
CHAPTER ONE

INTRODUCTION

1.1 Background 

The term malaria  originated from  Medieval Italian:  mala aria meaning "bad air"; and the 

disease was formerly called ague or marsh fever due to its association with swamps. Malaria 

is the most prevalent tropical disease in the world today. It has infected humans for over fifty 

thousand years, and may have been a human pathogen for the entire history of our species. In 

the  tropical  and  subtropical  regions,  during  the  first  half  of  the  twentieth  century,  malaria 

affected every walk of life so much so that one of the major problems in development of economy 

was the problem of malaria (Sacks and Malaney, 2002).

Malaria is  a  vector-borne  infectious  disease caused  by  protozoan parasites of  the  genus 

Plasmodium and is presently endemic in a broad band around the equator, in areas of the 

Americas, many parts of Asia and much of Africa, however, it is in sub-Saharan Africa that 

85– 90% of malaria fatalities occur (Hay et al., 2004). It is estimated that up to 124 million 

people in Africa live in areas at risk of seasonal epidemic malaria, and many more in areas 

outside Africa where transmission is  less intense (Hay and Snow, 2006).  Each year,  it  is 

estimated to cause disease in approximately 650 million people and kills between one and 

three million, mostly young children in  Sub-Saharan Africa (Hay  et al., 2004). It is also a 

cause of poverty and a major hindrance to economic development (Sachs and Malaney, 2002). 

The economic impact includes costs of health care, working days lost due to sickness, days 

lost in education, decreased productivity due to brain damage from cerebral malaria, and loss 

of investment and tourism (WHO, 2001). Moreover, it remains one of the leading causes of 

death in Sub-Sahara regions where Human Immunodeficient Virus (HIV) infection is endemic 

(Korenromp et al., 2005). 

Malaria causes about 500 million clinical cases each year (10% of the world population), and 

more than 1 million,  mostly children, die as a result of this disease (Breman, 2001). This 

translates  into a death from malaria  every 30 seconds,  rendering it  an eminent  disease in 

tropical  countries  and  ranking  it  the  third  killer  among  communicable  diseases  behind 

HIV/AIDS  and  tuberculosis  (Greenwood  and  Mutabingwa,  2002).  Malaria  has  been  a 
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common disease and it  continues  to  be one  of  the most  widely spread health  hazards  in 

tropical and subtropical regions. More than half of the world's population lives in the areas 

where they remain at risk of malarial infection.  The vast majority of cases occur in children 

under the age of five years and pregnant women (Greenwood et al., 2005; Adefioye  et. al., 

2007).

Despite efforts to reduce transmission and increase treatment, there has been little change in 

the areas that are at risk of this disease since 1992 (Hay et al., 2004). Indeed, if the prevalence 

of malaria stays on its present upwards course, death rate could double in the next twenty 

years (Sacks and Malaney, 2002). Precise statistics of morbidity and mortality are unknown 

because many cases occur in rural areas where people do not have access to hospitals or the 

means to afford health care. Consequently, the majority of cases of malaria are undocumented 

(Breman,  2001;  Desai  et  al.,  2007).  The  main  cause  of  the  worsened  malaria  situation 

recorded in recent years has been the spread of drug-resistant parasites, which has led to rising 

malaria-associated  mortality,  even though overall  child  mortality  has  fallen  (Snow  et  al.,  

2001).

Until recently, there has been a reliance on the cheap antimalarial drugs like Chloroquine and 

Sulphadoxine-Pyrimethamine. In 2001, the World Health Organization (WHO) recommended 

Artemisinin combination Therapies (ACTs) as the first line of treatment for uncomplicated 

malaria  (WHO,  2001).  The  ACTs  which  include  Artemether-lumefantrine  (AL)  and 

Amodiaquine (AQ) plus artesunate (AS) have been adopted for treatment of  P. falciparum 

malaria  in  many  African  countries.  To  protect  drugs  from resistance,  there  is  now clear 

evidence that combining them can improve their  efficacy without increasing their  toxicity 

(Olliaro  and  Taylor,  2002)  and  with  the  development  of  highly  effective  artemisinin 

derivatives, there is renewed hope for the treatment of malaria in the form of Artemisinin-

Based Combination therapy (ACT). 

The  resistance  of  human  malaria  parasites  to  antimalarial  compounds  has  become  of 

considerable  concern,  particularly  in  view  of  the  fast  speed  of  emergence  of  resistant 

parasites,  the  fast  spread  of  resistant  parasites,  and  the  shortage  of  novel  classes  of 

antimalarial drugs. Antimalarial drug resistance has emerged as one of the greatest challenges 
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facing malaria control today and has also been implicated in the spread of malaria to new 

areas and re-emergence of malaria in areas where the disease had been eradicated (Bloland, 

2001). Drug resistance has also played a significant role in the occurrence and severity of 

epidemics in some parts of the world. Population movement has introduced resistant parasites 

to  areas  previously  free  of  drug  resistance.  The  emergence  and  spread  of  P.  falciparum 

resistance to antimalarial drugs is now one of the greatest challenges facing the global effort 

to  control  malaria  in  Africa  (WHO,  2003). Moreover,  in  recent  years  the  situation  has 

worsened  due  to  malaria  parasite  becoming  resistant  to  several  antimalarial  drugs.  This 

resistance concerns numerous drugs, but is thought to be most serious with Chloroquine, the 

cheapest and most widely used drug to treat malaria (Sucharit  et al., 1977). There have also 

been reports of resistance against new drugs such as Mefloquine-Lumefantrine (Riamet®), 

Mefloquine,  Atovaquone-proguanil (Malarone®)  and  Cotrifazid  Doxycycline and 

Mefloquine (Lariam®) (Mccollum et al., Hyde, 2002; 2006; Noedl et al., 2008).   

Several medicinal plants have also been used locally to treat malaria infection. Some of such 

plants  are  Enantia  chloranta,  Nauclea  natifolia,  Salacia  nitida  (Ogbonna  et  al.,  2008), 

Acalypha fruticosa, Azadirachta indica, Cissus rotundifolia, Echium rauwalfii, Dendrosicyos  

socotrana and  Boswellia  elongate  (Merlin,  2004; Clarkson  et  al.,  2004;  Alshwash  et  al.,  

2007), Cymbopogon giganteus and Morinda lucida (Awe and Makinde, 1997; Azas  et al., 

2002).The use of these local herbs for the treatment of malaria has helped to reduce mortality 

and morbidity rates especially in the rural areas of the developing world where antimalarial 

drugs are not readily available. One way to prevent drug resistance of pathogenic species is by 

using new compounds that are not based on existing synthetic antimicrobial agents (Azas et  

al., 2002). Traditional healers claim that some medicinal plants are more efficient to treat 

infectious diseases than synthetic antibiotics. Medicinal plants might