destination such as the general scenery

(atmosphere), security, population size, flow of traffic, behaviour of inhabitants, linguistic

complexity and many other factors are very crucial to the outcome of peoples’ touristy

experience in most cases. This is particularly crucial in the context of many of the developing

nation where there exist many social and environmental concerns as a result of

underdevelopment. We believe that incorporating contextual information about the social

attributes of prospective destinations can enhance the dependability of destination

recommendations. Hence, the notion of the DCO is conceived as a model of knowledge

representation ontology that captures contextual information about the social attributes of

prospective destinations in a specific tourism domain.

4.3.1.1 Using the Methonthology Approach for DCO Development

The Methonthology methodology (see section 2.6.4.1) for ontology development was selected

for the development of the DCO. This was primarily due to the fact that Methontology is one of

the most elaborate approaches to ontology development, with very good tool support (Gomez-

Perez et al., 2004). The activities undertaken in developing the DCO are discussed in sequel.

1. Management Activities in DCO Development

The development of the DCO was started with the scheduling activity. During this period, we

were able to set an agenda for the development of the ontology. It was agreed that the DCO

should be a model of knowledge representation ontology that can be instantiated with

information contents to realize knowledge bases that suits different scenarios. It was also decided

88

that DCO should be implemented as Web Ontology Language (OWL) ontology, since it is

intended to enable web-based recommender system applications. The Protégé 3.3.1 ontology

development editor was selected as the implementation tool. The types of ontology support

activities that were adjudged relevant to the DCO development process were knowledge

acquisition, ontology documentation, and ontology evaluation.

In order to ensure that all the scheduled tasks of the ontology development process were

achieved, only one person was response for the technical activities of ontology development

while the non-technical aspect of data gathering was delegated to student assistants. This

arrangement proved quite useful for effective control.

Also, in order to ensure good quality of the ontology, an ontology development tool that have in-

built features for formalization, documentation and evaluation was selected for the ontology

development.

2. Support Activities in DCO Development

The three types of ontology support activities undertaken in the course of developing the DCO

are: Knowledge acquisition, ontology documentation and ontology evaluation. The knowledge

acquisition entailed the collation of available facts about the contextual attributes of major

tourism destinations within the West African sub-region. The specific focus of our case study

was the social contextual attributes of tourism destinations in Nigeria, Ghana and Cote D’ivoire.

Data were collected about five attributes of possible destinations which are Weather

Temperature (i.e. average daily temperature), Scenery (i.e. the layout and nature of

environment), Volume of Traffic, Crime Rate, and Status (the size and population of the

destination, and its rating in terms of level of development). The sources of information included:

National Websites, Tourism documents from National Tourism Agencies, and Geographical

information extracted from literature (including maps).

89

The Protege 3.3.1 ontology development tool possesses in-built features for ontology

documentation which was used for documenting the ontology. Also, Protégé has in-built features

for evaluating the syntactic and semantic correctness of ontologies. This feature was used to

evaluate the consistency of classes and semantic completeness of formal logics expressions in

the ontology.

3. Development Activities in DCO Development

The development activities undertaken in respect of the DCO can be broadly classified as pre-

development, development and post-development. These activities are described in the following

sections:

i) Feasibility and Environmental Study

The DCO ontology was intended as a kind of knowledge representation ontology to provide

semantic-awareness capabilities for tourism and travel support applications in a particular

domain. The environmental study process revealed that although there exist a number of standard

tourism ontologies (http://protege.stanford.edu/; http://www.ontoprise.de/documents/

tutorial_ontoedit.pdf) whose structure can be emulated by the DCO, we did not find any that

adequately fits into the context and content of the specific tourism interest we have in mind. This

imposed the need to build the DCO from scratch. Also during this time, the suitability of

building the ontology was critically examined. The trade-offs in terms of costs in time and

resources together with inherent benefits were considered, with the consensus that the ontology

development process should proceed.

ii) Specification of the DCO

The purpose of the DCO is to provide a semantic representation of contextual knowledge about

prospective tourism destinations in a form that can be used by web-based tourism support

systems for the generation of knowledge-based tourism destination recommendations.

iii) Conceptualization of the DCO

In the specific case study considered, the DCO is a semantic representation of the contextual

information about five social attributes of the destination abstractions that exist within the West

90

African tourism context. Every prospective destination in West Africa can be broadly

categorized into three based on the social, demographic and geographical characteristics of such

locations. The three types of destinations are City, Town, and Village. Therefore, a conceptual

taxonomy of destinations was developed consisting of three class abstractions: City, Town and

Village with ‘ISA’ relationships. The five social attributes of a tourist location that were of

interest were: Weather Temperature, Scenery, Volume of Traffic, Crime Rate, and Status. These

attributes were modelled as properties of a destination using ‘FeatureOf’ association. Each of the

five attributes consists of a set of five possible values from which values that define the

characteristics of a typical destination is derived. These are given as follows:

− Weather Temperature = {“Cold”, “Mild”, “Warm”, “Hot”, “Very Hot”}

− Scenery = {“Very Quiet”, “Quiet”, “Medium”, “Noisy”, “Very Noisy”}

− Volume of Traffic = {“Very Low”, “Low”, “Medium”, “High”, “Very High”}

− Crime Rate = {“Very Low”, “Low”, “Medium”, “High”, “Very High”}

− Status = {“City”, “Urban”, “Town”, “Settlement”, “Village”}

Such that, if C is a vector denoting the social attributes of a destination, then

C(Ibadan) = <Mild, Medium, Medium, Low, City>

Connotes that Ibadan as a destination has Mild weather temperature, Medium scenery rating,

Medium volume of traffic, Low crime rate and a City rating in terms of metropolitan status. The

semantic relationships that may exist between different instances of specific social attribute

classes were modelled with the ‘CloserTo’ association. For example ‘Hot Weather’ is specified

as symmetrically closer to ‘Very Hot Weather’, in order to provide adequate basis for reasoning

about entities represented in the ontology. The relationships between the different destination

abstractions were represented using ‘PartOf” association, whereby Villages and Towns are

conceived as extensions of specific City destinations. Our conceptualisation of the DCO is

illustrated with the semantic graph shown in figure 4.1.

In the figure 4.1 Town, Village and City were shown to be kinds of Destination using ISA

relationship denoted with the solid line arrow connections between the different nodes in the

graph. The feature attributes of a destination such as Crime Rate have been represented using the

91

dotted line arrow connections which represent a FeatureOf association. Chain-like arrow

connections with two shaded circles at both ends represents CloserTo association, which defines

the semantic closeness between two entities in the ontology. For example Very High (VH) and

High (HG) are represented as symmetrically close to each other compared to Very High and

Very Low. Also, dotted arrow connections with a shaded circle at one end are used to denote

PartOf relationships that exist between the destination instances in the ontology. In this way,

towns and villages are related to specific city destinations as extensions.

92

Figure 4.1 A Semantic Graph of Concepts in the DCO

ISA

FeatureOf

PartOf

CloserTo

VHW-Very High Weather; HW – High Weather; WAM – Warm; MLD – Mild; CLD – Cold

VH – Very High; HG – High; MED – Medium; LW- Low; VL – Very Low

VN – Very Noisy; NOS – Noisy; QU – Quiet; VQU – Very Quiet

 Destination
Crime

Rate

VH HG MED
LW VLW

 Traffic

VH

HG
MED LW

VLW

 Status

CTY

UR
TWN SETL

VIL

City

Village

Scenery

VN

NOS
MED QU

VQU

Town

Weather

VHW
HW WAM

MLD CLD

93

 Destination

Weather
Temp.

Scenery

Traffic_Vol

CrimeRate

Status

 Village Town City

1

1 1

1

1

1

1

1

1

1

 FeatureOf

FeatureOf

FeatureOf

FeatureOf

FeatureOf

 PartOf

 PartOf

1..* 1..*

Figure 4.2 UML Representation of the DCO

iv) Formalization of the DCO

Formally, we define the DCO as a set C and a set R as follows:

C= {Destination, Town, City, Scenery, Weather Temperature, Traffic Volume, City Status,

Crime Rate} and R = {“ISA”, “PartOf”, “FeatureOf”, “CloserTo”}, where each ci ∈ C is a

concept name and ri ∈ R is the type of relationship relating two non-empty concepts or concept

properties.

We have adopted UML (Unified Modelling Language) (Booch et al., 2000) notations to

formalize our conceptualization of the DCO. UML is ideal because of the objected-oriented

nature of the relationships that exist among the entities in the ontology. In figure 4.2, the UML is

used as a representation language to describe the components of the DCO. Concepts in the DCO

are represented as classes. ISA relationships between classes were formalized as generalizations.

A generalization relationship which shows one class to be a subclass of another is modelled

using the hollow arrow. PartOf and FeatureOf relationships are modelled as stereotyped UML

associations. Classes are represented as rectangles, while Associations are represented as

arrows. Additionally, the multiplicity of each of the Associations is shown.

94

 v) Implementing Ontology with the Web Ontology Language (OWL)

The OWL (Ontology Web Language) most preferably referred to as Web Ontology Language

(OWL) (http://www.w3.org/TR/owl-ref/) is one of the most recent and popular ontology

languages. It has been adopted as a semantic web standard by the World Wide Web Consortium

(W3C) (http://www.w3.org/TR/owl-ref/), for formally specifying knowledge in the web. OWL

facilitates machine interpretation of Web contents in a way that is better than XML, RDF, and

RDF Schema (RDF-S) by making use of additional vocabulary apart from formal semantics

(http://www.w3.org/TR/owl-features/). The three types of languages are the: OWL Lite, OWL

DL, and OWL Full.

Concept axioms in OWL

In OWL, concepts are defined using concept axioms. The owl:Class notation is used with a

concept identifier. For example:

 <owl:Class rdf:ID="Destination"/>.

However, this is only a simple declaration and does not give much information about the

concept. Hence, concept axioms normally contain additional components to state their

characteristics. Together with concept declarations, OWL contains three helpful language

constructs to form concept axioms: rdfs:subClassOf (which indicates that a concept is described

as a subset of another concept), owl:equivalentClass (which indicates that a concept is an

equivalent of another concept), owl:disjointWith (which indicates that a concept has no common

members with another concept).

Role axioms in OWL

A role axiom defines characteristics of a role, for example,

 <owl:ObjectProperty

rdf:ID="hasCrimeRate"/>.

95

Four kinds of constructs for role axioms are supported in OWL as follows:

i) RDF Schema constructs: rdfs:subPropertyOf, rdfs:domain and rdfs:range.

ii) Relations to other properties: owl:equivalentProperty and owl:inverseOf

iii) Global cardinality constraints: owl:FunctionalProperty and

owl:InverseFunctionalProperty

iv) Logical property characteristics: owl:SymmetricProperty and owl:TransitiveProperty

These constructs allow the definition of roles in more details. For example to capture two

relation, we could have two properties has_Status and is_Status_of where has_Status is an

inverse role of is_Status_of.

Individual axioms in OWL

Individuals in OWL are the instances of classes. Two types of individual axioms can exist in

OWL ontology. These are:

i) Individual axioms about concept membership and role values

For example:

<City rdf:ID=”Lagos”>

has_Weather rdf:resource=”# Cold_Weather”>

< /Lagos>

The first line of code indicates that “Lagos” is an instance of concept “City” and the second line

says “Lagos” has a role assertion (Lagos, Cold_Weather):has_Weather. This connote that the

value of the object property “has_Weather” for the City instance “Lagos” is “Cold_Weather”

ii) Individual axioms about identity

For example:

<City rdf:ID="Lagos">

 <owl:differentFrom rdf:resource="#Ibadan"/>

</City>

96

This indicates that “Lagos” and “Ibadan” are two different instances (individuals) of the class

“City”.

vi) Implementation of the DCO

The DCO was implemented as an OWL ontology using the Protégé 3.3.1 Ontology tool. The

OWL ontology consists of five disjointed classes namely: CrimeRate, Scenery, Traffic,

CityStatus, Weather and Destination. Three classes: Town, City, Village were defined as

subclasses of the Destination class. The classes: CrimeRate, Scenery, Traffic, CityStatus, and

Weather which represents the attribute features of a destination were defined as OWL Values

Partition. A partition of a concept C is a set of subclasses of C that does not share common

instances (disjointed classes) but cover C, that is, there are not instances of C that are not

instances of one of the concepts in the partition. Hence, we have the following five values

partitions defined in the ontology:

CrimeRate = {Very_High_Crime, High_Crime, Medium_Crime, Low_Crime, Very_Low-Crime}

Scenery = {Very_Noisy, Noisy, Medium_Noise, Low_Noise, Very_Low_Noise}

Temprature = {Cold_Temp, Mild_Temp, Warm_Temp, Hot_Temp, Very_Hot_Temp}

Traffic = {Very_High_Traffic, High_Traffic, Medium_Traffic, Low_Traffic, Very_Low_Traffic}

Status = {City, Urban, Town, Settlement, Village}

 The ‘FeatureOf’ relationship between a Destination and each of the feature classes were

modelled using corresponding OWL functional Object properties of hasCrimeRate, hasScenery,

hasTraffic, hasStatus and hasWeather respectively. This ensures that a particular functional

object property maps to only one specific subclass of the corresponding feature values partition

i.e.:

 hasCrimeRate (Destination) → Low_Crime ∈ CrimeRate

Which means that the object property hasCrimeRate must necessarily takes its value from one of

values in the CrimeRate value partition. The ‘CloserTo’ and ‘PartOf’ relations between entities

in the ontology were modelled as inverse and symmetric object properties. This ensures that if A

is ‘CloserTo’ B, then B ‘CloserTo’ A. As such many of the subclasses in the feature value

partition have relevant ‘isCloserTo’ property defined on them.

97

During application engineering specific instance of classes in the ontology (OWL individuals)

were created to populate the ontology with concrete facts that pertain to specific destinations

within the West African sub-region. Figures 4.3 - 4.5 are snapshots from the DCO

implementation in protégé.

Figure 4.3 A Snapshot Classes of the DCO in Protégé 3.3.1

98

Figure 4.4 A Graphical Model of Classes in the DCO using Protégé Visualization Tool

99

vii) OWL Representation of DCO

A fragment of the OWL representation of the ontology is shown in Figure 4.5 below. This

fragment shows the description of the City class (1), CityStatus (2), and CrimeRate (3) value

partitions. Also shown are the hasCityStatus (4) and hasCrimeRate (5) properties.

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [
 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
]>
<rdf:RDF xmlns="http://www.owl-ontologies.com/CityOntology1203522180.owl#"
 xml:base="http://www.owl-ontologies.com/CityOntology1203522180.owl"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <owl:Ontology rdf:about=""/>
<owl:Class rdf:ID="City"> (1)
 <rdfs:subClassOf rdf:resource="#Destination"/>
 <owl:disjointWith rdf:resource="#Village"/>
 <owl:disjointWith rdf:resource="#Town"/>
 </owl:Class>
 <owl:Class rdf:ID="CityStatus"> (2)
 <owl:equivalentClass>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#City_Status"/>
 <owl:Class rdf:about="#Settlement_Status"/>
 <owl:Class rdf:about="#Town_Status"/>
 <owl:Class rdf:about="#Urban_Status"/>
 <owl:Class rdf:about="#Village_Status"/>
 </owl:unionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
<owl:Class rdf:ID="CrimeRate"> (3)
 <owl:equivalentClass>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#High_CrimeRate"/>
 <owl:Class rdf:about="#Low_CrimeRate"/>
 <owl:Class rdf:about="#Medium_CrimeRate"/>
 <owl:Class rdf:about="#VeryHigh_CrimeRate"/>
 <owl:Class rdf:about="#VeryLow_CrimeRate"/>
 </owl:unionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
<owl:ObjectProperty rdf:ID="hasCityStatus"> (4)
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:range rdf:resource="#CityStatus"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasCrimeRate"> (5)
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:range rdf:resource="#CrimeRate"/>
 </owl:ObjectProperty>
</rdf:RDF>

Figure 4.5 OWL Representation of Classes in the DCO

100

4.3.2 The Accommodation Ontology (AO)

 The AO is a semantic representation of the attributes of the various types of tourism

accommodation. It was modelled after the Harmonise ontology (Dell’Erba et al., 2002), which

captures facts about accommodation types and events in the European tourism domain. The aim

of the AO is to facilitate generation of knowledge-based recommendation for informed decision

in seeking tourism accommodation in a particular domain. It is a knowledge base of facts about

available types of tourism accommodation resources and artifacts within a particular tourism

domain. The AO captures explicit details about five specific attributes of tourism

accommodation types (e.g. hotel, guest house, hostel, chalet etc.) in order to enable dependable

knowledge-based recommendations. These are 1) Services: the description of kinds of services

rendered in a place of tourism accommodation; 2) Gastro: the profile of eateries, cuisines or

restaurant near a tourism accommodation l; 3) Attraction: special attractions within or near a

hotel; 4) State: province or region where an accommodation is located; and 5) Facilities:

physical facilities available in the tourism accommodation.

4.3.2.1 Using the Methonthology Approach for AO Development

Similarly, the Methonthology methodology for ontology development was used for developing

the AO just like the case with the DCO. The activities undertaken in developing the AO are

discussed in sequel.

1. Management Activities in AO Development

The management activities in AO development began with the scheduling activity, where the

decision to implement the AO as a knowledge representation OWL ontology for facts about

tourism accommodation was made. The Protégé 3.3.1 ontology development editor was selected

as the implementation tool for the AO. The Ontology support activities that were identified as

relevant to the AO development process were knowledge acquisition, ontology documentation,

and ontology evaluation. During this period roles were also assigned to a number of staff

assistants on the projects to alleviate the demands of knowledge acquisition and data gathering.

101

2. Support Activities in AO Development

The three types of ontology support activities undertaken in the course of developing the AO are:

Knowledge acquisition, ontology documentation and ontology evaluation. The knowledge

acquisition involved gathering data on available tourism accommodation resources within our

domain of West African sub-region. Three groups of data collectors were simultaneously

engaged to dig out facts on various types of accommodation in the three West African countries

of interest (Nigeria, Ghana and Ivory Coast). The sources of information included: DMO

Websites, documents from National Tourism Agencies, product brochures obtained from

operators and available information on operators’ websites.

The documentation and syntactic evaluation of the ontology was undertaken using the Protégé

3.3.1 ontology development tool.

3. Development Activities in AO Development

The details of the pre-development, development and post-development activities that are

associated with the AO are described as follows.

i) Feasibility and Environmental Study

The structure of the AO emulated the Harmonise Ontology (Dell’Erba et al., 2002). The

difference is mainly in the scope of the information covered and the content. While Harmonise

contains facts about events and accommodation types, the AO is limited to facts on

accommodation. During this period, a decision to build the AO was taken, because it was

considered a feasible and worthwhile endeavour with obvious attendant benefits when executed.

ii) Specification of the AO

The purpose of the AO is to provide a semantic representation of knowledge about the specific

attributes of available types of tourism accommodation within a domain. This is intended to

102

enable semantic web applications that need such for the generation of knowledge-based tourism

destination recommendations or semantically enabled tourism query processing.

iii) Conceptualization of the AO

Five attributes of tourism accommodation types were considered most crucial drawing

knowledge gained from literature. These are: 1) Services: which are the various kinds of services

rendered by a place of tourism accommodation; 2) Gastro: which defines types of eateries,

cuisines or restaurant near a tourism accommodation; 3) Attraction: which describes the types of

special attractions within or near a hotel; 4) State: which describes the province, city or region

where an accommodation is located; and 5) Facilities: which describes the types of physical

facilities available for the comfort of guests in the tourism accommodation. Different types of

accommodation types were also identified which includes: hotel, rented apartments, guest house,

luxury hotel, mini-hotel etc.

Based on these observations, a conceptual taxonomy of accommodation was developed

consisting of an Accommodation superclass and five disjointed classes (Attraction,

HotelServices, Facilities, Gastro, and State) which represent the feature attributes of every

instance of the Accommodation class. The Accommodation class is abstracted as an exhaustive

decomposition of all available accommodation types which are its subclassses. The subclasses of

Accommodation are: Hotel, Hostel, GuestHouse, WholeHouse, Chalet, and LuxuryHotel.

The subclasses of Accommodation are linked to it through ‘ISA’ relationship, while each of the

classes representing an accommodation attribute is linked to the Accommodation class via

‘FeatureOf’ relationship.

In the figure 4.6, Hotel, Hostel, GuestHouse, WholeHouse, Chalet, and LuxuryHotel were shown

to be kinds of Accommodation using ISA relationship denoted with the solid line arrow

connections between the different nodes in the graph. The feature attributes of an

103

Accommodation class such as Services was represented using the dotted line arrow connections

which represent a FeatureOf association.

iv) Formalization of the AO

Formally, we define the components of AO as a set C and a set R as follows:

C= {Accommodation, Hotel, Hostel, GuestHouse, WholeHouse, Chalet, LuxuryHotel, Gastro,

Services, Facilities, Attractions, State} and R = {“ISA”, “FeatureOf”}, where each ci ∈ C is a

concept name and ri ∈ R is the type of relationship relating two non-empty concepts or concept

properties.

Attractions

Gastro

Accommodation

Hotel

LuxuryHotel

GuestHouse
Chalet WholeHouse

WholeHouse

Facilities
Services

State

ISA

FeatureOf

Figure 4.6 A Semantic Graph of Concepts in the AO

104

Just as in the DCO, we engaged the UML (Unified Modelling Language)

(www.omg.org/technology/documents/formal/unifiedmodelinglanguage.htm) notations to

formalize our conceptualization of the AO as shown in figure 4.7; the UML is used here as a

representation language to describe the components of the AO.

v) Implementation of the AO

The AO was implemented as an OWL-KR ontology using the Protégé 3.3.1 Ontology Editor.

The OWL ontology consists of six disjointed classes namely: Accommodation, Attraction,

Facilities, Services, Gastro and State. Six classes: LuxuryHotel, Hotel, GuestHouse, Hostel,

WholeHouse and Chalet were defined as subclasses of the Accommodation class. The classes:

Figure 4.7 UML Representation of the AO

Accommodation

Services

Facilities

Gastro

Attraction

State

 Chalet WholeHouse Luxury

Hotel

1

1 1

1

1

1

1

1

1

 FeatureOf

FeatureOf

FeatureOf

FeatureOf

FeatureOf

 Hotel GuestHouse Hostel

105

Accommodation, Attraction, Facilities, Services, Gastro and State which are the product features

of a tourism accommodation were related to the Accommodation class by using OWL object

properties.

The object properties in the ontology are hasServices, hasGastro, hasAttraction, hasState, and

hasFacilities. While hasState was defined as a functional property that maps an accommodation

type to a particular state in the country, all the other object properties are non-functional

properties, that have their maximum cardinality set to 20. This ensures that up to 20 different

object property values can be specified for each of the attributes classes of Attraction, Facilities,

Services, Gastro for every instance of an Accommodation class. During application engineering

specific instance of classes in the ontology (OWL individuals) were created to populate the

ontology with concrete facts that pertain to specific destinations within the West African sub-

region. Figure 4.8 are snapshots from the implementation of the AO using protégé 3.3.1.

vi) OWL Representation of the AO

A fragment of the OWL representation of the ontology is shown in Figure 4.9 below. This

fragment shows the description of the Hotel (1), Gastro (2), and Facilities (3) classess. Also

shown are the hasGastro (4) and hasFacilities (5) properties.

Figure 4.8 A Snapshot AO Classes in Protégé 3.3.1 OWLViz - Tab

106

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [
 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
]>
<rdf:RDF xmlns="http://www.owl-ontologies.com/Ontology1203659989.owl#"
 xml:base="http://www.owl-ontologies.com/Ontology1203659989.owl"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <owl:Ontology rdf:about=""/>
<owl:Class rdf:ID="Hotel"> (1)
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasAttraction"/>
 <owl:maxCardinality rdf:datatype="&xsd;int">20</owl:maxCardinality>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasFacility"/>
 <owl:maxCardinality rdf:datatype="&xsd;int">20</owl:maxCardinality>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasGastro"/>
 <owl:maxCardinality rdf:datatype="&xsd;int">20</owl:maxCardinality>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasServices"/>
 <owl:maxCardinality rdf:datatype="&xsd;int">20</owl:maxCardinality>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 <rdfs:subClassOf rdf:resource="#Accomodation"/>
 <owl:disjointWith rdf:resource="#LuxuryHotel"/>
 <owl:disjointWith rdf:resource="#WholeHouse"/>
 <owl:disjointWith rdf:resource="#Chalet"/>
 <owl:disjointWith rdf:resource="#Hostel"/>
 <owl:disjointWith rdf:resource="#Guesthouse"/>
 </owl:Class>
<owl:Class rdf:ID="Gastro"> (2)
 <owl:disjointWith rdf:resource="#State"/>
 <owl:disjointWith rdf:resource="#Attraction"/>
 <owl:disjointWith rdf:resource="#Facilities"/>
 <owl:disjointWith rdf:resource="#Hotel_Services"/>
 </owl:Class>
<owl:Class rdf:ID="Facilities"> (3)
 <owl:disjointWith rdf:resource="#State"/>
 <owl:disjointWith rdf:resource="#Attraction"/>
 <owl:disjointWith rdf:resource="#Gastro"/>
 <owl:disjointWith rdf:resource="#Hotel_Services"/>
 </owl:Class>
 <owl:ObjectProperty rdf:ID="hasFacility"> (4)
 <rdfs:domain rdf:resource="#Accomodation"/>
 <rdfs:range rdf:resource="#Facilities"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasGastro"> (5)
 <rdfs:domain rdf:resource="#Accomodation"/>
 <rdfs:range rdf:resource="#Gastro"/>
 </owl:ObjectProperty>
 </rdf:RDF>

Figure 4.9 OWL Representation of Classes in the AO

107

4.3.3 Content Evaluation of PLONTOREC Ontologies

In the course of our ontology engineering endeavour, detailed content evaluation of the DCO and

AO were undertaken. The goal of content evaluation of the two ontologies was to detect

inconsistencies or redundancies that may exist in the ontology before they are engaged in TIS

applications development. According to Corcho et al. (2004), the application of content

evaluation techniques should take place during the entire ontology life-cycle, as well as during

the entire ontology-building process (Corcho et al., 2004). Also such evaluation procedure

should support the evaluation of concept taxonomies, properties, relations and axioms. This is

because there is a compelling need for ontologies to satisfy stronger requirements such as:

correctness, consistency, completeness, and conciseness) as it migrates to the commercial

domain. Therefore ontology evaluation ontology tools that can prevent possible anomalies in

ontologies, both in the research area and in the industrial area, are needed in order to provide

reliable ontology-based systems (Hartmann et al., 2005).

However, most of the well-known ontology development tools like OILed (Bechhofer et al.,

2001), OntoEdit (Sure et al., 2002), and Protègé, (http://protege.stanford.edu/) support content

evaluation mainly in the form of circularities detection, but lack the capability to identify

inconsistencies and redundancies in concept taxonomies. This brought about the need for us to

engage a complementary ontology evaluation tool such as ODEval (Corcho et al., 2004).

4.3.3.1 Validation and Evaluation with ODEval

ODEval (Corcho et al., 2004) is a tool that is mostly used to evaluate concept taxonomies of

RDF(S), DAML+OIL, and OWL from a knowledge representation point of view. It is a

complement for ontology parsers and ontology platforms. ODEval has capability to

automatically detect possible problems in ontology concept taxonomies as it relates to

inconsistency (circularity issues and partition errors), and redundancy problems. This tool is used

when the development of ontologies has finished. ODEval uses a set of algorithms based on

graph theory (Goodaire & Parmenter, 1998). An ontology concept taxonomy is considered as a

directed graph G (V, A), where V is a set of vertex and A is a set of directed arcs. For each

108

language and each type of problem, the elements in the sets V and A are different. It is used to

detect possible anomalies from a knowledge representation point of view. Hence, it is used to

help ontology developers in designing ontologies and helps ontology engineers to reuse

ontologies.

Some of key problems that may exist when taxonomic knowledge is modelled are given as

follows:

• Circularity problems: This is when a class is defined as a specialization or

generalization of itself. A circularity error is classified as being at distance zero if a class

generalizes or specializes itself. A Circularity error of distance one occurs if there exist a

Class_A that is defined as a subclass of Class_B and Class_B is also defined as a subclass

of Class_A. Thus circularity errors are classified based on the number of relations.

ODeval looks for cycles in the graph G (V,A) that represents an ontology.

• Partition problems: This involves detecting errors in disjoint groups: an error occurs in

a disjoint decomposition or a partition, formed by the classes {class_A1,

class_A2,…,class_An}, if there are common elements in two or more branches of the

partition.

• Redundancy problems: This occurs when for each class class_A in V and each arc ri in

A whose origin is class_A, taking ri out of A and check if this change affects the set of

elements reachable from the class_A. If no change, this means at least one of the ri is

dispensable. In this way, at least one problem can be found.

Figure 4.10 gives a preview of some of the potential problems that might appear in

taxonomies.

The ODEval tool was used on both the DCO and AO ontologies immediately after their

development using the Protégé tool. Immediately after developing each of the DCO and AO

ontologies, their RDF codes contained in their respective files OWL files were ported to ODEval

for content evaluation. We were able to get the two ontologies successfully parsed and certified

for consistency and lack of redundancy using the ODEval tool. Snapshots of results obtained

from the evaluation procedure are shown in the Appendix of this thesis.

109

Figure 4.10 Potential problems that might appear in taxonomies copied from (Gomez-

Perez et al., 2004)

110

4.4 DOMAIN ENGINEERING IN PLONTOREC

Domain engineering is the sub-process of software product line engineering that is concerned

with the construction of all reusable software assets that are used for building the variant

products in the product line. Domain engineering starts with domain analysis, whereby the

domain that is relevant for the product line is surveyed and basic requirements are collected. The

results are used in domain design to create abstract models that encapsulates the requirements of

all products in the product line. These models belong to different layers of abstraction, ranging

from architecture design to component design. Content components and other implementation-

related core assets are implemented in domain realization, tested and certified in domain testing

before they are later used for product composition in application engineering. The iterative and

dependency characteristics of domain engineering sub-processes are shown in figure 4.11.

4.4.1 Domain Analysis

The essence of the domain analysis process is to systematically capture the requirements for all

TIS products that will be eventually built in the product line. Therefore, during this time domain

requirements were gathered. The sources of information included the websites of national

tourism authorities of Nigeria, Ghana and Cote D’ivoire (http://www.nigeriatourism.net;

http://www.touringghana.com; http://www.tourisme.com), tourism information about these

countries gathered from web sources, information documents on tourism obtained from national

tourism agencies of the countries involved, and interaction with tourism experts.

Figure 4.11 Sub-processes of Domain Engineering

 Domain Engineering Activities

 Domain
 Analysis

 Domain
 Design

Domain
Realization

Domain
Testing

111

The domain analysis process produced a document that contained natural language descriptions

for scoping, and the necessary requirements for developing TIS for these countries. Details are

presented in the following sections.

4.4.1.1 Domain Requirements Engineering

Domain requirements engineering extends traditional requirements engineering by capturing the

commonalities and variabilities among software products in a product line in addition to

individual product requirements. The domain requirement engineering was initiated with domain

scoping, which is discussed next.

4.4.1.2 Domain Scoping

The essence of domain scoping is to define the limit of membership of a product line. It specifies

what is in the product line and what is not. The three activities undertaken during domain

scoping are:

• Portfolio Scoping: This helped to identify which products have sufficient commonalities

to be part of the product line. In our case study, the products of the product line were TIS

that are expected to particularly offer knowledge-based recommendations on specific

tourism objects such as destination, accommodation, travel packages, entertainment,

restaurants etc.

• Information domain scoping: This was used to identify the domain for the product

portfolio. The core functionalities that were relevant in the domain were also identified.

In our case study, the domain of consideration is tourism, with particular focus on three

countries in the West African region. These are Nigeria, Ghana and Cote D’ivoire.

• Asset scoping: This was used to identify the reusable parts that can be used to realize

different functionalities. The core assets that were identified as relevant to the three

national tourism domain considered are tourism recommender systems, web layout

templates, OWL ontologies, database query component, and database content builder

component.

112

4.4.1.3 Extracting the Base Requirements of the Product Line

The Application-Requirements Matrix approach was used to capture the commonality and

variability among TIS products in the product line (Pohl et al., 2005). An Application-

Requirements Matrix is a n x m matrix of identified application-requirements and individual

software products of a product line. The column headings of the Application-Requirements

Matrix are the software products while the row headings are the application requirements. At the

intersection of a row and a column, a mark is used to indicate if a particular requirement is

mandatory for a particular application. The requirements that have the mandatory mark in every

cell of one row are the common requirements, whereas the others are variable requirements.

Based on interaction and tourism information gathered from the different sources consulted, the

desired features in the TIS products of the product line are shown in Table 4.1. The

requirements that are marked ‘*’ represents optional features.

Requirements

Nigeria-TIS Ghana-TIS Ivory Coast-TIS

Destination Recommendation X X X
Accommodation Recommendation X X X
Restaurant Recommendation * * *
Travel Recommendation * * *

Web Layout X X X
Language Translation Feature X
Database Query Feature X X X
Database Content Update X X X

The common requirements that pertain to all three TIS products in the product line as obtained

from the Application-Requirement Matrix are listed as follows:

Destination Recommendation: to offer guide to users on choice of destination to visit based on

their individual tourism activity preferences.

Accommodation Recommendation: to offer guide to users on available accommodation types

based on their preferences in terms of desired services, attractions, location, and available

facilities.

Table 4.1 Application-Requirements Matrix obtained from Domain Analysis

113

Restaurant Recommendation: to offer recommendations to users on available restaurants and

gastronomy preferences, spending budgets, location etc. This is specified as an optional

requirement.

Travel Recommendation: to offer appropriate travel package recommendation to users based

on their personal preferences on multiple tourism objects such as accommodation, travel

activities, gastronomy, flight etc. This is specified as an optional requirement.

Web Interface Layout: This is a web-based GUI that is needed to access the features of the TIS.

Database Query Feature: This feature is to enable the information search and querying of

tourism information based on stored contents.

Database Content Update: This feature is to enable users to upload information about new or

existing tourism assets that they know about if such information do not previously exist. This

will help to populate the tourism asset database of a domain with usable data and current

information.

Language Translation Feature: This feature enables the multi-lingual translation of web

contents into alternative languages of English and French.

The information obtained from the Application-Requirement Matrix provided the basis for the

formulation of a reference architecture for the TIS product line.

4.4.2 Domain Design

The domain design phase of the case study was executed using the Feature Oriented Domain

Analysis (FODA) method approach (Kang et al., 1990). FODA begins with domain scoping,

which is followed by domain modelling and architecture modelling. Feature modelling is a

widely used technique to represent the commonality and variability of product variants on a

feature level in an implementation-independent way. Feature models describe the possible

configurations with all available options and constraints that are considered relevant to a product

line (Kang et al., 1990; Gomaa, 2005).

114

4.4.2.1 Feature Modelling of the Product Line

Feature modelling is the main activity of the domain modelling phase, where the characteristics

that are visible to the end-user are abstracted as features. Features are categorized into functional

features (i.e., functions of the application seen by the user), operational features (related to the

operation of an application from the user’s perspective), and presentation features (related to the

presentation of information to users). All features are represented in a feature model which

consists of (Kang et al., 1990):

1. A feature diagram: which graphically depicts a hierarchy of features, and has a

distinguished root. The nodes of the diagram other than the root represent features which

can be mandatory, optional (drawn with a circle above the feature name), or alternative

(drawn as children of the same parent feature, with an arc intersecting the connecting

lines). The feature diagram presents a view of all relevant features in a domain which can

be eventually included into a product variant. In a feature diagram, there is no notational

distinction between functional, operational, or presentation features.

2. Composition rules: which additionally express dependencies between features: mutual

dependency (“requires”) or mutual exclusion (“mutex-with”). Composition rules are

additional constraints limiting the choice of features.

3. A record of trade-offffffffs, rationales, justifications: This offers guidance during the

selection of features.

4. A record of system features: This keeps record of which features are used in which

systems with which values. This bears some similarities with a product map.

Each feature in a feature model must have a distinct name that is also included in a domain

terminology dictionary which is used throughout the modelling phase, and which describes the

meaning of features. The validity of a feature model, in terms of how well it captures all relevant

features and feature combinations, is usually verified by domain experts. The feature model of

the TIS product line is shown in figure 4.12.

115

In Figure 4.12 Composite features (e.g., “Tourism Recommender System”) consist of several

other features, while atomic features are not subdivided further (e.g. “Web Layout”). A line in

the diagram models the “requires” relationship between the possible features of a TIS software,

and in addition every feature has an imaginary flag (not shown) to mark if it is chosen for a

product or not. If a parent feature is not chosen in an instance, then all its children cannot be

chosen. The root “TIS” is, by definition, chosen for every product configuration. The mandatory

features “DRS”, “ARS” have to be implemented in every product. The features “Language

Translation Engine”, “RRS” and “TR” are optional, i.e., they are included only if desired by a

customer. An additional composition rule specifies that when the optional feature “TR” is

chosen, then its subfeature “Travel Ontology” must import other ontologies. A rationale

provides a notification guide on the relative cost of choosing the “TR” optional feature.

4.4.2.2 Reference Architecture for the Product Line

Based on the outcome of domain analysis and feature modelling, a reference architecture which

is called Tourism Information System Product Line Architecture (TISPLA) was formulated. The

TISPLA presents a logical view of the basic building blocks of all products in the product line, as

well as the commonality and variability that exist among the products of the product line. It is the

Figure 4.12 FODA feature Model for TIS Product Line

Rationale:
 TR has higher cost
Composition rule:

Travel ontology imports Destination ontology,
 Accommodation ontology, Restaurant Ontology

Accommodation

Ontology1

Tourism Recommender

System 1
Web

Layout1

Query

Engine1

Database Update 1

 TIS

Travel

Ontology1

1 - Mandatory feature
2 - Optional feature

DRS1 ARS1
RRS2 TR2

Destination

Ontology1
Restaurant

Ontology1

Language Translation

Engine2

116

foundational template from which all products in the PL evolve and embraces all possible

configurations of products that are realizable in the PL.

In figure 4.13 an architecture diagram (Ogush et al., http://www.architecture.external.hp.com) is

used to show the structural elements of the TISPLA. The architectural diagram gives a logical

view of the components in the PL and their interconnection paths using the UML class diagram.

The TISPLA is represented as a composite aggregation of all its components. Components are

modelled by the UML class symbol, while interconnections between components are modelled

by associations. The associations represent direct connections between components. The

direction of the association shows which component initiates the communication. Components

and associations are also stereotyped to show the type of component (common, optional) or a

connection. In the figure specific knowledge-based recommender systems that are enabled by

relevant ontologies were designated as common or optional features of the TISPLA. The web

interface is also shown as an aggregation of the information query, content builder and tourism

recommender system components.

Figure 4.13: The Architecture diagram of the TISPLA

TISPLA

Tourism

Recommender

<<Common>>

Destination

<<Common>>

Accommodation

<<Optional>>

Restaurant

<<Optional>>

Travel

<<Optional>

Language

<<Common>>

Information

Destination

Ontology

Accommodation

Ontology

Restaurants

Ontology

Travel Ontology

enables enables enables enables

Web Interface Layout

Embedded in
Embedded in Embedded in

<<Common>>

Content Builder

Embedded in

Tourism Asset

Database

enables
enables

117

4.4.2.3 Architecture Modelling and Specification of the TISPLA

In a product line, the dominant core asset is the reference architecture of the product line, which

is used at every product instantiation. Hence, the need for the engagement of a formal

mechanism to precisely define, evaluate and document the software product line architecture.

The formal specification of architecture has the potential to improve both quality and

productivity in the software development process because it facilitates the promotion of insight

and understanding of system properties at a higher level of abstraction than at module and codes

levels. It provides a basis for formal reasoning and a rigorous analysis of critical non-functional

system properties like modifiability, flexibility, reliability, extensibility and reusability

(Daramola et al., 2008).

The TISPLA was modelled as a layered style architecture using the Archstudio 4 (Garg et al.,

2003) architecture modelling tool, while an architecture description language (ADL) xADL 2.0

was used to formally describe its components. ADLs are a class of formal specification

languages that are equipped with formal constructs for describing the elements of software

architecture such as components, connectors and their configurations. The xADL 2.0 that was

used for the specification of the TISPLA is a highly extensible XML-based ADL embedded

within the Archstudio 4 modelling framework. It is preferred to other ADLs because it makes a

logical distinction between design-time (architectural prescriptions) and run-time (architectural

descriptions) state of a system in contrast to the other ADLs that assume the two to be the same.

Also, xADL has a rich tool support and a highly extensible nature that allow users to

independently extend its XML-based schema to suit their preferred semantic contexts.

Additionally, it provides support for product line modelling and model-based system

instantiation (Dashofy et al., 2001).

i) C2 style Model of the TISPLA

The TISPLA was modelled as an aggregation of concurrent components tied together by

message routing devices, which are the connectors (see Figure 4.14). Request is sent from the

client layer (Web Layout Component) at the bottom and notification from the top after a

response has been constructed. The tourism recommender components in the architecture

118

leverage the semantic knowledge representation at the semantic ontology layer in order to

improve the quality and dependability of recommendations to requesting clients. The rule of

interaction among the components of the TISPLA follows the c2 architectural style (Whitehead

Jr. et al., 1995). The choice to model the TPLA as c2 style architecture using Archstudio 4 also

has the advantage of automatically generating the equivalent formal description of the

architecture using the xADL 2.0 language. The c2 style imposes the principle of substrate

independence on the components of the architecture in which a component in the architecture

hierarchy is only aware of the component above it. This enables high substitutability that offers a

boost for modifiability and extensibility, especially in a product line context as it provides a

platform for the dynamic evolution of products. The c2 style also supports the use of

parameterizable components thereby facilitating the reusability of the architecture.

Customization of components is also possible based on the c2 style model of the TISPLA

(Whitehead Jr. et al., 1995). Thus the c2 style of the TISPLA gives an insight into a measure of

elasticity and extensibility of the architecture, which makes it potentially suitable as a reference

architecture for the TIS product line.

119

ii) Formal Specification of Components with xADL

The xADL schemas for the component type structures in the TISPLA were generated by

Archstudio. Each layer of the architecture is defined as a structure in xADL. The excerpts from

the complete specification of the TISPLA are shown in figures. 4.15-4.18. In figure 4.15, the

Web Layout

Services Layer Connector

Language
Translator

Query
Engine

Content
Builder

Destination
Recommender

Accommodation
Recommender

Restaurant
Recommender

Travel
Recommender

Semantic Layer Connector

Destination
Ontology

Accommodation
Ontology

Restaurant
Ontology

Travel
Ontology

Data Layer Connector

Tourism
Asset
Database

Figure 4.14 The c2-style layered View of the TISPLA in Archstudio

Web Layout

Services Layer Connector

Language
Translator

Query
Engine

Content
Builder

Destination
Recommender

Accommodation
Recommender

Restaurant
Recommender

Travel
Recommender

Semantic Layer Connector

Destination
Ontology

Accommodation
Ontology

Restaurant
Ontology

Travel
Ontology

Data Layer Connector

Tourism
Asset
Database

120

TISPLA is shown to contain 4 structures, each structure representing a layer of the TISPLA

architecture. Figure 4.16 and 4.17 show xADL specifications of the Information Query (a basic

component) and Language Translation Engine (an optional component) components of the

TISPLA.

The extensible nature of xADL schemas was engaged to extend the specifications of the

Recommender System components in the TISPLA with the addition of the “<UseResource>”

schema to indicate the essential resources required by the components to realize their respective

functionalities. In Figure 4.18 the Destination Recommender component is specified as basic

component in the product line that requires the services of semantic components of the TISPLA.

The extension was made in order to promote a better understanding of the semantic properties of

the component concerned in contrast to normal xADL descriptions that does not capture the

semantic attributes of components (http://www.isr.uci.edu/projects/xarchuci/). In Figure 4.19, a

sample specification of a semantic component type (Destination Context Ontology) is shown

with the lookup implementation extension schema in xADL used to indicate the implementation

source (source file) of the ontology component.

+<types:archStructure types:id="ClientLayer" xsi:type="types:ArchStructure">
+<types:archStructure types:id=" LogicServicesLayerStructure "types:ArchStructure">
+<types:archStructure types:id="SemanticLayerStructure" xsi:type="types:ArchStructure">
+<types:archStructure types:id="DataLayerStructure" xsi:type="types:ArchStructure">

Figure 4.15 Structures in the TISPLA

<types:component types:id=" InformationQueryComp " xsi:type="types:Component">
<types:description xsi:type="instance:Description">Database Query Engine</types:description>
<types:interface types:id="UserProfile_upper" xsi:type="types:Interface">
<types:description xsi:type="instance:Description">Upper Interface</types:description>
<types:direction xsi:type="instance:Direction">inout</types:direction>
</types:interface>
<types:interface types:id=" InformationQuery_bottom " xsi:type="types:Interface">
<types:description xsi:type="instance:Description">Bottom Interface</types:description>
<types:direction xsi:type="instance:Direction">inout</types:direction>
</types:interface>
<types:interface types:id=" InformationQuery _bottom " xsi:type="types:Interface">
<types:description xsi:type="instance:Description">Bottom Interface</types:description>
<types:direction xsi:type="instance:Direction">inout</types:direction>
</types:interface>
</types:component>

Figure 4.16 xADL Specification of Information Query Component

121

<types:component types:id="LangTranslationComp" xsi:type="options:OptionalComponent">
<types:description xsi:type="instance:Description">Language Translation Engine</types:description>
<types:interface types:id="UpperInterface" xsi:type="types:Interface">
<types:description xsi:type="instance:Description">Upper Interface</types:description>
<types:direction xsi:type="instance:Direction">inout</types:direction>
</types:interface>
<types:interface types:id="BottomInterface" xsi:type="types:Interface">
<types:description xsi:type="instance:Description">Bottom Interface</types:description>
<types:direction xsi:type="instance:Direction">inout</types:direction>
</types:interface>
<options:optional xsi:type="options:Optional"/>
</types:component>

Figure 4.17 xADL Specification of Optional Language Translation

<types:component types:id="DRS_RecommComp" xsi:type="types:Component">
<types:description xsi:type="instance:Description">Destination Recommender</types:description>
<types:interface types:id="UpperInterface" xsi:type="types:Interface">
<types:description xsi:type="instance:Description">Upper Interface</types:description>
<types:direction xsi:type="instance:Direction">inout</types:direction>
</types:interface>
<types:interface types:id="BottomInterface" xsi:type="types:Interface">
<types:description xsi:type="instance:Description">Bottom Interface</types:description>
<types:direction xsi:type="instance:Direction">inout</types:direction>
</types:interface>
<types:useResource type:id="DRS_RecommComp _neededResource1 " xsi:type="types:useResource">
<types:description xsi:type="instance:Description">uses Technology Layer Service</types:description>
<types:resourceid xsi:type="instance:resourceid">#SemanticComponentType</types:resourceid>
</types:useResource>
</types:component>

Figure 4.18 xADL Specification of Destination Recommender Component

<types:componentType types:id="DestinationOntologycomponentType" xsi:type="implementation:VariantComponentTypeImpl">
<types:description xsi:type="instance:Description">SemanticComponent Type</types:description>
<types:signature types:id="SemanticTypeUPsignature" xsi:type="types:Signature">
<types:description xsi:type="instance:Description">Semantic Component upper Signature</types:description>
<types:direction xsi:type="instance:Direction">inout</types:direction>
<types:serviceType xsi:type="types:SignatureServiceType">Provides</types:serviceType>
</types:signature>
<types:signature types:id="SemantictypeBTSgnature" xsi:type="types:Signature">
<types:description xsi:type="instance:Description">Semantic Component Lower Signature</types:description>
<types:direction xsi:type="instance:Direction">inout</types:direction>
<types:serviceType xsi:type="types:SignatureServiceType">Provides</types:serviceType>
</types:signature>
<implementation:implementation xsi:type="lookupimplementation:LookupImplementation">
<lookupimplementation:name
xsi:type="lookupimplementation:LookupName">http://sample.org/destinationontology</lookupimplementation:name>
</implementation:implementation>
</types:componentType>

Figure 4.19 xADL Specification of Destination Context Ontology Component

122

4.4.2.4 Description of DRS Component

The design of the DRS was based on a hybrid architecture that leverages content-based filtering

and case-based reasoning (Vozalis & Margaritis, 2003) for destination recommendations. The set

of travel activity preferences of a user is used as input, which is then correlated with the content

description of various destinations to construct an ordered list of top nearest neighbourhood

matches. Therefore, destination recommendation can be represented as an event-matching

problem such that:

Given the conjunction predicate Userj that denotes the activity preferences of a user and their

associated priority ratings i.e.

Userj = a1r1 Λ a2r2 Λ a3r3… Λ akrk

where each ai is a specific travel activity feature, and ri the priority rating score of ai. We define a

predicate function

1 (if ai has been selected)

 pred(ai) =

 0 (if ai has not been selected)

such that Pj becomes a pattern vector for the activity preferences of Userj :

 Pj = <x1.r1,x2.r2,…xk.rk> where each xi = {0,1} and integer ri such that 0 ≤ ri ≤ 5.

If V= {a1, a2,…an} is the set of possible travel activities and U = {c1, c2…cm} is the set of

possible destinations then recommendation is given as: F (V) → X where X ⊂ U.

In our approach, we incorporated the description of the social attributes of a destination as

defined in the Destination Context Ontology (DCO). Such that if the matrix Smj represents the

description of j (where j is the maximum cardinality for social attributes) social attributes of m

cities, then the augmented recommendation function becomes:

F(V, Smj) → X* where X* ⊂ U.

Given that X Θ Smj →X* where Θ is an ontology filtering operator, and X* ⊂ U is a re-ordering

of X.

The hybrid DRS architecture consists of the following (see Figure 4.20):

• A Content-Based Filter (CBF): This is responsible for generating the initial top-N

recommendations after performing nearest-neighbour vector space matching between a

123

given set of selected travel activities and activity features of prospective destinations. A

personalized frequency-based metric Tij is computed for each possible destination after

using a set of knowledge-based rules to associate specific tourist assets stored in a

tourism asset database with particular travel activities i.e.

Tij = ∑(kjfi)Pi (4.1)

Where

kj = number of times activity ai has been selected by userj / number of times userj

has traveled, hence kj is a personalization factor for userj based on the travel

history.

fi = frequency count of assets for activity ai in a destination / total frequency count

of assets for activity ai. in the database.

Pi = the priority score rating of activity ai, if ai has been selected or 0 if not selected

• A Cased-Based Reasoner: The case-based filtering component endows the DRS with

alternative personalization capability leveraging users’ travel history. To achieve this, the

systems stores the activity preferences profile and recommended results of all user

sessions in its case base such that when a new user arrives, it does case matching using

the cosine similarity metric (Vozalis & Margaritis, 2003) (see Equation 2.2) to determine

the best-match from the case base. The recommendations for the best-matching case are

given as the initial recommendations for the new case thus acting in this context as an

exemplar case-based reasoner (Porter, 1987). This makes the system to generate its

recommendations faster in that the use the content-based filtering approach is avoided.

• Ontology Engine: The ontology engine in the DRS architecture consumes the initial

recommendations of the content-based / case-based filters and revises it after performing

ontological reasoning based on facts stored in the ontological knowledge base (which is

an instantiation of the DCO with the specific facts of a domain) so that a re-ordered top-N

list of recommendations is produced.

124

DRS Algorithm

Function DRS (Userj: List, N):List

{The function matches the selected preferences of a user with the content description of possible destinations to

return an ordered list of top-N destinations;

 Userj is a list of travel activity preferences of a user; N is number of products to recommend

CosineMetric(): computes a similarity score for userj using the cosine similarity metric

 Similarityscore[]:An array of similarity scores

CaseBased-Filter(): implements a case-based reasoning algorithm; returns a list of size n

Content-Based Filter(): implements a nearest-neighbour search algorithm; returns a list of size n

OntoFilter(): is an ontology reasoner function; returns a List of size n

Exist(): implements a database find function; returns a Boolean result; Flist: list of initial N-recommendations}

SimilarityScore[j] ← CosineMetric(Userj)

If Exist(SimilarityScore[j]) and Exist(Userj) then return CaseBased-Filter(Userj, N)

 else if FList ← ContentBased-Filter(Userj, N)

 return OntoFilter(Flist, N)

End function

Case-Based Reasoning

(CBR) Component

Case

Matching
(Similarity

Case

Retrieval
Case
Indexing and
Retention

New case

User

Interface
(GUI)

• User Preferences

• Activity Profile

• City Attributes

• Content-Based
filtering

• Preferences

Ontology Engine

Tourism
Asset

Database

 Rule-based

Inference

Engine

Figure 4.20 Schematic Hybrid Architecture of DRS Component

Case-Based Reasoning

(CBR) Component

Case

Matching
(Similarity

Case

Retrieval
Case
Indexing and
Retention

New case

User

Interface
(GUI)

• User Preferences

• Activity Profile

• City Attributes

• Content-Based
filtering

• Preferences

Ontology Engine

Tourism
Asset

Database

 Rule-based

Inference

Engine Top-N List

Figure 4.20 Schematic Hybrid Architecture of DRS Component

Case-Based Reasoning

(CBR) Component

Case

Matching
(Similarity

Case

Retrieval
Case
Indexing and
Retention

New case

User

Interface
(GUI)

• User Preferences

• Activity Profile

• City Attributes

• Content-Based
filtering

• Preferences

Ontology Engine

Tourism
Asset

Database

 Rule-based

Inference

Engine Top-N List

125

4.4.2.5 Description of the ARS Component

The ARS is a knowledge-based recommender system that leverages the knowledge captured

about specific accommodation types in the AO to generate recommendations. By so doing deep

knowledge filtered from the content description of key attributes of different accommodations

types are used for recommendations. Formally, we could say that:

Given V= {a1, a2,…an} as the set of available accommodations and the vector U as the selected

accommodation preferences of a user (in terms of type, facilities, services, attraction, gastro, and

location of accommodation) i.e. Uj = <x1, x2, x3 … xk >

Then recommendation is given as: F (V, U) → N where N is an ordered list ⊂ V

The architecture of the ARS consists of the following (see Figure 4.21):

Inference Engine: This provides a basis for reasoning for decision making by the ARS.

Ontological Knowledge base: This is an instantiation of the Accommodation Ontology (AO)

using specific instances. Facts about specific accommodation types such as hotels, guest houses,

rented apartments etc. are captured in the knowledgebase.

Ontological Filtering Component: This executes an algorithm that matches the content

descriptions of accommodation instances with the specified preferences of the user. It returns a

Top –N list, where N is the number of product recommendations required by the user.

ARS Algorithm

Figure 4.21 Schematic Architecture of the ARS Component

 Inputs

Ontological

Filtering

Component

Ontological

Knowledge-base

Inference

Engine

Top-N List

126

Function ARS (Uj : List, N):List

{ The function matches the attributes of accommodation selected by a user with the content description of

available accommodation types to return an ordered list of top-N destinations;

 Userj is a list of selected attributes of accommodation by a user

OntoRecommend(): is an ontology reasoner function; returns a List of size n

If Uj← {v1,v2,v3…,vn}

 OntoRecommend Computes v1 Λ v2 Λ … vn

Rlist: list of initial N-recommendations }

Rlist ← OntoRecommend(Uj, N)

 return Rlist

End function

4.4.2.6 Description of Other Components

The design of other content components of the TISPLA architecture was undertaken during

domain design. These include:

i) The Web Layout: A web layout template was designed and stored as a cascading style

sheet file using the Dream Weaver and Macromedia Flash design tools as platform on

which the web interfaces of the TIS products will be based. The layout has four ports

which represents the four core functionalities that will be realized in each of the TIS

product. These are: destination recommendation, accommodation recommendation,

Information search, and content update.

ii) Tourism Asset Database: A database schema design to store information on available

tourism assets was also formulated. The structure of the tourism database was modelled

following the structure of Canadian Tourism Board Database. Table 4.2 gives an

overview of the structure of the tourism asset database.

127

Table 4.2: Overview of the Structure of Tourism Asset Database

Field Name Description Type Size

Assetcode The code used to represent a tourist
asset

String 10

Asset Name of a tourism asset String 150
Category The tourism asset category String 50
Subcategory The tourism asset subcategory String 50
District The district in which a tourism asset is

located
String 150

LocalGovt Local government in which a tourism
asset is located

String 100

State The state in which an asset is located String 100
Province-Region The province or region in which a

tourism asset is located
String 100

Authority The tourism authority or private
enterprise that manages or owns the
tourism asset

String 50

City-Town The city or town where the tourism
asset is situated

String 50

Latitude Latitude of the location of the tourism
asset

Number 12

Longitude Longitude of location of the tourism
asset

Number 12

Last-update The date when information on tourism
asset was first supplied or last updated

Date 12

Route Description of the route to the location
of the tourism asset or its map
information

String 100

Source The source or provider of information
on tourism asset

String 50

Picture Snapshot of the image of the tourism
asset

Image 65535

4.4.3 Domain Realization

The domain realization phase involved the construction of the domain components using Java

programming language implementation technologies. The content components that were

implemented include 1) Destination Recommender System 2) Accommodation Recommender

System 3) Database Query Component and 4) Database Layout Template. A fifth component,

the Language Translation Engine was sourced as a standard Plug-in component from the Java

128

open source platform. The details of the components and tools used for implementation and the

implementation procedure are presented next.

4.4.3.1 Implementation Components and Tools

The software tools used for the implementation of content components include the following:

i) NetBeans 5.5: The NetBeans integrated development environment (IDE) is a free, open-

source IDE for developing Java applications, including enterprise applications. NetBeans

5.5 supports the Java Enterprise Edition 5 (Java EE 5) platform.

ii) Java EE Components: A Java EE component is a self-contained functional software

unit that is assembled into a Java EE application with its related classes and files that

communicate with other components. The Java EE specification defines the following

Java EE components:

• Application clients and applets are components that run on the client.

• Web components include Java Servlet, JavaServer Faces, and JavaServer Pages

(JSP) technology components. They run on the server.

• Enterprise JavaBeans (EJB) components are business components that run on the

server.

iii) Java Servlet Technology: This enables the definition of HTTP-specific servlet classes.

A servlet class extends the capabilities of servers that host applications that are accessed

by way of a request-response programming model. Although servlets can respond to any

type of request, they are commonly used to extend the applications hosted by web

servers.

iv) JavaServer Pages Technology: This allows the addition of snippets of servlet code

directly into a text-based document. A JSP page is a text-based document that contains

two types of text: static data (which can be expressed in any text-based format such as

HTML, WML, and XML) and JSP elements, which determines how the page constructs

dynamic content.

v) Enterprise JavaBeans Technology: An Enterprise Java Beans (EJB) component, or

enterprise bean, is a body of code having fields and methods to implement modules of

129

business logic. An enterprise bean is a building block that can be used alone or with other

enterprise beans to execute business logic on the Java EE server. It is a server-side

component written in the Java programming that encapsulates the business logic code

that fulfills the purpose of the application. The enterprise beans implements the business

logic in methods that when invoked enables clients to access the services provided by the

components. There are two kinds of enterprise beans: session beans and message-driven

beans. A session bean represents a transient conversation with a client. When the client

finishes executing, the session bean and its data are gone. A messagedriven bean

combines features of a session bean and a message listener, allowing a business

component to receive messages asynchronously. Commonly, these are Java Message

Service (JMS) messages. In Java EE 5, entity beans have been replaced by Java

persistence API entities. An entity represents persistent data stored in one row of a

database table. If the client terminates, or if the server shuts down, the persistence

manager ensures that the entity data is saved.

vi) Java Database Connectivity API: This allows SQL commands to be invoked from Java

programming language methods. The JDBC API is used in an enterprise bean when there

is a need for a session bean to access the database. The JDBC API can also be used from

a servlet or a JSP page to access the database directly without going through an enterprise

bean. The JDBC API has two parts: an application-level interface used by the application

components to access a database, and a service provider interface to attach a JDBC driver

to the Java EE platform.

vii) Sun Java System Application Server Platform Edition 9: This is a fully compliant

implementation of the Java EE 5 platform. It provides the necessary middleware

infrastructure support for all the Java APIs. The Application Server includes a number of

Java EE tools that are not part of the Java EE 5 platform but are provided as a additional

support to the developer.

viii) Macromedia DreamWeaver: This is a rapid application development tool for web

design and website development. It is the most popular visual HTML editor. It

enables the creation of web page templates, cascading style sheets and offers support

for multiple client-side programming languages such JSP, ASP.Net, VBscript,

JavaScript etc.

130

ix) MySQL Database: This is a database management system tool for managing the data

storage and retrieval. MySQL also has excellent query facilities and very suitable for

the configuration of network data servers on the web.

x) Protégé Ontology Editor: Protégé is a flexible, configurable platform for the

development of arbitrary model-driven applications and components. It has an

extensible and customizable toolset for constructing ontologies and for developing

applications that use these ontologies. Some of the outstanding features of Protégé

include: 1) Automatic generation of graphical-user interfaces, based on user-defined

models, for acquiring domain instances; 2) Extensible knowledge model and

architecture; 3) Possible embedding of standalone applications in Protégé knowledge

engineering environment and vice versa; and 4) enabling the scalability of ontologies

to very large knowledge bases. Protégé also has an open architecture that allows

programmers to integrate plug-ins, which can appear as separate tabs, specific user

interface components (widgets), or perform any other task on the current model. The

Protégé-OWL editor provides many editing and browsing facilities for OWL models,

and therefore serves as an attractive starting point for rapid application development.

xi) Protege-OWL API: This is an open-source Java library for the Web Ontology

Language (OWL) and RDF(S). The API provides classes and methods to load and

save OWL files; to query and manipulate OWL data models; and to perform

reasoning based on Description Logic engines. Furthermore, the API is optimized for

the implementation of graphical user interfaces. The API is designed to be used in

two contexts: 1) For the development of components that are executed inside the

Protégé-OWL editor's user interface; and 2) For the development of stand-alone

applications (e.g., Swing applications, Servlets, or Eclipse plug-ins)

xii) Pellet Reasoner: This is a Description Logic Reasoner that allows automated

reasoning to be performed over an ontology. A Description Logic Reasoner performs

various inferencing services, such as computing the inferred superclasses of a class,

determining whether or not a class is consistent (a class is inconsistent if it cannot

possibly have any instance), deciding whether or not one class is subsumed by

another, etc.

131

xii) Language Translation Engine: This is an open source translation engine

implemented by Google that equips content management systems on the web with

language translation capabilities.

4.4.3.2 Implementation Details

The implementations of components were based on Java Platform Enterprise Edition (JEE) using

the NetBeans 5.5.1 Java IDE. The recommender system components were implemented as

stateless session beans (Enterprise Java Beans - EJB) that have their functionalities triggered

using Java Servlet technology. Each of the recommender system EJBs were made to reference

the relevant Protégé Ontology Java AP1 in order to enable the required ontology querying and

description logics reasoning capabilities. The Pellet 1.5 Descriptive Logics (DL) reasoner

(http://pellet.owldl.com) was used as the reasoning engine for the ontology-based transactions.

The tourism asset database was implemented in MySQL, which exploits the JDBC technology to

connect to the EJBs. The database query component was implemented as a generic

parameterizable EJB that accepts user request to construct responses. The web layout template

was implemented a cascading style sheet file using Macromedia Flash and Macromedia Dream

Weaver tools. All components were deployed on the Sun Application Web Server 9.0 which

serves as the middleware infrastructure for all server-based services. In figure 4.22 a view of the

run-time deployment architecture of the domain components is presented. It is a 3-tier

architecture showing the configuration of the content components as deployed on the Java EE

server in the middle layer. The data layer (backend systems) consisting of ontologies and

databases makes up the third layer while request for services are made through the client layer.

132

4.4.4 Domain Testing

Domain testing entails the testing of core asset components developed during domain realization.

It differs from traditional application testing, in that the domain core assets are not yet a complete

executable application which can be subjected to full-scale testing. However, it is desirable to

test core assets, so as to assess their fitness for product line composition and in order to be able to

correct defects noticed in them as early as possible. Among the varied domain system testing

strategies that exist, the Simple Application Strategy (SAS) and Commonality and Reuse

Strategy (CRS) was found most feasible in a product line context, hence as suggested in (Pohl et

al., 2005) a combination of SAS and CRS was used for our domain testing.

Figure 4.22: Deployment Architecture of System Components

Component

Services Tier

Deployed on

JEE Server

Back-end Systems

Web
Browser

Servlets, JSP

DRS, ARS, DBQ, Content Builder, Language Translator (EJB Components)

Middleware Connectors
JDBC, Sun App. Server

 Tourism Asset
Databases

HTTP

MYSQL

Destination
Ontology

Client Tier

Semantic Matching Engine (Ontology
Reasoner and APIs

Accommodation
Ontology

133

4.4.4.1 Using Simple Application Strategy (SAS)

The SAS of domain testing entails the creation of a sample prototype application with a typical

product configuration using the implemented domain components as core assets. The purpose of

SAS is to facilitate early validation and performance assessment of the core assets used. In

essence, the SAS subsumes the unit testing and integration testing of the domain components

used in a sample application. Also, the test cases generated during SAS can later be customized

for reuse during application testing.

In our case study, we engaged SAS domain testing by developing a prototype web platform for

one of the products (The Nigeria-TIS). The configuration of the sample application included the

destination and accommodation recommendation features, database query, and database update

features. This enabled us to test all the implemented core assets in order to certify them for use in

application engineering. During SAS domain testing, some of the initial defects noticed in the

functionalities of the domain components were corrected. Some of the issues had to do with the

accuracy of recommendations particularly when the Top-n value supplied by a user is more than

the number of generated recommendations from the available content catalog. An instance of this

is if a user wants a Top-6 recommendation in a category where only four products exist. In this

kind of situation a system will be reckoned as functioning well if it can return the relevant Top-4

rated products instead of doing something else. Also, several issues of inter-components

interactions (between Servlet and EJB components, EJBs and Ontology Reasoner components,

tourism database and EJB components) were resolved. Also, exception handling issues that were

necessary to enhance the robustness of the domain components were attended to during SAS

domain testing.

4.4.4.2 Using Commonality and Reuse Strategy (CRS)

The goal of CRS domain testing is to assess the integration of the common parts of each product

with the variable parts. In the CRS domain testing, test cases are defined for the common and

variable parts of an application. Common parts are tested with the appropriate test cases as far as

possible. Later, all predefined test cases are reused in application testing for a chosen system

134

configuration to test the variable parts and once again the common parts to see if they work as

intended.

In our case study, we constructed test cases for the common components of our product

configurations based on the specification of the Application-Requirement Matrix (see Table 4.1).

The configuration of the Nigeria-TIS was then used during application testing to test the

integration of the common parts (components) with the variable components to ensure that they

work together perfectly.

4.5 APPLICATION ENGINEERING IN PLONTOREC

Application engineering deals with the creation of specific products in the product line through

the reuse of domain core assets created in domain engineering and exploiting the product line

variability. The core activities of application engineering are application analysis, application

design, application realization, and application testing (see Figure 4.23).

In application engineering the parameterizable core assets are configured with concrete

parameters. Then, they are assembled to realize the needed features. Also some product-specific

additions are made in order to cater for product specific requirements. If domain engineering was

well conducted, the effort expended in application engineering should be much lower than in

single system development. In the particular instance of our case study three TIS products were

considered. These are the Nigeria-TIS, Ghana-TIS and Ivorian–TIS. The details of the sub-

processes of application engineering that was applied in realizing these products are presented in

the sequel sections.

Figure 4.23 Sub-processes of Application Engineering

 Application Engineering Activities

 Application
 Analysis

 Application
 Design

Application
Realization

Application
Testing

135

4.5.1 Application Analysis Process

The focus of application analysis process is to obtain requirements that are specific to concrete

products in the product line. Application analysis enabled us to pay attention to requirements

that were specific to the three national TIS products. Information contents local to specific

countries were sourced; attention was also given to the need to develop customized layouts that

reflects the unique national identities and essential attributes of the respective countries. The

biases of each country with respect to hospitality were also noted during this phase. The

summary of core application requirements for the three products is given as follows:

• Product-Specific requirements for Nigerian-TIS

- A web layout that distinctively represents the culture, tradition, characteristics and

ambience of the Nigeria nation and people. These include national flags, national

logos and images of national monuments unique to Nigeria.

- Provision of destination recommendation service to prospective visitors offering

guide on places to visit based on their preferred travel activity preferences.

- Provision of guide on available accommodation facilities in Nigeria (hotels, guest

houses, chalets etc.) based on a user’s preferences in terms of desired services,

attractions, facilities, gastronomy, location preferences. The recommendations are

further constrained by the selected accommodation type and budget of the user.

- Provision of query facilities that enable users to inquire information about existing

tourism assets in Nigeria.

- Creation of a platform that enables storing of information about new tourism

artifacts and the updating of information on existing Nigerian tourism assets.

• Product-Specific Requirement for Ghana-TIS

- A web layout that distinctively represents the culture, tradition, characteristics and

ambience of the nation and people of Ghana. These include national identifiers and

images of national monuments that are peculiar to Ghana.

- Provision of destination recommendation service to prospective visitors offering

guide on places to visit based on their preferred travel activity preferences.

- Provision of guide on available accommodation facilities in Ghana (hotels, guest

houses, chalets etc.) based on a user’s preferences in terms of desired services,

136

attractions, facilities, gastronomy, location preferences. The recommendations are

further constrained by the selected accommodation type and budget of the user.

- Provision of query facilities that enable users to inquire information about existing

tourism assets in Ghana.

- Creation of a platform that enables storing of information about new tourism

artifacts and the updating of information on existing Ghana tourism assets.

• Product-Specific Requirement for Ivorian -TIS

- A web layout that distinctively represents the culture, tradition, characteristics of the

nation and people of Cote D’ivoire. These include national identifiers and images of

national monuments that are peculiar to Cote D’ivoire.

- Provision of destination recommendation service to prospective visitors offering

guide on places to visiting based on their preferred travel activity preferences.

- Provision of guide on available accommodation facilities in Cote D’ivoire (hotels,

guest houses, chalets etc.) based on a user’s preferences in terms of desired services,

attractions, facilities, gastronomy, location preferences. The recommendations are

further constrained by the selected accommodation type and budget of the user.

- Provision of query facilities that enable users to inquire information about existing

tourism assets in Cote D’ivoire.

- Creation of a platform that enables storing of information about new tourism

artifacts and the updating of information on existing tourism assets in Cote D’ivoire.

- A multi-language language web platform that allows presentation in the language of

English and French.

The output of the application analysis activity revealed that the application requirements were in

tandem with the previously established domain requirements, which suggest that they are

realizable through a product line approach.

137

4.5.2 Application Design Process

During application design, the artifacts of domain design are instantiated with the product-

specific requirements obtained from application analysis to create design for individual

products in the product line. Based on the results of application analysis, valid features

configurations were chosen for each application as derived from the feature model developed in

domain design (discussed in Sect. 4.4.2.1). Also, the reference architecture obtained from

domain design is adapted with concrete data, and specific parameters to realize variant

applications using the established variation points.

In our case study, the application design for each of the TIS products were derived directly from

the reference architecture given in figure 4.13. First the concepts of the two ontologies (i.e.

DCO, AO) were adapted to fit the specific context of individual countries. For example the

concept ‘State’ which connotes a regional unit of governance in the Nigerian context was

customized as ‘Province’ in the Ghanaian and Ivorian contexts of national governance.

Thereafter the ontologies were instantiated with specific national information contents of the

three countries to become national tourism knowledge bases (i.e. Nigerian Destination

Ontology, Nigerian Accommodation Ontology, Ghana Destination Ontology, Ghana

Accommodation, Ivorian Destination Ontology, and Ivorian Accommodation Ontology). The

Tourism databases for the three countries were designed and populated with relevant local

contents. The 3 databases had largely identical structure except for differences in the

nomenclature of few fields (but the total number of fields was the same).

The valid feature sets derived from the domain feature model (see Figure 4.12) are shown for

each of the TIS product variant. They are enumerated below (the root node is omitted and

composite features contain subfeatures in parentheses):

Nigerian-TIS = {Tourism Recommender System (DRS (Nigeria Destination

Ontology), ARS (Nigeria Accommodation Ontology)), web layout, query engine,

database update (Nigeria Tourism Asset Database)}

Ghana-TIS= {Tourism Recommender System (DRS (Ghana Destination ontology),

138

ARS (Ghana Accommodation Ontology)), web layout, query engine, database update

(Ghana Tourism Asset Database)}

Cote D’ivoire-TIS= {Tourism Recommender System (DRS (Ivorian Destination

ontology), ARS (Ivorian Accommodation Ontology)), web layout, language

translation engine, query engine, database update (Ivorian tourism Asset

Database)}

The feature tree (FT) model of the three TIS product instances are shown in figures 4.24 –figures

4.26.

Nigerian Accommodation
Ontology

(Common)

 Nigeria-TIS

Tourism Recommender System
(Common)

Nigerian Destination
Recommender System
(Common)

Nigerian
Accommodation
Recommender System
(Common)

Nigerian Tourism
Web GUI

(Common)

Nigerian Tourism Information
Query Engine
 (Common)

Nigeria Tourism Content
 Builder

 (Common)

Nigerian Destinations Ontology
(Common)

Nigerian Tourism Asset Database
(Common)

Figure 4.24 Feature Tree Model of Nigeria-TIS

Figure 4.25 Feature Tree Model of Ghana-TIS

 Ghana-TIS

Tourism Recommender System
(Common)

Ghana Destination
Recommender System
(Common)

Ghana Accommodation
Recommender System
(Common)

Ghana Tourism
Web GUI

(Common)

Ghana Tourism Information Query
Engine

 (Common)

Ghana Tourism Content
 Builder

 (Common)

Ghana Destinations Ontology
(Common)

Ghana Tourism Asset Database
(Common)

Ghana Destinations Ontology
(Common)

139

4.5.3 Application Realization Process

Application realization commits to implementation of specific products in a product line

leveraging the components developed during domain engineering. Hence, the focus of our

implementation process shifted from a detailed development to customization and assembly of

software components to realize specific product requirements.

The programming implementation platform used for the TIS products was Java 2 Enterprise

Edition. The national tourism knowledge bases were created by populating the DCO and AO

ontologies for each of the three countries with specific facts (individuals). Also, tourism

information that pertains to each country was sourced and used to populate the respective

tourism databases of the three countries. Java Servlet technology running on Sun Application

Web Server 9.0 was employed to launch the functionalities of the recommender systems and

information query components embedded in each of the national TIS products. The tourism

databases were implemented in MySQL, using the JDBC Connector for connectivity. The web

interfaces for each of the countries were implemented with Macro Media Flash and Dream

Weaver web design tools leveraging a uniform web layout cascading style sheet template, while

Figure 4.26 Feature Tree Model of Ivorian-TIS

 Ivorian-TIS

Tourism Recommender System
(Common)

Ivorian Destination
Recommender System
(Common)

Ivorian Accommodation
Recommender System
(Common)

Ghana Tourism
Web GUI

(Common)

Ghana Tourism Information Query
Engine

 (Common)

Ghana Tourism Content
 Builder

 (Common)

Ivorian Destinations Ontology
(Common)

Ivorian Tourism Asset Database
(Common)

Ivorian Accommodation Ontology
(Common)

Language Translation
(Optional)

140

Java Server Pages (JSP) scripting was used to provide the necessary supportive client-side

scripting. Figures 4.27-4.29 are snapshots from the application realization of the three TIS

products.

Figure 4.27 Snapshot of the Destination Recommender System (DRS) in the Nigerian-TIS

Figure 4.28 Snapshot of the Home Page of the Ghana- TIS (Discover Ghana)

141

4.5.4 Details of Application Testing Process

The focus of our application testing process is to validate the quality of the TIS products

generated in application realization. During this process, the TIS products were tested and

validated using the domain requirements documents, application requirement documents, and

domain test artifacts and application test artifacts. Some of the tests carried out include syntax

checks (which was greatly boosted by the ‘intellisence’ and advanced debugging feature present

in the NetBeans Java IDE that was used), unit testing (validating the individual created

components), integration testing (checking the interaction of the components) and validation

tests (ensuring that specific application requirements are fully satisfied). The fact that some

measure of testing was carried out in domain testing using the Sample Application Strategy

(SAS) and Commonality and Reuse Strategy (CRS), accelerated the application testing

procedure. Also, the common parts were tested in a commonality test to see if they work

correctly in different customized application contexts, all of these tests proved successful.

Figure 4.29 Snapshot of the Cote D’ivoire TIS (Ivorian-Discover)

142

4.6 SUMMARY AND DISCUSSION

In this chapter the full scope of the application of the PLONTOREC life cycle has been

discussed using a practical case study of TIS development. The sub-processes of PLONTOREC

include: 1) Product Line Management - in which feasibility and risk assessment was undertaken

prior to the commencement of the product line development activity; 2) Ontology Engineering –

in which two OWL-KR ontologies were developed to enable a family of TIS products with

knowledge-based recommendation capabilities; 3) Domain Engineering – in which specific

domain reusable components such as tourism recommender systems for the TIS were developed;

and 4) Application Engineering – in which 3 variant national TIS products for three countries in

the West African sub-region were developed based on a specific product line feature model. The

experience and observations gained from the application of these four aspects of PLONTOREC

in a practical real-life scenario, demonstrates the potential viability of the PLONTOREC

approach.

143

CHAPTER FIVE

EVALUTION OF THE PLONTOREC APPROACH

5.1 INTRODUCTION

This chapter reports the empirical evaluation of the PLONTOREC approach and its products.

The usability evaluation of the two recommender systems was undertaken in order to capture

users’ impressions of the quality of their functionality and rate their efficiency. In addition, a

usability evaluation of the TIS product platform was also conducted. Lastly, a comparative

evaluation of the scenario of TIS development with PLONTOREC and without PLONTOREC

was undertaken.

5.2 THE MOTIVATION FOR USABILITY EVALUATION OF TOURISM

RECOMMENDER SYSTEMS

The accuracy metrics for evaluating recommender systems (See Section 2.3.5.1) involve

measuring variables that are expected to affect the utility of a recommender system to the user

and affect the reaction of the user to the system (Herlocker et al., 2004). Predictive accuracy

metrics measure how close is the predicted ratings of a product by a system to true user ratings,

while the decision support metrics evaluate the effectiveness of the system in helping users to

distinguish between high-quality items and the rest of the product items. Precision and recall are

the most popular decision-support metrics that have been used for evaluating recommender

systems. The concepts of precision and recall were borrowed from Information Retrieval (IR),

and have been used severally for recommender systems evaluation (Basu et al., 1998; Sarwar et

al., 2000; Billsus & Pazzani, 2000; Sarwar, 2001). Precision is defined as the ratio of relevant

products selected to the number of products selected. It represents the probability that a selected

product is relevant. Recall is defined as the ratio of relevant product selected to the total number

of relevant products available. It represents the probability that a relevant product will be

selected.

144

However, while these metrics may be adequate for assessing the recommendation of commodity

products like a book or a movie, they cannot be trusted in the case of the tourism product. This is

because the tourism product is always unique to individuals, in that two people seldom have

travel preferences that are exactly similar. Peoples’ tourism preferences are always unique and

personal (unlike what obtains with commodity products). Recommender systems recommend

products based on the likelihood that they will meet a specific user’s taste or interest. However to

determine whether a product meets the taste requirement of a user demand that we ask the user

concerned. Thus, relevance is much more inherently subjective in tourism recommender systems

and objective relevance does not exist.

Also, measuring recall in the context of tourism recommendation is almost always impractical.

In the pure sense, measuring recall requires knowing whether each product is relevant; for a

tourism recommender system, this would involve asking the opinion of many users to view all

available products to measure how successfully a product has been recommended to each user.

IR evaluations have been able to estimate recall by pooling relevance ratings across many users,

but this approach depends on the assumption that all users agree on which items are relevant,

which is inconsistent with the nature of the tourism product (Herlocker et al., 2004).

As an alternative to the traditional recall and precision metrics, Zanker et al. (2008) suggested

that metrics along the dimensions of efficiency, effectiveness and marketing intelligence are more

relevant to RS applications that will be featured in the commercial environment like tourism.

Since the RS is expected to guide the user through a series of decision making steps without

provoking him to quit the application, the usability of such RS then becomes the most

approximate measure of its efficiency. Also, the fact that a direct usability evaluation of a system

encapsulates several dimensions of users’ perception of the system makes it a more realistic

measure of efficiency (Zins et al., 2004a; Zins et al., 2004b). These perspectives influenced the

decision for a usability evaluation of the two recommender system components that were

developed in the case study. The details of the empirical evaluation experiments are given next.

145

5.3 EMPIRICAL USABILITY EVALUATION OF RECOMMENDER

SYSTEMS COMPONENTS

Usability evaluation is an attempt to measure the user’s perception of a recommender system

after an interaction experience. The essence of usability testing is to assess the quality of human-

computer interaction properties of a system. According to ISO 924-11 (1998), usability is the

extent to which specified users can use a system to achieve specified goals with effectiveness,

efficiency and satisfaction. It is also, a perception of a system’s ease of learning and use from

both the experienced and inexperienced users’ viewpoint (Lindgaard, 1994).

The reason for undertaking a prototype usability testing was to assess the performance of the

DRS and ARS components and also to obtain timely feedback from potential users on possible

future enhancements that are crucial for the recommender systems. This is based on our belief

that the use of empirical testing with potential users is still the best way to find problems related

to user’s task and experiences (Zins et al., 2004a; Zins et al., 2004b; Riihiaho, 2003).

Herlocker et al. (2004) suggested the use of explicit (ask) and implicit (observe) feedback as the

most appropriate for user evaluation of RS, and emphasised the need to clearly define the task

that a recommender system is intended to support before its evaluation. Therefore, standard

usability testing concepts (Nielsen, 1993) was used for evaluating the DRS.

5.3.1 Experiment Design for DRS

A trial experiment was undertaken with 20 users, including 5 non-Nigerian West Africans on

short visit to Nigeria for the purpose of religious tourism. The rest of the sample user population

comprises of staff and students of the Science and Technology faculty of Covenant University.

All the participants gave their informed consent to participate in the experiment, and were taken

through a 15 minutes tutorial session at the commencement of the experiment. Participants were

requested to respond to a pre-experiment questionnaire which was specifically designed to

evaluate the background of the participants particularly in terms of their IT skills, knowledge of

the Internet, familiarity with recommender systems, e-Commerce portals, and general tourism

146

and travel experience. They were asked to rate themselves on a scale of 100, which was

graduated into 5 class categories. The specified task for the DRS is to provide intelligent

recommendation to the user on the most probable Nigerian locations to spend the next vacation

after it has been supplied with a list of travel activity preferences and social attributes

description of a desirable destination. Participants were allowed to engage the system in as many

sessions as they chose but were encouraged to randomly iterate between instances where social

attribute preferences are included as input for recommendation and when they are not included.

The post-experiment questionnaire was a customisation of the Post-Study-Satisfaction-User-

Questionnaire (PSSUQ) standard (Nielsen, 1993; Lewis, 1995; Zins et al., 2004a; Zins et al.,

2004b). The PSSUQ has 26 questions, which were specifically adapted for a destination

recommender system context (See Table 5.1). Items 16 and 17 in the questionnaire were

specifically designed to capture users’ impression of the system’s recommendation when social

attribute information is used and when not used, which is to be analysed to determine the

potential influence of the inclusion of social attribute information of destination on the utility of

recommendation. The participants were required to rate each item in the post-experiment

question on a scale of 1-5 (1-Excellent, 2-Good, 3-Satisfactory, 2-Unsatisfactory, 1-Poor) while

‘n/a’ should be used for any questionnaire item they choose not to rate.

Items 5 4 3 2 1 n/a

 Design/Layout

1 I liked using the interface of the system.

2 The organization of information presented by the system was
clear.

3 The interface of this system was pleasant to use.

 Functionality

4 This system has all the functions and capabilities that I expect
it to have to perform its task

5 The options listed by the system as a reply to my request were
suitable for my travel.

6 I agree with the suggested recommendation of the system and
believe it will be useful

Table 5.1 Usability and User Satisfaction Questionnaire for DRS

147

7 Ease of Use

8 It was simple to use this system.

9 It was easy to find the information I needed.
10 The information (such as online-help, on-screen messages, and

other documentation) provided with this system was clear.

11 Overall, this system was easy to use.

 Learnability

12 It was easy to learn to use the system.
13 There was too much information to read before I can use the

system.

14 The information provided by the system was easy to
understand.

 Satisfaction

15 I felt comfortable using this system.

16 I am satisfied with recommendations when social attribute
information of destination is used. (*)

17 I am satisfied with recommendations when social attribute
information of destination is not used. (*)

18 Overall, I am satisfied with this system.
 Outcome / Future Use

19 I was able to complete the task quickly using this system.

20 I could not complete the task in the preset time frame.

21 I believe I could become productive quickly using this system.

22 The system was able to convince me that the recommendations
are of value.

23 From my current experience with using the system, I think I
would use it regularly.

 Errors / System Reliability

24 Whenever I made a mistake using the system, I could recover
easily and quickly.

25 The system gave error messages that clearly told me how to fix
problems.

26 In my opinion the system is somewhat fault tolerant

148

The pre-experiment and post-experiment questionnaires were analysed and the following were

the findings:

i) 80% of participants claimed to be expert Internet users (indicating a rating of 70-100).

ii) 60% of participants’ claimed to have very good familiarity with RS and e-Commerce

applications;

iii) 40% rated their travel and tourism experience as excellent;

iv) Another 40% rated their travel and tourism experience as above average.

v) While the remaining 20% claimed to have little or no travel and tourism experience.

Figure 5.1 is a chart showing a summary of the background of participants according to their

familiarity with e-Commerce applications, RS and previous tourism experience.

5.3.2 Post –Experiment Results for DRS

The feedback obtained from users through the post-experiment questionnaire was analysed

statistically to determine the mean scores of user ratings of the system based on the seven

0

10

20

30

40

50

60

70

80

90

Knowledge of

Internet

Familiarity with RS Familiarity with e-

Comm Applications

Travel and Tourism

Experience

70-100

60-69

50-59

35-49

34-10

0-9

Figure 5.1 Summary of Background of Participants

149

usability metric parameters used to evaluate the system. Table 5.2 shows the mean scores of the

parameters used. These are: design/layout, functionality, ease of use, learnability, satisfaction

(which was split into two, i.e. when social attribute information was used and when social

attribute information was not used), future use (confidence), and reliability. From the result, the

DRS had a mean score of above 4 in seven out of the 8 parameters used. Several usability studies

have revealed that a system should have a mean score of 4 on a 1-5 scale to be rated as

acceptably usable. Hence, it is sufficient to say that the DRS has a good usability. Also, from our

experiment, it was discovered that most users expressed satisfaction; and showed preference for

recommendations that were based on the use of social attributes information over when social

attributes information was not used.

 Table 5.2: Means Scores of Usability Metrics for DRS

 Usability Metrics Mean Scores Std. Deviation

1 Design/Layout 4.13 0.57

2 Functionality 4.19 0.63

3 Ease of Use 4.15 0.25

4 Learnability 4.00 0.76

5 Satisfaction/Social attribute 4.15 0.78

6 Satisfaction/without Social attribute 3.58 1.05

7 Outcome/Future Use 4.20 0.34

8 Reliability 4.02 0.68

Also, from our experiment, 80% of the sample population responded that they felt comfortable

with the system by giving it a rating of 5(excellent) or 4(good). 20% of the participants gave the

system a rating of 3(satisfactory) or 2(unsatisfactory). 60% of the sample population rated the

recommendations of the system as excellent or good when social attributes information was

used, 20% of participants rated the recommendations as satisfactory or unsatisfactory, while 40%

chose not to comment. Also, 20% of participants rated recommendations of the system as

3(satisfactory) or 2 (unsatisfactory), when social attribute information is not used, 0% rated it as

excellent or good, while 40% chose not to comment. 80% of participants felt generally satisfied

150

with the system. Figure 5.2 is a visualization of user’s satisfaction with the recommendation of

the DRS prototype.

The results of the evaluation experiment clearly support the notion that use of contextual

information such as the social attributes information of destinations as a factor in destination

recommendation can indeed boost the dependability of destination recommendations.

5.3.3 Experiment Design for ARS

A trial experiment for evaluation similar to that of the DRS was engaged for the ARS. 10 willing

and informed users were used for the evaluation even though it has been suggested that just five

users are sufficient for a first cut usability study of any system (Nielsen, 1993). Half of the users

in this experiment participated in the DRS evaluation which significantly reduced the need for

prolonged preliminary introduction; nevertheless a 10 minutes tutorial session was given to users

Figure 5.2 Summary of User’s Satisfaction with the DRS

0

10

20

30

40

50

60

70

80

90

Felt Comfortable

with System

Satisfied when

Social Attributes is
Used

Satisfied without

Social Attributes

Generally

Satisfied with
System

5-4

3-2

1

No Comment

151

at the commencement of the experiment. The participants in this experiment shared largely the

same background with those used for the DRS evaluation in terms of their IT skills, knowledge

of the Internet, familiarity with recommender systems, e-Commerce portals, and general tourism

and travel experience. The specified task for the ARS which participants are to evaluate is to see

how well it recommends relevant accommodation types (e.g. hotel, guesthouse, chalet etc.) based

on their selected preferences in terms of facilities, services, attractions, and gastronomy.

Participants were allowed to engage the system in as many sessions as they desired.

A post-experiment questionnaire containing 24 questions that was designed based on the PSSUQ

standard was used to capture user’s impression of the ARS (See Table 5.3). The participants

were required to rate each item in the post-experiment question on a scale of 1-5 (1-Excellent, 2-

Good, 3-Satisfactory, 2-Unsatisfactory, 1-Poor) while ‘n/a’ should be used for any questionnaire

item they choose not to rate.

Items 5 4 3 2 1 n/a

 Design/Layout

1 I liked using the interface of the ARS.

2 The organization of information presented by the ARS was
clear.

3 The interface of this system was pleasant to use.

 Functionality

4 This system has all the functions and capabilities that I expect
it to have to perform its task

5 The options listed by the system as a reply to my request were
suitable for my decision making.

6 I agree with the suggested recommendation of the system and
believe it will be useful

7 Ease of Use

8 It was simple to use this system.

9 It was easy to find the information I needed.
10 The information (such as online-help, on-screen messages, and

Table 5.3 Usability and User Satisfaction Questionnaire for ARS

152

other documentation) provided with this system was clear.

11 Overall, this system was easy to use.

 Learnability

12 It was easy to learn to use the system.
13 There was too much information to read before I can use the

system.

14 The information provided by the system was easy to
understand.

 Satisfaction

15 I felt comfortable using this system.

16 I am satisfied with the recommendations.

 Outcome / Future Use

17 I was able to complete the task quickly using this system.

18 I could not complete the task in the preset time frame.

19 I believe I could become productive quickly using this system.

20 The system was able to convince me that the recommendations
are of value.

21 From my current experience with using the system, I think I
would use it regularly.

 Errors / System Reliability

22 Whenever I made a mistake using the system, I could recover
easily and quickly.

23 The system gave error messages that clearly told me how to fix
problems.

24 In my opinion the system is somewhat fault tolerant.

5.3.4 Post –Experiment Results for ARS

The feedback obtained from users through the post-experiment questionnaire was analysed

statistically to determine the mean scores of user ratings of the ARS based on the seven usability

metric parameters used to evaluate the system. Table 5.4 shows the mean scores of the

153

parameters used. From the result, the ARS had a mean score of above 4.3 in all seven

parameters used, which is symbolic of the fact that the ARS has good usability. It is also

important to note that the ARS is purely a semantic web application. Hence the evaluation of the

ARS also directly corresponds to an application-based evaluation of the Accommodation

Ontology (AO) that is at the base of the ARS knowledge-base. Therefore the positive result

obtained certifies the good quality and completeness of the Accommodation ontology.

 Table 5.4: Means Scores of Usability Metrics for ARS

 Usability Metrics Mean Scores Std. Deviation

1 Design/Layout 4.53 0.47

2 Functionality 4.50 0.32

3 Ease of Use 4.35 0.25

4 Learnability 4.50 0.56

5 Satisfaction/Social attribute 4.5 0.38

6 Outcome/Future Use 4.42 0.24

7 Reliability 4.30 0.58

Also, from our experiment, 80% of the sample population responded that they felt comfortable

with the system by giving it a rating of 5(excellent) or 4(good). 20% of the participants gave the

system a rating of 3(satisfactory) or 2(unsatisfactory). 80% of the participants also expressed

confidence in the recommendations of the ARS, claiming that they believed it enough to act on

it. The results of this evaluation experiment clearly support the notion that recommendations that

are based on deep factual knowledge of a specific tourism domain are more dependable and have

a greater propensity to foster users’ confidence.

5.4 EMPIRICAL USABILITY EVALUATION OF TIS PRODUCTS

A usability evaluation of the e-Tourism portal for Nigeria was undertaken to assess user’s

impression of the TIS product. A post-experiment questionnaire was formulated based on the

Post-Study-Satisfaction-User-Questionnaire (PSSUQ) standard. The PSSUQ had 26 questions,

which were specifically adapted to fit the scenario of our case study. The participants were

154

required to rate each item in the post-experiment question on a scale of 1-5 (1-Excellent, 2-Good,

3-Satisfactory, 2-Unsatisfactory, 1-Poor) while ‘n/a’ was used for any questionnaire item they

choose not to rate. The questions addressed various aspects which include: design layout,

functionality, ease of use, learnability, satisfaction, outcome/future use and reliability of the

system. The post-experiment questionnaire was analysed statistically to determine the mean

scores of user ratings of the system based on the seven usability metrics used for evaluation.

Table 5.5 shows the mean scores obtained for each of the metrics used. From the result, the

system had a mean score of above 4.0 in all of the 7 parameters used which suggests that the

system is sufficiently usable and has a an acceptable performance level going by users’ ratings.

In our experiment, we sought to know what users feel about the fact that the recommendations

were knowledge-based. From the feedback, we discovered that most of the users felt that the

recommendation were accurate enough to earn their trust, because of convincing evidences that

they were based on some facts that they are also aware of.

 Table 5.5: Means Scores of Usability Metrics for e-Tourism System Prototype

 Usability Metrics Mean Scores Std. Deviation

1 Design/Layout 4.13 0.57

2 Functionality 4.19 0.63

3 Ease of Use 4.15 0.25

4 Learnability 4.00 0.56

5 Satisfaction 4.15 0.28

6 Outcome/Future Use 4.20 0.34

7 Reliability 4.02 0.68

Summarily, 80% of the sample population responded that they felt comfortable with the system

by giving it a rating of 5(excellent) or 4(good). 20% of the participants gave the system a rating

of 3(satisfactory) or 2(unsatisfactory). 60% of the sample population rated the recommendations

of the system as excellent or good and claimed to believe it, 20% gave it a rating of 3 or 2 while

20% chose not to comment. 80% expressed general satisfaction with all aspects of the system.

Figure 5.3 is a visualization of user’s perception of the system. We consider the results of the

evaluation experiment encouraging and supportive of our belief that development of semantic

155

ontology-based platform will engender the delivery of knowledge-based recommendations and

will command user’s confidence is indeed viable.

5.5 EVALUATION OF THE PLONTOREC APPROACH

In order to evaluate the PLONTOREC approach, we compared our experiences in the scenario of

the application of PLONTOREC and the situation where traditional software development

approach was used in engineering the three TIS products. The details of the evaluation procedure

are given next.

5.5.1 Estimating Effort of Developing TIS Products using COCOMO II

The Constructive Cost Model (COCOMO) is an algorithmic software budget estimation

technique that is used to empirically determine the amount of effort required for the complete

development of a software project (Boehm et al., 2000). It uses empirically derived formulas to

estimate the cost of human resources (effort) as a function of the project size. The latest version

of the COCOMO estimation technique is the COCOMO II which subsumes the previous version

Figure 5.3 A Graphical View of User’s Satisfaction Index for the e-Tourism Portal

156

COCOMO 81. COCOMO II consist of three different models, which are: 1) The Application

Composition Model (which is to be used in the early analysis stage or during prototyping); 2)

The Early Design Model (which is to be used after requirement analysis is completed); and 3)

The Post-architecture Model (which is to be used after the software architecture design is

known).

The COCOMO II Post-architecture model was used to estimate the effort in developing a TIS

product using the traditional development approach. The motivation for using the Post-

architecture model is to enable more accurate information for various cost drivers to be generated

and thus ensure more accurate estimations. The estimation formula for COCOMO II model is

given as (Boehm et al., 2000):

 effort = c * sizek * m + autoeffort (5.1)

Based on the COCOMO II research, the value of constant coefficient c is set to 2.5. The Post-

architecture model of COCOMO II makes use of seventeen cost drivers and five scale factors.

The cost drivers are grouped into 4 categories (product, platform, personnel, and project) and it is

not always necessary to consider all four categories. The values of the cost drivers are multiplied

to obtain the value of the effort multiplier m in the formula. The value of cost drivers ranges

from very low to very high. Cost drivers have a nominal value of 1. A value above 1 for a cost

driver connotes negative effect on the effort multiplier while a value below 1 connotes a positive

effect. A value of 1 does not affect the computation of m.

 The scale factors are used to derive the value from exponent k applied to the size value. Each

factor is rated with integer values from 5 to 0. The values are added, divided by 100, and the

result added to the nominal value of the exponent (k) 1.01 to give the new value of the k to be

used in the formula. The five scale factors were used to account for the relative economies or

diseconomies of scale encountered for software projects of different sizes. The size value

represents the total number of unadjusted function points in the project. The last term in the

formula, autoeffort, is the effort put by developers in the automatic code generation and the

integration of the code with the manually created programs. The details of our estimation

157

experiment are presented next.

5.5.1.1 Determining Function Points

The function points metric is a measure of the size of the functionality associated with a software

project. It is used to quantify the information processing functionality associated with major

external data or control input, output, or file types in a software project. Function points are

useful estimators since they are based on information that is available early in the project life

cycle. The various components of function points are (http://linkinghub.elsevier.com/retrieve

/pii/S0164121200000157):

External Input (Inputs): This is the count of each unique user data or user control input type

that (i) enters the external boundary of the software system being measured and (ii) adds or

changes data in a logical internal file.

External Output (Outputs): This is the count of each unique user data or control output type

that leaves the external boundary of the software system being measured.

Internal Logical File (Files): This is the count of each major logical group of user data or

control information in the software system as a logical internal file type. This includes each

logical file (e.g. each logical group of data) that is generated, used, or maintained by the software

system.

External Interface Files (Interfaces): These are files that are passed or shared between the

software systems within each system.

External Inquiry (Queries): This is the count of each unique input-output combination, where

an input causes and generates an immediate output, as an external inquiry type.

An overview of the function points counting procedure used for the Nigeria-TIS is shown in

Figure 5.4 as follows:

158

Data Functions:

List of Internal Logical Files (ILF):

1. Tourism Asset Table (19 fields)
2. Case Base Table (8 fields)

List of External Interface Files (EIF):

1. Destination Recommender Interface
2. Accommodation Recommender

Interface
3. Query Interface
4. Update Asset Register Interface
5. Main Application Interface

Transactional Functions:

List of External Inputs (EI):

1. User Commands (text boxes)
2. Command Buttons
3. User Login
4. Product Preferences Selection List

List of External Outputs (EO):

1. Destination Recommendations Result
2. Accommodation Recommendations

Result
3. Query Result
4. Data Update feedback
5. User Login Result

List of External Queries (EQ):

1. Referencing Destination Context
Ontology

2. Referencing Tourism Asset Database
3. Referencing Accommodation Ontology

After the identification of the function points in the Nigeria-TIS, the COCOMOII standard tables

(see Appendix I) were used for constructing the unadjusted function points as shown in Table

5.6. Twenty percent was added to all the obtained function points in order to cater for any

missed component due to unspecified requirements (Boehm et al., 2000). The unadjusted

function points for the Nigerian-TIS software in COCOMO II is 120.

Table 5.6 Constructing Function Points

Internal Logical Files (ILF)

Logical File Data Element Types Record Element Types Complexity

1 19 4 Low
2 8 3 Low

External Interface Files (EIF)

Logical File Data Element Types Record Element Types Complexity
1 16 4 Average
2 120 4 High
3 4 4 Low
4 16 4 Low

Figure 5.4 Function Points Counting Procedure for Nigerian-TIS

159

5 5 2 Low
External Inputs

External
Inputs

File Types
Referenced

Data Element Types Complexity

1 < 2 15- Above Low
2 < 2 5-15 Low
3 < 2 1-4 Low
4 < 2 15- Above High

External Outputs

External
Outputs

File Types
Referenced

Data Element Types Complexity

1 2 – 3 1-5 Low
2 < 2 1-5 Low
3 < 2 1-5 Low
4 < 2 1-5 Low
5 < 2 1-5 Low

External Oueries
External
Outputs

File Types
Referenced

Data Element Types Complexity

 1 < 2 5 Low
 2 < 2 4 Low
 3 < 2 5 Low

Unadjusted Function Points

 Low Average High
ILF (2) X 7 X 4 X 6
EIF (3) X 7 (1) X 10 (1) X 15
EI (3) X 3 X 4 (1) X 6
EO (4) X 4 X 5 X 7
EQ (3) X 3 X 4 X 6
Total Unadjusted Function Points: 100
Input for COCOMO II: 100* 1.2 = 120 (20% more due to other uncounted
function points that might arise when more thorough requirements review
has been conducted).

5.5.1.2 Determining the Scale Factors

The scale factors values used for the estimation are shown in Table 5.7, while the justifications

for the values used are given as follows:

Precedentedness (PREC): This reflects the similarities of a current project to projects that had

been undertaken in the past. In our case, this factor is dimmed to be very low because the

development team (actually only one person was involved) that will implement the system has

160

no prior similar project experience at all.

Development flexibility (FLEX): This refers to the level of suppleness associated with what

actually must be developed versus the pre-established requirements and interface specifications

of the software. This is assumed to be nominal since little information on strict adherence to

conformance is specified.

Architecture/Risk Resolution (RESL): This factor defines the need for the extension of the

architecture being completely specified and major risks being eliminated. In the case at hand, the

scope of the project does not demand going into details of risk management and thus, this factor

is assumed to be very low.

Team cohesion (TEAM): This accounts for the synergy factor or project turbulence factor due

to ease or difficulty of synchronizing the views of project stakeholders like users, customers,

developers, maintainers, interfacers, etc. This is assumed to be very high because only one

person was involved in dictating the pace of the project with a few errand staffs.

Process maturity (PMAT): This is a measure of the quality of software process used for

development based on the SEI Capability Maturity Model Integration (CMMI) standard. Since

the project is being handled as a pilot study, it is considered far from being fully professional, the

PMAT factor that corresponds to CMMI – level 3 is assumed, which represents an averagely

acceptable level of process maturity of the development.

Table 5.7 Estimating k Exponent

Scale Factors

Rating

(5-0)

Precedentedness (PREC) 5

Development Flexibility (FLEX) 4

Architecture/Risk Resolution (RESL) 5

Team Cohesion (TEAM) 2

Process Maturity (PMAT) 2

Sum 18

K = 1.01 + (Sum/100) = 1.19

161

5.5.1.3 Determining Cost Drivers (Effort Multipliers)

Seventeen cost drivers that are divided into four categories were used to determine the effort in

Person Months required for the software. The justifications for the values assigned to each of the

cost drivers are presented as follows:

Required System Reliability (RELY): This measures the extent to which the software must

perform its intended function over a period of time. The system is expected to be reliable,

however failure is not considered hazardous. The failure might cause some losses, but not

considerable enough to be a major concern. Therefore, a nominal value less than 1 is assigned.

Database size (DATA): This measure attempts to capture the effect that large data requirements

have on product development. The rating is determined by dividing the database size (in bytes)

by the program size (SLOC). The size of the database is important for consideration because of

the effort required to generate the test data that will be used to test the program. This is

determined to be much because of the data-intensive nature of the application.

Product complexity (CPLX): This is the measure of the perception of how complex the product

is. In this case a nominal value of is assumed.

 Reusability (RUSE): This is the level of reuse required in the project. This assumed to be

nominal by implicit assessment since the project description is not emphatic on reuse.

Documentation (DOCU): This is a measure of the documentation suitable for life-cycle needs.

This is given a nominal value because right-sized documentation is assumed.

Execution time (TIME) and Storage (STOR): These are platform constraints that are not

considered as significant in this project context, the availability of capable hardware platform is

assumed, hence nominal values have been assigned to both of them.

Platform Volatility (PVOL): The platform volatility (PVOL) refers to the frequency of change

of hardware/software that the services rely on to perform their own tasks. In this case, no major

change is expected in a 12-month period that can radically alter the course of events of

development although minor changes might occur along the line. Therefore, a nominal value is

assigned.
Personnel Continuity (PCON): This is the measure of stability of personnel in the project

development team. This is given a nominal value since only one personnel is involved with an

assumption that the project will be completed before any change of personnel takes effect.

162

Analyst Capability (ACAP), Programmer Capability (PCAP): These are measures of the

ability and competence of Analyst and programmers in the project team. Since the programmer

has previous programming experience and has worked on other projects that required the use of

analytical ability as well as programming ability, the analyst capability (ACAP) and programmer

capability (PCAP) multipliers are assumed to be very high.

Analyst Experience in Project Domain (AEXP), Programmer Experience in Project

Domain (PLEX), Language Tool Experience (LTEX): These are measures of the experience

of the analyst and the programmer in the project application domain. Although the analyst and

programmer do not have prior experience in TIS development, some knowledge of web-based

development is available, hence AEXP, PEXP and LTEX are considered relatively high.

Toolsets (TOOL): This is the measure of tool-support available for the development process. It

is expected that the development will leverage the rich tool-support available for the

development. Hence this is assumed to be relatively high.

Multisite Working and Quality of Communication (SITE): This is the measure of the extent

of multi-site working and quality of site communication in development. The multisite

development multiplier is set to be high because the degree of site collocation and

communication support is relatively high.

Development Schedule (SCED): This measure the schedule constraint imposed on the project

team developing the software. The ratings are defined in terms of the percentage of schedule

stretch-out or acceleration with respect to a nominal schedule for a project requiring a given

amount of effort. In this case, there was no formal agenda with regard to stretch out and thus, we

assumed a nominal value. Table 6.8 presents a view of the values for the different cost drivers.

 Table 5.8 Estimating Effort Multiplier (m)

Cost Drivers

Product

Attributes Required System Reliability (RELY) 0.9
Complexity of System Modules (CPLX) 1
Extent of Documentation Required (DOCU) 1.2
Size of Data Used (DATA) 1.5
Required % of Resuable Components (RUSE) 1

Computer

Attributes Execution Time Constraints (TIME) 1
Volatility of Development Platform (PVOL) 1
Memory Constraints (STOR) 1

163

Personnel

Attributes Capability of Project Analysis (ACAP) 0.3
Personnel Continuity (PCON) 1
Programmer Experience in Project Domain(PEXP) 0.8
Programmer Capability(PCAP) 0.3
Analyst Experience in Project Domain (AEXP) 0.5
Language and Tool Experience (LTEX) 0.5

Project

Attributes Use of Software Tools (TOOL) 0.5
Development Schedule Compression (SCED) 1
Extent of multi-site Working and Quality of Site
Communication(SITE) 0.5
Effort Multiplier (M) 0.00729
COCOMO II (in Person Months) 3.7

 Given that the autoeffort is set to 0, using the formula in equation 5.1 then

 COCOMO II for Nigerian-TIS = 2.5 * (120 1.19)* 3.7 = 5.4 Person Months.

Using the same procedure the effort in person months for the Ghana-TIS and Ivorian-TIS were

computed to be 5.4 and 5.7 Person Months for unadjusted function point values (size) of 120 and

125 respectively. Hence, the total effort for the three products sums up to 16.5 person months.

5.5.2 Estimating Effort in PLONTOREC

The effort expended in PLONTOREC is computed in person months using an augmented SPL

estimation model (see Section 3.2.3) given as:

Eplontorec = Eorg+ Edom+ Eonto+Eontoupdate + N *(Ereusewith+Euniquewith+J*Eupdatewith)

 Hence for,

Number of TIS products = 3

Eorg = 0.6

Edom =3.6

Eonto (for 2 ontologies) = 1.8

Eontoupdate (one cycle, estimated average) = 0.3

Ereusewith (estimated average) = 0.5

Euniquewith (estimated average) = 0.3

164

J = 4 (for quarterly content updates)

Eupdatewith= 0.06

Recall that

Eorg: Effort to introduce the product line, adapt the organization, train staff etc. (In this case,

only one staff was involved assisted by available student support in non-technical areas such

as data gathering)

Edom: Effort expended in domain engineering for the development of core assets, cost of

commonality and variability analysis.

Eonto: Effort expended in the development of relevant ontologies.

Eontoupdate: Effort expended in updating content of ontologies after initial development and its

maintenance.

N: number of TIS products in the product line.

Ereusewith: Average effort in application engineering for the reuse of existing core assets e.g.

choosing, configuration, searching and integration of core assets.

Euniquewith: Average effort to extend core assets base with core assets unique to a product,

effort with manual adaptations of core assets after creation.

J: Average planned number of content update cycles for one TIS product.

Eupdatewith: Average effort of updating the product-related core assets in the core asset base;

Therefore, estimate for PLONTOREC in person months

Eplontorec = 0.6+3.6+1.8+0.3+ 3(0.24 + 0.5 + (4*0.06)) = 9.24

5.5.3 Result and Discussion

The first advantage derived was the significant reduction in the effort expended on development.

An expert-based estimate for the three TIS products used in our case study predicted between 4.5

- 5 Person Months for each product given that a minimum of Capability Maturity Model (CMM)

Level-3 process standard is attained in development and other deciding factors remain stable.

This represents a maximum of about 15 person months for the three products. This budget

estimate is also not so distant from the total estimate of 16.5 person months was obtained by

using the post architecture COCOMO II to estimate the required efforts for the three TIS

165

products. However, with PLONTOREC 9.24 person months was expended in the development

of the three TIS products. The reduction in person months was due to the fact that relatively

minimal effort was spent in application engineering. In our specific experience, 5.4 person

months was expended on the combination of ontology engineering and domain engineering

endeavours. Also, as expected the realization of the first variant product (Nigerian-TIS) took

some time, because we needed to master the challenges of how best to customize our domain

components. Also, the bulk of our domain testing was executed using the first product variant.

Thereafter composing the two other products was relatively very fast. Overall, the difference in

the effort in person months between the instance when PLONTOREC is used and when it is not

used accounts for about 44% gain in development cost.

Secondly, the inherent benefits of reuse-oriented approach like PLONTOREC came to the fore in

the course of our case study. During application testing, many of the bugs and required

functionality adjustments that needed to be made in specific TIS products were traceable to

specific core components. Therefore, all that we had to do was to fix the concerns that pertain to

the respective core components and the effects of these corrections were automatically

propagated to the various products within the product line. This obviously led to a reduction in

the time and effort expended on maintenance. This also gives an indication that the

PLONTOREC approach will allow most of future maintenance concerns to be centrally attended

to.

PLONTOREC also created an avenue for proactive evolution of content and future extensions. In

our specific case study the product line was based on a particular reference architecture derived

from the requirements of three countries. However, the first set of working prototype

implementations did not cover the full scope of the product line model, but there remain ample

opportunities for future extensions and products evolution based on a predefined versioning

scheme. Drawing from our implementation experience for example, it is obvious that to realize

extended versions of the TIS products all that needed to be done is to add new domain content

components such as travel ontology, restaurant ontology, travel recommender and restaurant

recommender components that have been specified in the reference architecture but are currently

missing. Also, other future additions could be made to the reference architecture based on the

166

dynamics of user requirements in the specific domain which will in turn provide a basis for new

product variants with added features and advanced functionalities to evolve.

The PLONTOREC approach enabled the generation of various kinds of knowledge-based

tourism recommendations that pertain to the three countries on a relatively cheap platter

compared to if a single product development approach had been adopted. Due to the similarity in

requirements, it became possible to implement the core intelligent functionalities of

recommendation as domain components and then populate products with contents that are unique

to them. This ensured that such intelligent capabilities got systematically propagated to the

generated products, which is obviously cheaper than pursuing a single product approach.

 5.6 POSSIBILITIES FOR GENERALIZATION OF THE RESULTS

Having shown that PLONTOREC worked for one product line in the presented context, we

therefore postulate that PLONTOREC can indeed be applied to create other product lines in the

tourism domain, if sufficient commonalities exist and the variabilities of requirements among

different tourism entities (service providers, support outfits etc.) or tourism organizations

(continental, national, regional, local, enterprise etc.) are well known.

This connote that the aggregate of the tourism requirements in a domain can be represented by a

conceptual product line model from which a set of core asset components, a feature tree model

of each product, a set of relevant ontologies, the construction specification and a set of variant

TIS products can be generated. PLONTOREC is particularly applicable in all cases where

assorted kinds of intelligent recommendations on tourism objects are required. Instances of these

include developing a product line of TIS for: 1) states, regional governments within a country; 2)

a chain of hotels; 3) a group of religious organizations (promoting religious tourism); 4) a

network of Destination Management Organizations (DMO); 5) a network of tour operators etc.

In all of these instances PLONTOREC holds the potential to create not only TIS platforms from

which credible knowledge-based recommendations that foster user’s confidence can be

generated, but also that which will engender the proactive evolution of such TIS products in

167

tandem with future emerging user requirements within the specific tourism domain concerned.

5.7 SUMMARY AND DISCUSSION

In this chapter a report of the procedure adopted for the evaluation of the PLONTOREC process

and its products is presented. It is shown that the variant TIS products generated from the

PLONTOREC approach had substantially favourable usability rating from users based on the

empirical test conducted, which is very crucial for a people-oriented service delivery platform

like e-tourism. Furthermore, the case study scenario has demonstrated the applicability of

PLONTOREC in a real-life context and proved the viability of the PLONTOREC approach.

This is because PLONTOREC produced measurable reduction in time and cost of development,

demonstrated the potential to reduce maintenance cost, and facilitated significant improvements

in the quality of recommendations obtained from the variant TIS products it generated.

The case study therefore, successfully validates PLONTOREC as platform for generating

dependable and intelligent knowledge-based recommendation and one that has the potential to

engender dynamic product evolution in the tourism.

168

CHAPTER SIX

SUMMARY AND CONCLUSION

This Chapter summarizes and discusses the contributions of the thesis, and presents an outlook

of the opportunities for future research work. The thesis presented a specialized product line

approach for ontology-based recommendations in e-Tourism Systems.

6.1 SUMMARY

The thesis has shown that tourism recommendation services are particularly important because of

the information-intensive nature of the tourism industry where access to useful information guide

brings immense benefits to all stakeholders within the tourism value chain.

However, tourism recommendation services are currently not prevalent on most of the existing

e-tourism platforms (TIS), and where such exist, they need to be made more dependable in a way

that fosters users’ confidence. Also such e-tourism systems must be able to evolve with the

dynamic nature of user requirements in tourism in order to maintain their relevance.

The thesis intervened by introducing a novel unified solution approach to these two concerns

called Product Line for Ontology-based Tourism Recommendations (PLONTOREC), which

provides a process platform for the creation of variant e-tourism systems that can evolve

proactively in response to dynamic user requirements and also offer dependable knowledge-

based recommendations. PLONTOREC is a hybrid of software product line engineering and

ontology engineering that is dedicated to the production of recommendation-intensive Tourism

Information Systems.

The PLONTOREC approach consist of four main sub-processes which are: 1) Product Line

Management (which provides the necessary managerial guide and organizational control that

complements the technical aspects of PLONTOREC); 2) Ontology Engineering (which is

concerned with the development of the reusable knowledge artifacts which are typically

ontologies that are needed for knowledge-based recommendations); 3) Domain Engineering

169

(which is concerned with the construction of all reusable software assets that are used for

building variant TIS products in the product line); and 4) Application Engineering (which is

concerned with the creation of specific TIS products through the reuse of core assets created in

domain engineering. In Addition, PLONTOREC is based on a set of assumptions which defines

the condition for its optimal applicability. These are:

• New products evolve by composition, using existing components in the common asset

base;

• New versions of TIS products are variations of existing ones, having many things in

common with the old versions; and also

• The points of variability are minimal and predictable.

The thesis provided a validation of the PLONTOREC approach by using a case study of TIS

product line development involving three countries in the West African Sub-region (Nigeria,

Ghana, and Cote D’ivoire) in order to demonstrate the applicability and viability of

PLONTOREC in a real-life context.

The thesis made some significant contributions. Firstly, it has opened-up a new perspective on

how to tackle the problem of dynamic user requirements in the e-tourism domain by offering a

clear demonstration of the viability of software product line engineering as a solution approach

to solving this problem. Secondly, an innovative 3-dimensional approach was introduced to

destination recommendation with the use of ontological representation of contextual information

on social attributes of prospective destinations in order to improve the dependability of

destination recommendations. Thirdly, the creation of a suite of tourism ontologies as semantic

web contents for the tourism value chain within the West African sub-region represents a first

attempt at creating an interoperable platform for the sharing and reuse of tourism information,

and tourism knowledge within the West African sub-region. Lastly, the thesis makes a first

attempt to create a product line of recommendation-intensive TIS products using the

PLONTOREC approach. PLONTOREC is a novel specialized and repeatable software product

line process that engenders the generation of dependable and intelligent recommendations in e-

tourism systems and facilitates the proactive evolution of such e-tourism systems in tandem with

dynamic user requirements.

170

6.2 CONCLUSION

This research work tackled two concerns in the global e-tourism industry which is the need for

more dependable recommendations and the need for e-tourism systems to proactively evolve

with emerging users need. It has succeeded in providing a unified solution model for reasonably

improved intelligence and dependability of recommendations of e-tourism systems and offered a

way for developers of e-tourism systems to manage the dynamic nature of user requirements in

tourism.

The research has also provided a theoretical and product-oriented framework that can be

leveraged for the generation of recommendation-intensive tourism support systems in the

geographic contexts of developing countries where none of such platforms is known to exist.

Finally, the results of this research endeavour if adopted will give the quality boost needed in

most parts of Africa where tourism is largely undeveloped. For example the ontology artifacts

created in the course of this research offers a potential platform for data interoperability,

knowledge reuse, and business model standardization within the West African tourism value

chain. Also the e-tourism portal prototypes if extended with more detailed requirements will

provide a platform for increased publicity and promotion of tourism as a veritable tool for

economic development in the countries concerned.

6.3 FUTURE WORK

The thesis provides several opportunities for further research in the immediate future. The

PLONTOREC approach as implemented in this thesis directly inherited some limitations from its

parent concepts of software product line engineering and ontology engineering. Notably, there

exist ample research possibilities to enhance the concept in the following areas:

i) Automated Tool Support

There are different aspects of the PLONTOREC approach that may be enriched with automated

171

tool support. Some of these include:

• Domain Requirements Engineering: The elicitation and validation of domain

requirements is largely a human-centered activity, which is based on the experience of

the experts involved. It will be interesting to see the possibilities of having an expert

system that can reasonably emulate human capability in these areas or at least offer

credible decision support in the elicitation and validation of domain requirements to

minimize human effort. One candidate intelligent model that can be explored is Case-

Based Reasoning (CBR). CBR entails solving new problems based on experience that

have been gathered from previous episodes. One thinks that a CBR-based expert system

that is fortified with a rich knowledgebase of relevant tourism domain knowledge looks

very promising in this regard.

• Architecture Creation and Evaluation: The existing methods of architecture evaluation

such as the Architecture Trade-off Analysis Method ATAM (Kazman et al., 1998),

Scenario-based Architecture Analysis Method (SAAM) (Ionita et al., 2002) are largely

human-centered; it will be interesting to see how an automated architecture evaluation

scheme can be executed using tourism domain knowledge. Also, having a tool that can

automatically generate the reference product line architecture from a given set of domain

requirements is a fascinating dimension that could be introduced to fast track the

PLONTOREC process.

• Project Cost Prediction: The Product Line Management activity of PLONTOREC could

be greatly enhanced if an automated tool can be used to predict the effort required for the

project based on some objective parameters extracted from the domain requirements and

application requirements. The prediction model could be based on statistical techniques

like regression or a machine learning concepts like Artificial Neural Networks.

• Customization GUI Tool: Most of the core assets used in this research work was

implemented as parameterizable content components that were invoked from program

codes. A better approach would be to create a tool that will enable the parameters for

specific components in the core asset repository to be supplied from a GUI interface and

have a customized version of the content component automatically created by calling

relevant files and compilers.

172

ii) Group Recommendations

 The work done in this thesis focused on provision of personalized recommendation services for

individuals (i.e. single user recommendations). The aspect of recommendations that pertain to a

group or team of people was not considered. This is one dimension that could be incorporated in

the future, which have the capacity to enhance the quality of the products generated through the

PLONTOREC approach.

iii) Mobile Computing

The scope of implementation of this research has been limited to web-based e-tourism systems.

However, the possibilities of adapting or extending the PLONTOREC approach for the

realization of mobile TIS product line looks very promising as future research endeavour.

iv) Semantic Query Processing

Ontology engineering has been engaged in this research to develop knowledgebase ontologies

that contain facts about the specific tourism domain. In future research endeavours, domain

ontologies that would serve as lexical databases for specific tourism domains could be included

in the PLONTOREC framework. By doing this, the domain ontologies could be used as a basis

for enabling the generated TIS with natural language processing capabilities which are currently

lacking in existing e-tourism systems. Query reformulation techniques and content

summarization techniques in the field of natural language processing are viable computational

models that can be used to realize this objective. Other related aspects such as native language

processing can also be explored on the PLONTOREC framework in future research work.

173

REFERENCES

• Abowd, G., Atkeson, C., Hong, J., Long, S., Kooper, R. and Pinkerton, M., ” Cyberguide: a

mobile context-aware tour guide”, ACM Wireless Networks, 5(3), pp. 421-433, 1997.

• Adomavicius G. and Tuzhilin, A., “Toward the Next Generation of Recommender Systems:

A Survey of the State-of-the-Art and Possible Extensions”, IEEE Transactions on

Knowledge and Data Engineering, 7(6), pp. 734-749, 2005.

• Adomavicius, G. and Tuzhilin, A., “Expert-Driven Validation of Rule-Based User Models in

Personalization Applications,” Data Mining and Knowledge Discovery, Vol. 5, Nos. 1

and 2, pp. 33-58, 2001.

• Adomavicius, G., Sankaranarayanan, R., Sen, S. and Tuzhilin, “A: Incorporating Contextual

Information in Recommender Systems Using a Multidimensional Approach”, ACM

Transactions on Information Systems, 23(1), pp. 103-145, 2005.

• Ali, K. and van Stam, W., “TiVo: Making show recommendations using a distributed

collaborative filtering architecture”, In Proceedings of the 2004 ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. ACM Press,

Seattle, WA, USA, pp. 394–401, 2004.

• Alspector, J., Kolcz, A., and Karunanithi, N., “Comparing feature-based and clique-based

user models for movie selection”, In Proceedings of the Third ACM Conference on

Digital Libraries. ACM Press, Pittsburgh, PE, USA, pp. 11–18, 1998.

• America P., Obbink H., Muller J., van Ommering R., “COPA: A Component-Oriented

Platform Architecting Method for Families of Software Intensive Electronic

Products”, In Proceedings of the First Conference on Software Product Line

Engineering, 2000.

• Arango, G., “Domain Analysis”, In Marciniak, J. (Eds.), Encyclopedia of Software

Engineering, Volume 1, pp. 423-434, Wiley, 1994.

• ArchStudio 4 – Software and Systems Architecture Development Environment (2007).

Institute for Software Research, University of California, Irvine, Available at:

http://www.isr.uci.edu/projects/archstudio

• Arpirez, J., Corcho, O., Fernandez-Lopez, M., Gomez-Perez, A., “WebODE in a nutshell”,

AI Magazine, 2003.

174

• Atkinson, C., Bayer, J., Bunse, C. , Kamsties, E, Laitenberger, O., Laqua, R., Muthig, D.,

Paech, B., Wüst, J., Zettel, J., “Component-based product line engineering with

UML”, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 2002.

• Baeza-Yates, R. and Ribeiro-Neto, B., “Modern Information Retrieval”, Addison-Wesley,

Reading, MA, USA, 1999.

• Balabanovi´c, M. and Shoham, Y. “Fab: Content-based, collaborative recommendation”,

Communications of the ACM, 40(3), pp. 66–72, 1997

• Balzerani, L., Di Ruscio, D., Pireantonio, A., De Angelis, G. “A Product Line

Architecture for Web Applications”, In Proceedings of the ACM symposium on

Applied computing, Santa Fe, New Mexico, 1689 – 1693, 2005.

• Bass, L. and Kazman, R., “Software Architecture in Practice”, Addison-Wesley, M.A. pp.

19-23, 2003.

• Bastarrica, M. C., Hitschfeld-Kahler, N., Rossel, P. O., “Product Line Architecture for a

Family of Meshing Tools”, International Conference on Software Reuse (ICSR),

Torino, pp. 403-406, 2006.

• Basu, C., Hirsh, H. and Cohen, W. “Recommendation as Classification: Using Social and

Content-Based Information in Recommendation,” Recommender Systems, Papers

from 1998 Workshop, Technical Report WS-98-08, AAAI Press 1998.

• Bechhofer S., Horrocks I., Goble C., Stevens R., “OilEd: a reason-able ontology editor for

the Semantic Web”, In: Baader F, Brewka G, Eiter T (eds) Joint German/Austrian

conference on Artificial Intelligence (KI’01). Vienna, Austria. (LNAI 2174) Springer-

Verlag, Berlin, Germany, pp. 396–408, 2001.

• Bernaras, A., Laresgoiti, I., Corera, J., “Building and reusing ontologies for electrical

network applications”, Lecture Notes in Artificial Intelligence (LNAI 1621) Springer-

Verlag, Berlin, Germany, pp. 49-66, 1996.

• Bhargava, H. K., Sridhar, S. and Herrick, C., “Beyond Spreadsheets: Tools for Building

Decision Support Systems”, IEEE Computer, 32(3), pp. 31-39, 1999.

• Billsus, D. and Pazzani, M., “User Modeling for Adaptive News Access,” User Modeling

and User-Adapted Interaction, Vol. 10, Nos. 2-3, pp. 147-180, 2000.

• Blazquez, M., Fernandez-Lopez, M., Garcia-Pinar, J., Gomez-Perez, A., “Building

Ontologies at the Knowledge Level using the Ontology Design Environment”, In:

175

Gaines B.R., Musen, M.A. (eds) 11th International Workshop on Knowledge

Acquisition, Modeling and Management (KAW’98), Banff, Canada, SHARE 4: pp. 1-

15, 1998.

• Bockle, G, Clements, P., McGregor, J.D., Mathig, D., Schmid, K: “Calculating ROI for

Software Product Lines”, IEEE Software, 21(3), pp. 23-31, 2004.

• Boehm, B., Abts, C., Winsor Brown, A., Chulani, S. Clark, B.K., Horowitz, E., Madachy,

R., Reifer, D., Steece, B., “Software Cost Estimation with COCOMO II”, Prentice

Hall PTR, Upper Saddle River, N.J., 2000.

• Booch, G., Jacobsen, I. and Rumbaugh, J. OMG Unified Modeling Language

Specification, 2000. Available at www.omg.org/technology/documents

/formal/unifiedmodelinglanguage.htm

• Bosch J., “Design & Use of Software Architectures”, Addison-Wesley, 2000.

• Bosch, J. and Svahnberg, M., “Evolution in Software Product Lines: Two Cases”, Journal of

Software Maintenance, 11(6), 391-422, 1999.

• Breese, J., Heckerman, D., and Kadie, C., “Empirical analysis of predictive algorithms for

collaborative filtering”, In Proceedings of the Fourteenth Annual Conference on

uncertainty in Artificial Intelligence, Morgan Kaufmann, Madison, WI, USA, pp. 43–

52, 1998.

• Burke, R., “Knowledge-based Recommender Systems:, Encyclopedia of Library and

Information Systems, 69(32), pp. 180-200, 2000.

• Burke, R., Hammond, K. & Cooper, E., “Knowledge-based navigation of complex

information spaces”, In Proceedings of the 13th National Conference on Artificial

Intelligence, pp. 462-468. Menlo Park, CA: AAAI Press, 1996.

• Burke, R., Hammond, K., and Young, B., “The FindMe Approach to Assisted Browsing”,

IEEE Expert, 12(4): 32-40, 1997.

• CAPITAL ITTS,

http://cordis.europa.eu/data/PROJ_FP5/ACTIONeqDndSESSIONeq112422005919nd

DOCeq405ndTBLeqEN_PROJ.htm. (Accessed 03/04/07)

• Cardoso, J., “Approaches to Developing Semantic Web Services”, International Journal of

Computer Science, 1(1), pp. 8-21, 2004.

176

• Cheverst, K., Davies, N., Michell, K., Friday, A., Efstratiou, C., “Developing a Context-

aware Electronic Tourist Guide: Some Issues and Experiences”, CHI Letters, 2(1), pp.

17-24, 2000.

• Claypool, M., Gokhale, A., Miranda, T., Murnikov, P. Netes, D. and Sartin, A “Combining

Content-Based and Collaborative Filters in an Online Newspaper,” Proc. ACM SIGIR

’99 Workshop Recommender Systems: Algorithms and Evaluation,

Citeseer.ist.psu.edu/226009.html, 1999.

• Clement, P. and Northrup, L., “Software Product Lines, Practices and Patterns”, Addison-

Wesley, 2002.

• Clements, P., “SEI’s Views and Beyond Approach for Documenting Software Architectures

with ANSI-IEEE 1471-2000”, 2005.

• Cleverdon, C., “The Cranfield tests on index language devices. Aslib Proceedings 19, pp.

173-192, 1967.

• Corcho, Ó, Gómez-Pérez, A., González-Cabero, R. and Suárez-Figueroa, M., “ODEval: a

tool for evaluating RDF(S), DAML+OIL, and OWL concept taxonomies”, IFIP

WG12.6 -- First IFIP Conference on Artificial Intelligence Applications and

Innovations (AIAI2004). Toulouse, France, 2004.

• Cortes, C., Fisher, K., Pregibon, D., Rogers, A., and Smith, F., “Hancock: A Language for

Extracting Signatures from Data Streams,” Proc. Sixth ACM SIGKDD Int’l Conf.

Knowledge Discovery and Data Mining, pp. 9-17, 2000.

• Cote D’ivoire Tourism http://www.tourisme.com (accessed 19/07/08)

• CRUMPET, http://www.eml-development.de/english/research/crumpet/index.php

• Dahlen, B. J., Konstan, J. A., Herlocker, J. L., Good, N., Borchers, A., and Riedl, J.,

“Jumpstarting movielens: User benefits of starting a collaborative filtering system

with dead data”. TR 98-017, University of Minnesota, 1998.

• Daramola J.O, Adigun, M.O, and Ayo, C.K., “Building an Ontology-based Framework for

Tourism Recommendation Services”, In W. Hopken and U. Gretzel, and M. Sigala

(eds.) Information and Communication Technologies in Tourism (pp. 135-147),

Springer Wien New York, 2009.

• Daramola J.O, Adigun, M.O, and Olugbara, O.O., “A Product-Line Architecture for

Evolving Intelligent Component Services in Tourism Information Systems”, In P. O’

177

Connor, W. Hopken and U. Gretzel (eds.) Information and Communication

Technologies in Tourism (pp. 117-145), Springer Wien New York, 2008.

• Dashofy, E.M., van der Hoek, A. and Taylor, R.N., “A Highly-Extensible XML-Based

Architecture Description Language”, Proceedings. Working IEEE/IFIP Conference

on Software Architecture, Amsterdam, Netherlands: pp. 103-112, 2001.

• Dashofy, E.M., van der Hoek, A. and Taylor, R.N., “A Highly-Extensible XML-Based

Architecture Description Language”, Proceedings. Working IEEE/IFIP Conference

on Software Architecture, Amsterdam, Netherlands: 103-112, 2001.

• Dell’Erba, M., Fodor, O., Ricci, F., Werthner, H., “Harmonise: a Solution for Data

Interoperability”, In J.L. Monteiro, P.M.C. Swatman, and L.V. Tavares (eds.),

Proceedings of Second IFIP Conference on E-Commerce, E-Business, E-Government

(pp. 433-445), Kluwer, Boston, 2002.

• Dellarocas, C. “The Digitization of Word of Mouth: Promise and Challenges of Online

Feedback Mechanisms”, Management Science, Vol. 49, No. 10, pp. 1407-1424, 2003.

• Deng, G., Schmidt, D.C., Gokhale, A., Gray, J., Lin, Y., and Lenz, G., “Evolution in Model-

Driven Software Product-line Architectures”, available at:

http://www.cs.wustl.edu/~schmidt/PDF/MDE-PLA-BookChap-v10.pdf, 2007

• Deshpande, M. and Karypis, G., “Item-based top-n recommendation algorithms”, ACM

Transactions on Information Systems 22(1), pp. 143–177, 2004.

• Dey, A., “Understanding and using context”, Personal and Ubiquitous Computing Journal,

Vol. 5, No. 1, pp. 4-7.

• Duineveld, A., Studer, S., Weiden, M., Kenepa, B., Benjamis, R., “WonderTools? A

comparative study of ontological engineering tools”, In: Proc. 12th Knowledge

Acquisition Workshop (KAW99), Banff, 1999.

• Dwyer, F., “Customer Lifetime Valuation to Support Marketing Decision Making”, Journal

of Direct Marketing, Vol. 3, No. 4, pp. 8-15, 1989.

• ECTRL Solutions, Trento, Italy, http://www.ectrlsolutions.com. (Accessed 04/03/08)

• Ehrgott, M., “Multicriteria Optimization”, Springer Verlag, New York, 2000.

• Expedia Inc., http://wwww.expedia.com (Accessed 06/06/2007)

• Ezran M., Morisio M., Tully, C., “Practical Software Reuse”, Springer, 2002.

178

• Farquhar, A, Fikes, R & Rice, J., “The ontolingua server: a tool for collaborative ontology

construction”, Proceedings of the Tenth Knowledge Acquisition for Knowledge-Based

Systems Workshop, Banff, Canada, 9–14 November, 1996.

• Fawcett, T. and Provost, F., “Combining Data Mining and Machine Learning for Efficient

User Profiling,” In Proc. Second Int’l Conf. Knowledge Discovery and Data Mining

(KDD-96), 1996.

• Felfernig, A. and Kiener, A., “Knowledge-based Interactive Selling of Financial Services

using FSAdvisor”, In 17th Innovative Applications of Artificial Intelligence

Conference (IAAI’05), pp. 1475–1482, Pittsburgh, Pennsylvania, 2005.

• Felfernig, A., Friedrich, G., Jannach, D., and Zanker, M., “An Integrated Environment for

the Development of Knowledge-Based Recommender Applications”, International

Journal of Electronic Commerce, 11(2), pp. 11-34, 2006.

• Felfernig, A., Gordea, S., Jannach, D., Teppan, D., and Zanker, M., “A Short Survey of

Recommendation Technologies in Travel and Tourism”, ÖGAI Journal, 25(2),

pp. 1-7, 2006.

• Fensel, D. and Perez, A.G., “OntoWeb deliverable 1.3: a survey on ontology tools”,

Technical report, IST OntoWeb Thematic Network, 2002.

• Ferman, M., Errico, J., van Beek, P., and Sezan, I., “Content-based filtering and

personalization using structured metadata”, In Proceedings of the Second ACM/IEEE-

CS Joint Conference on Digital Libraries, ACM Press, Portland, OR, USA, pp. 393–

393, 2000.

• Fernandez-Lopez, M., Gomez-Perez, A., Juristo, N., “METHONOLOGY: From Ontological

Art Towards Ontological Engineering”, Spring Symposium on Ontological

Engineering of AAAI, Stanford University, California, pp. 33-40, 1997.

• Fernandez-Lopez, M., Gomez-Perez, A., Pazos, A, Pazos, J.: Building a Chemical Ontology

Using Methontology and the Ontology Design Environment, IEEE Intelligent Systems

& their applications, 4(1), pp. 37-46, 1999.

• Gamma, E., Helm, R., Johnson, R., Vlissides, J., “Design Patterns: Elements of Reusable

Object-Oriented Software”, Addison-Wesley, 2005.

179

• Gangemi, A., Pisanelli, D., Steve, G.: An Overview of the ONIONS Project: Applying,

Ontologies to the Integration of Medical Terminologies. Data & Knowledge

Engineering, 31(2), pp. 183-220, 1999.

• Garg, A., Critchlow, M., Chen, P., Van der Westhuizen, C., van der Hoek, A.: “An

Environment for Managing Evolving Product Line Architectures”, Proceedings of

the International Conference on Software Maintenance, Amsterdam, The

Netherlands, pp. 358-367, 2003.

• Garlan, D., Monroe, R. and Wile, D., “ACME - An Architecture Description Interchange

Language”, In Proceedings of CASCON ’97, ACM Press: 169-183, 1997.

• Ghana Online Forum. http://www.viewghana.com (accessed: 16/07/08)

• Ghana Tourism, http://www.touringghana.com (accessed: 16/07/08)

• Ghani, R. and Fano, A., “Building recommender systems using a knowledge base of product

semantics”, In Proceedings of the Workshop on Recommendation and Personalization

in E-Commerce (RPEC), Springer-Verlag, Malaga, Spain,

citeseer.ist.psu.edu/697938.html, 2002

• Goldberg, D., Nichols, D., Oki, B. M., and Terry, D., “Using collaborative filtering to weave

an information tapestry”, Communications of the ACM, 35(12), pp. 61–70, 1992.

• Gomaa, H. and Farrukh, G. “A reusable architecture for federated client/server systems”, In

Proc. of Fifth Symposium on Software Reusability, pp. 113-121, 1999.

• Gomaa, H., “Designing Software Product Lines with UML”, Addison-Wesley, 2005.

• Gomez-Perez, A., “A Framework to Verify Knowledge Sharing Technology. Expert Systems

with Application, 11(4), pp. 519-529, 1996.

• Gomez-Perez, A., “Knowledge Sharing and Reuse”, In: Liebowitz J. (ed.) Handbook of

Expert Systems, CRC Chapter 10, Boca Raton, Florida, 1998.

• Gómez-Pérez, A., Corcho-García, O., Fernández-López, M., Lehtola, A., Taveter, K.,

Sorva, J., Käpylä, T., Tourmani, F., Soualmia, L., Barboux, C., Castro, E., Sallantin,

J., Arbant, Bonnaric, G.,” Multilingual Knowledge Based European Electronic

Marketplace”, D-31: Requirement, Choice of a Knowledge Representation and Tools

- V 2.0 – Public, IST (Information Society Technologies), 2001.

• Gomez-Perez, A., Fernandez-Lopez, M. and Corcho, O., “Ontological Engineering”,

Springer-Verlag London, 2004.

180

• Gomez-Perez, A., Juristo, N., Pazos, J., “Evaluation and assessment of knowledge sharing

technology”, In: Mars N (ed.) Towards Very Large Knowledge Bases: Knowledge

Building and knowledge Sharing (KBKS’95), University of Twente, Enschede, The

Netherlands. IOS Press, Amsterdam, The Netherlands, pp. 289-296, 1995.

• Good, N., Schafer, B., Konstan, J., Borchers, A., Sarwar, B., Herlocker, J., and Riedl, J.,

“Combining collaborative filtering with personal agents for better recommendations”,

In Proceedings of the 16th National Conference on Artificial Intelligence and

Innovative Applications of Artificial Intelligence. American Association for Artificial

Intelligence, Orlando, FL, USA, pp. 439–446, 1999.

• Goodaire, E., Parmenter, M., “Discrete Mathematics with Graph Theory”, Ed. Prentice Hall.

1998.

• Goren-Bar, D. "Overcoming mobile device limitations through adaptive information

retrieval", Applied Artificial Intelligence, Vol. 18(6), pp. 513–532, 2004.

• Gruninger, M. and Fox, M., “Methodology for the design and evaluation of ontologies In:

Skuce, D. (eds.) IJCAI’95 Workshop on the Basic ontological Issues in Knowledge

sharing, Montreal, Canada, pp. 6.1-6.10, 1995.

• Hammersley, B. “Content Syndication with RSS”, O'Reilly Media Inc, California, 2003.

• Hartmann, J., Spyns, P., Giboin, A., Maynard, D., Cuel, R., Suárez-Figueroa, M., Sure, Y.,

“D1.2.3 Methods for ontology evaluation”, 2005.

www.starlab.vub.ac.be/research/projects/knowledgeweb/

• Henriksson, R., “Semantic Web and E-Tourism”,

www.cs.helsinki.fi/u/glinskih/semanticweb/Semantic_Web_and_E-Tourism.pdf, 2005.

(Accessed 3/02/08).

• Herlocker, J., Konstan, J. and Riedl, J., “Explaining collaborative filtering

recommendations”, 2000, citeseer.ist.psu.edu/herlocker00explaining.html.

• Herlocker, J., Konstan, J., Borchers, A., and Riedl, J., “An algorithmic framework for

performing collaborative filtering”, In Proceedings of the 22nd Annual International

ACM SIGIR Conference on Research and Development in Information Retrieval,

ACM Press, Berkeley, CA, USA, pp. 230–237, 1999.

181

• Herlocker, J., Konstan, J., Terveen, G. and Riedl, T., “Evaluating Collaborative Filtering

Recommender Systems”, ACM Trans. Information Systems, Vol. 22, No. 1, pp. 5-53,

2004.

• Herlocker, J.L., “Understanding and Improving Automated Collaborative Filtering

Systems”, PhD Thesis, 2000.

• Hill, W., Stead, L., Rosenstein, M., and Furnas, G.,” Recommending and evaluating choices

in a virtual community of use”, ACM Press/Addison-Wesley Publishing Co.,

http://doi.acm.org/10.1145/223904.223929, pp. 210-217, 1995.

• Hi-Touch project at:

http://icadc.cordis.lu/fepcgi/srchidadb?CALLER=PROJ_IST&ACTION=D&RCN=63

604&DOC=20&QUERY=3

• Hofmann, T. “Latent Semantic Models for Collaborative Filtering”, ACM Trans.

Information Systems, Vol. 22, No. 1, pp. 89-115, 2004.

• Hofmeister, C., Nord, R., “From Software Architecture to Implementation with UML”,

Proceedings of the Twenty-Fifth Annual International Computer Software and

Applications Conference (COMPSAC 01), Chicago, Illinois, pp. 113-114, 2001.

• Intelligent Mobility Agents. IM@GINE IT, European Commission, Brussels, 2004,

http://dbs.cordis.lu/fepcgi/srchidadb?ACTION=D&SESSION=296320041126&

DOC=53&TBL=EN_PROJ&RCN=EP_RPG:508008&CALLER=PROJ_IST

• Intelligent system for Tourism, available at: ftp://ftp.cordis.europa.eu/pub/ist/docs/transport

environment/intelligentsystems_for_tourism_en.pdf

• International Function Point Users’ Group, “Function Point Counting Practices: Manual

Release 4.0”, http://linkinghub.elsevier.com/retrieve/pii/S0164121200000157

• Ionita, T., Hammer, K., Obbink ,H., “Scenario-Based Software Architecture Evaluation

Methods: An Overview”, available at:

www.win.tue.nl/oas/architecting/aimes/papers/scenario-

based%20scost%20evaluation%20methods.pdf., 2002.

• ISO 9241-11, “Ergonomic requirements for office work with visual display terminals

(VDT’s) – Part 11”, Guidance on usability, International Organization of

Standardization, 1998.

182

• Jennings, A. and Higuchi, H., “A personal news service based on a user model neural

network”, citeseer.ist.psu.edu/jennings92personal.html, 1992.

• Jiang, B., Wang, W. and Benbasat, I., “Multimedia-Based Interactive Advising Technology

for Online Consumer Decision Support”, Communication of the ACM, 48(9), pp. 93–

98, 2005.

• Kang K., Kim S., Shin E., Huh M., “Form: A Feature-Oriented Reuse Method with Domain

Specific Reference Architectures”, Annals of Software Engineering, Vol. 5, pp. 143-

168, 1998.

• Kang, K., Cohen, J., Novak, W. and Peterson, S., “Feature-oriented domain analysis

feasibility study”, Carnegie Mellon University, Software Engineering Institute, Tech.

Rep. CMU/SEI-90-TR-21, pp. 1-82, 1990.

• Kang, K., Lee J., and Donohoe, P., “Feature-oriented product line engineering”, IEEE

Software, 19(4), 58-65, 2002.

• Karypis, G., “Evaluation of item-based top-n recommendation algorithms”, In Proceedings

of the Tenth ACM CIKM International Conference on Information and Knowledge

Management”, ACM Press, Atlanta, GA, USA, pp. 247–254, 2001.

• Kazman, R., Klein, M., Barbacci, M., Lipson, H., and Carriere, J., “The Architecture

Tradeoff Analysis Method”, Carnegie Mellon University, Software Engineering

Institute, Tech. Rep. CMU/SEI-98-TR-008, pp. 1-83, 1998.

• Kietz, J., Maedche, A., Volz, R., “A Method for Semi-Automatic Ontology Acquisition

from a Corporate Intranet”, In: Aussenac-Gilles N, Biebow B, Szulman S (eds.)

EKAW’00 Workshop on Ontologies and Texts, Juan-Les-Pins, France, CEUR

Workshop Proceedings, pp. 51:4.1-4.14. Amsterdam, The Netherlands (http://CEUR-

WS.org/Vol-51/), 2000.

• Knublauch, H., Musen, M., Noy, N., “Tutorial: Creating Semantic Web (OWL) Ontologies

with Protégé”, 2nd International Semantic Web Conference (ISWC2003), Sanibel,

Island, Florida, U.S.A, 2003.

• Konstan, J., “Introduction to recommender systems: algorithms and evaluation”, ACM

Transactions on Information Systems, 22(1), pp. 1–4, 2004.

183

• Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L. and Riedl, J., “GroupLens:

Applying Collaborative Filtering to Usenet News”, Communications of ACM, Vol.

40, No. 3, pp. 77-87, 1997.

• Krösche, J., Baldzer, J., Boll, S., “MobiDENK-Mobile Multimedia in Monument

Conservation”, IEEE Multi-Media, 11(2):72–77, 2004.

• Krutchen, P., “Architectural Blueprints- The “4+1” View Model of Software Architecture”,

IEEE Software, 12(6), pp. 42-50, 1995.

• Lam, S. and Riedl, J., “Shilling recommender systems for fun and profit”, In Proceedings of

the 13th International Conference on World Wide Web, ACM Press, New York, NY,

USA, pp. 393–402, 2004.

• Lam, W., Mukhopadhyay, S., Mostafa, J., and Palakal, M., “Detection of shifts in user

interests for personalized information filtering”, In Proceedings of the 19th ACM

SIGIR Conference on Research and Development in Information Retrieval, ACM

Press, Zurich, Switzerland, pp. 317–325, 1996.

• Lang, K., “NewsWeeder: Learning to filter netnews”, In Proceedings of the 12th

International Conference on Machine Learning, Morgan Kaufmann, San Mateo, CA,

USA, pp. 331–339, 1995.

• Lech, T.C. and Wienhofen, L.M., “AmbieAgents: A Scalable Infrastructure for Mobile and

Context-Aware Information Services”, Proceedings of the fourth international

joint conference on Autonomous agents and multiagent systems, The

Netherlands: 625-631, 2005.

• Lenat, D., Guha, R., “Building Large Knowledge-based Systems: Representation and

Inference in the Cyc Project”, Addison-Wesley, Boston, Massachusetts, 1990.

• Lewis, D. and Sparck-Jones, K., “Natural Language Processing for Information Retrieval”,

Volume 39, No.1, Communications of the ACM, pp. 92-101, 1996.

• Lewis, J.R., “IBM computer usability satisfaction questionnaires: psychometric evaluation

and instructions for use”, International Journal of Human Computer Interaction, 7(1),

57-78, 1995.

• Lieberman, H., “Letizia: An Agent That Assists Web Browsing”, Proceedings of the

Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-95),

citeseer.ist.psu.edu/lieberman95letizia.html, pp. 924-929, 1995.

184

• Linden, G., Smith, B., and York, J., “Amazon.com recommendations: Item-to-item

collaborative filtering”, IEEE Internet Computing, Vol. 4, No. 1 (January), pp. 76-80,

2003.

• Lindgaard, G., “Usability testing and system evaluation. A guide for designing useful

computer systems”, London, Chapman and Hall, 1994.

• Lutz, R. and Gannod, G., “Analysis of a Software Product Line Architecture: An experience

Report”, Journal of Systems and Software, 66(3), pp. 253-67, 2003.

• Mannila, H., Toivonen, H. and Verkamo, A.I., “Discovering Frequent Episodes in

Sequences,” Proc. First Int’l Conf. Knowledge Discovery and Data Mining (KDD-

95), pp. 210—215, 1995.

• Mannion M., Lewis O., Kaindl H., Montroni G., Wheadon J., “Representing Requirements

on Generic Software in an Application Family Model”, Proceedings of the

International Conference on Software Reuse (ICSR-6), pp. 153-196, 2000.

• Matinlassi M., “Comparison of Software Product Line Architecture Design Methods:

COPA, FAST, FORM, KobrA and QADA”, Proceedings of the 26th International

Conference on Software Engineering (ICSE’04), pp. 127-136, 2004.

• Melville, P., Mooney, R., and Nagarajan, R., “Content-boosted collaborative filtering for

improved recommendations”, In Eighteenth National Conference on Artificial

Intelligence. American Association for Artificial Intelligence, Edmonton, Canada, pp.

187–192, 2002.

• Middleton, S., Shadbolt, N., and De Roure, D., “Ontological user profiling in recommender

systems”, ACM Transactions on Information Systems, 22(1), pp. 54–88, 2004.

• Mooney, R. and Roy, L., “Content-Based Book Recommending Using Learning for Text

Categorization”, In: Proceedings of the Fifth ACM International Conference on

Digital Libraries, pp. 195-204, 2000.

• Mukherjee, R., Dutta, P., and Sen, S., “MOVIES2GO: A new approach to online movie

recommendation”, In Proceedings of the IJCAI Workshop on intelligent Techniques

for Web Personalization, Seattle, WA, USA, 2001.

• Necib, C. and Freytag, J, “Query Processing Using Ontologies”, Lecture Notes in Computer

Science, Springer/Berlin, Heidelberg, pp. 167-168, 2005.

185

• Nielsen, J., “Usability engineering”, Boston, MA, Academic Press, Harcourt Brace &

Company, 1993.

• Niemelä E., “QADA – Quality-driven Architecture Design and Architecture Analysis”,

Available at: http://www.vtt.fi/qada/, (January 2006)

• Nigeria Tourism Development Corporation, http://www.nigeriatourism.net. (Accessed

04/03/08).

• Noy, F., Musen, M., “Anchor-PROMPT: Using Non-Local Context for Semantic

Matching”, In: Gomez-Perez A, Gruninger, M., Stuckenschmidt, H., Unschold, M.

(eds) IJCAI’01 Workshop on Ontologies and Information Sharing, Seattle,

Washington, pp. 63-70, 2001.

• Noy, N and McGuinness, D., “Ontology Development 101: A Guide to Creating Your First

Ontology”, available at: journal.dajobe.org/journal/posts/2003/03/17/ ontology-

development-101-a-guide-to-creating-your-first-ontology/.

• Noy, N., Fergerson, R., Musen, M., “The knowledge model of Protégé-2000: Combining

interoperability and flexibility”, In: Dieng, R. Corby, O. (eds) 12th International

Conference in Knowledge Engineering and Knowledge Management (EKAW ’00),

Juan-Les-Pins, France (Lecture Notes in Artificial Intelligence LNAI 1937) Springer-

Verlag, Berlin, Germany, pp. 17-32, 2000.

• Noy, N., Hafner, C., “The state of the art in ontology design”, AI Magazine, 18(3), pp. 53-

74, 1997.

• Ogush, M., et al., “Template for Documenting Software and Firmware Architectures”,

available at http://www.architecture.external.hp.com.

• ONTOPRISE n.d., How to work with OntoEdit, ONTOPRISE® Provider of Technology

and Applications Enabling Semantic Solutions, Germany,

http://www.ontoprise.de/documents/tutorial_ontoedit.pdf (Accessed: 15/10/05).

• OWL Documentation, http://www.3WC.org. (Accessed 5/05/08)

• OWL Web Ontology Language Overview, http://www.w3.org/TR/owl-features/

• Park, H., Yoo, J., and Cho, S., “A Context-Aware Music Recommendation System Using

Fuzzy Bayesian Networks with Utility Theory”,

http://sclab.yonsei.ac.kr/publications/Papers/LNCS/FSKD2006 PHS.pdf, 2006.

186

• Pashtan, A., Heusser, A., and Scheuermann, P., “Personal service areas for mobile Web

applications”, IEEE Internet Computing, 8(6), pp. 34 – 39, 2004.

• Pazzani, M. and Billsus, D., “Learning and Revising User Profiles: The Identification of

Interesting Web Sites”, Machine Learning, Vol. 27, pp. 313-331, 1997.

• Pazzani, M., “A framework for collaborative, content-based and demographic filtering”,

Artificial Intelligence Review, 13, 5-6, pp. 393–408, 1999.

• Pazzani, M.J., Muramatsu, J. and Billsus, D., “Syskill & Webert: Identifying Interesting

Web Sites”, (AAAI)/(IAAI), Vol. 1, citeseer.ist.psu.edu/article/pazzani98syskill.html,

1996.

• Pellet DIG Reasoner, http://pellet.owldl.com

• Pennock, D. and Horvitz, E., “Collaborative Filtering by Personality Diagnosis: A Hybrid

Memory And Model-Based Approach”, Proceedings of the 16th Conference on

Uncertainty in Artificial Intelligence, San Francisco, 30 June-3 July, Morgan

Kaufmann, San Francisco, CA, pp. 473-80, 2000.

• Perry, D., “Generic architecture descriptions for product lines”, In Proc. Of ARES II:

Software Architectures for Product Families (LNCS 1429), Springer-Verlag, pp. 51-

56, 1998.

• Pohl, K., Bockle, G., van der Linden, “Software Product Line Engineering: Foundations,

Principles and Techniques”, Springer-Verlag, 2005.

• Porter, B., “An exemplar-based learning apprentice”, In Proceedings of the Fourth

International Workshop on Machine Learning, Irvine, Ca; Morgan Kaufmann, 12-23,

1987.

• Prankatius, V., Oberweis, A., and Stucky, W, “Product Lines for Digital Information

Products”, Information Systems, 32(6), pp. 909-939, 2007

• Protégé: An Ontology Editor and Knowledge-Base Framework, http://protege.stanford.edu/

• Pühretmair, F., Rumetshofer, H., Schaumlechner, E., “Extended Decision Making in

Tourism Information Systems”, Lecture Notes In Computer Science,

Proceedings of the Third International Conference on E-Commerce and Web

Technologies, Vol. 2455, pp. 57 – 66, 2002.

• Requirement Tools: http://easyweb.easynet.co.uk/~iany/other/vendors.htm#Doors

187

• Resnick, P. and Varian, H.R., “Recommender systems, Volume 40. ACM Press,

http://doi.acm.org/10.1145/245108.245121, 1997.

• Resnick, P., Iacovou, N., Suchak, M., Bergstorm, P. Riedl, J., “GroupLens: An Open

Architecture for Collaborative Filtering of Netnews”, Proceedings of ACM

Conference on Computer Supported Cooperative Work,

citeseer.ist.psu.edu/resnick94grouplens.html, 1994.

• Riihiaho, S., “Experiences with Usability Evaluation Methods”, Thesis at the Helsinki

University of Technology, Laboratory of Information Processing Science, 2000.

• Rosset, S., Neumann, E. Eick, U. Vatnik, N. and Idan, Y., “Customer Lifetime Value

Modeling and Its Use for Customer Retention Planning,” Proc. Eighth ACM SIGKDD

Int’l Conf. Knowledge Discovery and Data Mining, pp. 332-340, 2002.

• Salton, G. and Buckley, C., “Term-Weighting Approaches in Automatic Text Retrieval”,

Information Processing and Management, 25(8), pp. 513-523, 1988.

• Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. “Item-based collaborative filtering

recommendation algorithms”, In Proceedings of the Tenth International World Wide

Web Conference, Hong Kong, China, 2001.

• Sarwar, B., Karypis, G., Konstan, J., and Riedl, J, “Analysis of recommendation algorithms

for ecommerce”, In Proc. of ACM conference on Electronic Commerce, pp. 158-167,

2000.

• Sarwar, B.M., Sparsity, Scalability, and Distribution in Recommender Systems, Ph.D. thesis,

University of Minnesota, 2001.

• Satine project at http://www.srdc.metu.edu.tr/webpage/projects/satine/

• Schafer, J., Konstan, J. and Riedl, J., “E-Commerce Recommendation Applications”, Data

Mining and Knowledge Discovery, 2001,

citeseer.ist.psu.edu/schafer01ecommerce.html.

• Schein, A., Popescul, A., Ungar, L., and Pennock, D., “Methods and metrics for cold-start

recommendations”, In Proceedings of the 25th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, ACM Press,

Tampere, Finland, pp. 253–260, 2002.

• Schmittlein, D.C., Morrison, D.G. and Colombo, R. “Counting Your Customers: Who Are

They and What Will They Do Next ?”, Management Science, Vol. 33, No. 1, 1987.

188

• Schwanke, R. and Lutz, R.,”Experience with Architectural Design of a Modest Product

Family”, Software Practice and Experience, 34(13), 1273-1296, 2003.

• Shardanand, U. and Maes, P., “Social information filtering: Algorithms for automating

“word of mouth”. In Proceedings of the ACM CHI Conference on Human Factors in

Computing Systems, ACM Press, Denver, CO, USA, pp. 210–217, 1995.

• Shaw, M., Garlan, D., “Software Architecture: Perspectives on an Emerging Discipline”,

Prentice-Hall, Upper Saddle River, NJ, USA, 1996.

• Soboroff, I and Nicholas, C. “Combining Content and Collaboration, in Text Filtering,”

Proc. Int’l Joint Conf. Artificial Intelligence Workshop: Machine Learning for

Information Filtering, 1999. Citeseer.ist.psu.edu/259060.html

• Sollenborn, M. and Funk, P., “Category-based filtering and user stereotype cases to reduce

the latency problem in recommender systems”, In Proceedings of the Sixth European

Conference on Case-based Reasoning. LNCS, Vol. 2416. Springer-Verlag, Aberdeen,

UK, pp. 395–405, 2002.

• Staab, S., Schnurr H., Studer, R., Sure, Y., “Knowledge Processes and Ontologies, IEEE

Intelligent Systems”, 16(1), pp. 26-34, 2001.

• Staab, S., Werther, H., Ricci, F., Zipf, A., Gretzel, U., Fesenmaier, D.R., Paris, C., and

Knoblock, C., “Intelligent systems for tourism”, IEEE Intelligent Systems, Volume

17, Issue 6, Nov/Dec, pp. 53-66, 2002.

• Statnikov, R. and Matusov, J., “Multicriteria Optimization and Engineering”, Chapman &

Hall, New York, 1995.

• Steinbauer, A., “Consumer Behaviour in e-Tourism”, Doctoral Thesis, Department for

Information Systems and e-tourism Ludwig-Franzens-Universität Innsbruck, 2005.

• Steiner, T, “Software Agents in Tourism Industry – Prototypes and Prospects”,

Informatik.Informatique, Vol. 1, pp. 33-38, 2002.

• Stumme, G., Maedche, A., “FCA-MERGE: Bottom-up Merging of Ontologies”, Bernhard

Nebel (ed.) Proceedings of the Seventeenth International Joint Conference on

Artificial Intelligence (IJCAI, 2001), Seattle, Washington. Morgan Kaufmann

Publishers, San Francisco, California, pp. 225-234, 2001.

189

• Su, X., Ilebrekke, L., “A Comparative Study of Ontology Languages and Tools”, In

Proceeding of the 14th Conference on Advanced Information Systems Engineering

(CAiSE'02), Toronto, Canada, 2002.

• Sure, Y., Erdmann, M., Angele J., Staab, R., Wenke, D., “OntoEdit: Collaborative Ontology

Engineering for the Semantic Web”, Lecture Notes in Computer Science (LNCS

2342), Springer-Verlag, Berlin, Germany, pp. 221-235, 2002.

• Svahnberg, M., Gurp, J., Bosch, J., “On the Notation of Variability in Software Product

Lines”, Proceedings of the Working IEEE/IFIP Conference on Software Architecture,

pp. 45-55, 2001.

• Swartout, B. Ramesh, P., Knight, K, Russ, T., “Toward Distributed Use of Large-Scale

Ontologies. In: Farquhar, A. Gruninger, M, Gomez-Perez, A., Uschold, M, van der

Vet, P (eds) AAAI’97 Springer Symposium on Ontological Engineering, Stanford

University, California, pp. 138-148, 1997.

• Szyperski C., Gruntz D., Murer S., “Component Software ─ Beyond Object-Oriented

Programming”, Second Edition, Addison-Wesley, 2002.

• Terveen, L. and Hill, W., “Beyond recommender systems: Helping people help each other”,

In Human-Computer Interaction in the New Millennium, J. Carroll, Ed. Addison-

Wesley, Reading, MA, USA, 2001. citeseer.ist.psu.edu/417017.html

• The Eclipse Foundation, available at: http://www.eclipse.org. (Accessed: 13/03/2007).

• Thiel S., & Hein A., “Systematic Integration of Variability into Product Line Architecture

Design”, Proceedings of the Second International Conference on Software Product

Lines, pp. 130-153, 2002.

• Thompson, C., Göker, M. and Langley. P., “A Personalized System for Conversational

Recommendations”, Journal of Artificial Intelligence Research, Vol. 21, pp. 393–428,

2004.

• Tichy, W.F., “Programming-in-the-Large: Past, Present and Future, In Proceeding of 14th

International Conference on Software Engineering (ICSE ’92), NY, USA, ACM

Press, pp. 362-367, 1992.

• Tiscover AG, http://www.Tiscover.com. (Accessed 6/06/07).

• UML, MDA Tools, www.modelbased.net/mda_tools.html (Accessed 15/05/2007)

190

• Uschold, M., King, M., “Toward a Methodology for Building Ontologies”, In: Skuce, D.

(eds.) IJCAI’95 Workshop on the Basic ontological Issues in Knowledge sharing,

Montreal, Canada, pp. 6.1-6.10, 1995.

• van Ommering, R. C., “Building product populations with software components”, In

Proceedings of the 22nd International Conference on Software Engineering, ICSE,

Orlando, Florida, USA, pp. 255–265, 2002.

• van Ommering, R. C., van der Linden, F., Kramer, J., and Magee, J.,”The Koala Component

Model for Consumer Electronics Software”, IEEE Computer, 33(3): pp. 78–85, 2000.

• van Setten, M., Pokraev, S. and Koolwaaij, J., “Context-Aware Recommendations in the

Mobile Tourist Application COMPASS”, International Adaptive Hypermedia Conf.,

LNCS 3137, pp. 235–244, 2004.

• Venturini, A. and Ricci, F., “Applying trip@dvice recommendation to visisteurope.com”, In

Brewka, G., Coradeschi, S., Perini, A., and Traverso, P., (eds.). Proceedings of the

17th European Conference on Artificial Intelligence (pp. 607-611), Amsterdam, IOS

Press, 2006

• Vozalis, E., & Margaritis, K., “Analysis of Recommender Systems’ Algorithms”. In

Proceedings of the 6th Hellenic-European Conference on Computer Mathematics and

its Applications (HERCMA), Athens, Greece, pp. 732-745, 2003.

• W3C, http://www.w3.org/TR/owl-ref/

• Weiss D., Lai C., Tau R., “Software product-line engineering: a family-based software

development process”, Addison-Wesley, 1999.

• Werthner, H. and Klein, S., “Information Technology and Tourism—A Challenging

Relationship”, Springer-Verlag, New York, 1999.

• Whitehead Jr., E. J., Robbins, J. E., Medvidovic, N. and Taylor, R. N., “Software

Architectures: Foundation of a Software Component Marketplace”, In Proceedings of

the First International Workshop on Architectures for Software Systems, pp. 276—

282, 1995.

• Wohltorf, J., Cissée, R. and Rieger, A., “BerlinTainment: An Agent-Based Context-Aware

Entertainment Planning System”, IEEE Communications, 43(6), pp. 102-109, 2005.

• xADL 2.0 – A Highly-extensible Architecture Description Language for Software and

Systems, http://www.isr.uci.edu/projects/xarchuci/

191

• Ye, H. and Liu, H., “Approach to modelling feature variability and dependencies in software

product line”, IEEE Proc-Software, 152(3), pp. 101-109, 2005.

• Youngs, R., et al., “A Standard for Architecture Description”, IBM Systems Journal, 38(1),

pp. 32-50, 1999.

• Zanker, M., Fuchs, M., Hopken, Tuta, M and Muller, N., “Evaluating Recommender

Systems in Tourism – A Case Study from Austria”, In P. O’ Connor, W. Hopken

and U. Gretzel (eds.) Information and Communication Technologies in Tourism (pp.

24-34), Springer Wien New York, 2008.

• Ziegler, C. Towards, “Towards Decentralized Recommender Systems”, PhD Thesis, Albert-

Ludwigs-Universitat, Freiburg, 2005.

• Zins, A., Bauernfeind, U., Missier, F., Mitsche, N., Ricci, F., Rumetshofer, H. &

Schaumlechner, E., “Prototype testing for a destination recommender system: steps,

procedures and implications”, In Frew, A. J. (ed.): Information and Communication

Technologies in Tourism (pp. 249-258), Vienna-New York, 2004.

• Zins, A., Bauernfeind, U., Missier, F., Venturini, A & Rumetshofer, H., “An Experimental

Usability Test for Different Recommender Systems”, In Frew, A. J. (ed.): Information

and Communication Technologies in Tourism (pp 228-238), Springer, Vienna-New

York, 2004.

a

APPENDIX

b

Record
Element
Types

Data
 Element
Types

Data
Element
Types

Data
Element
Types

 1 - 19

20 - 50

51 -
 <2

Low Low Low

 2-5 Low Average High

 > 5 Average High High

 Complexity of ILF and EIF

File Types
Referenced
(FTRs)

Data
 Element
Types

Data
Element
Types

Data
Element
Types

 1 - 4

5 - 15

15 -
 <2 Low Low Low

 2 Low Average High

 > 2 Average High High

 Complexity of EIs

File Types
Referenced
(FTRs)

Data
 Element
Types

Data
Element
Types

Data
Element
Types

 1 - 5

6 - 19

20 -
 <2 Low Low Low

 2-3 Low Average High

 > 3 Average High High

 Complexity of Eos

Table 2. Unadjusted Function Points Table

 Low

Average

High

 EI X 3

X 4

X 6
 EO X 4 X 5 X 7

 ILF X 7 X 10 X 15

 EIF X 5 X 7 X 10

 EQ X 3 X 4 X 6

Table 1. Complexities in Function Point Components

c

List of Publications from the Thesis

Publication of Chapters in Books / Refereed Conference Proceedings:

1. Daramola J.O, Adigun, M.O, and Olugbara, O.O. , “A Product-Line Architecture for

Evolving Intelligent Component Services in Tourism Information Systems”, In P. O’

Connor, W. Hopken and U. Gretzel (eds.): Information and Communication

Technologies in Tourism (pp. 117-145). Proceedings of the International Conference

(ENTER ’08) in Innsbruck, Austria, Springer Wien New York, 2008.

2. Daramola Olawande, Adigun Mathew and Ayo, Charles, “Building an Ontology-based

Framework for Tourism Recommendation Services”, In W. Hopken, M. Sigala, and U.

Gretzel (eds.): Information and Communication Technologies in Tourism (pp. 135-147).

Proceedings of the International Conference (ENTER ’09) in Amsterdam, Netherlands,

Springer Wien New York, 2009.

3. Daramola Olawande, Adigun Mathew, and Ayo, Charles, “A Hybridized Product Line

Approach for Developing Recommendation-Intensive Tourism Information Systems”,

Proceedings of the International Conference on Enterprise Information Systems (ICEIS

’09) Milan, Italy (May, 2009) - Accepted.

Journal Publication

1. Daramola J.O, Adigun M.O., Ayo, C.K. and Olugbara, O.O. (2009): Improving the

Dependability of Destination Recommendations using Information on Social Aspects,

TOURISMOS: An International Multidisciplinary Journal of Tourism (Accepted; In

Press; Vol. 5, No. 1) – GREECE.

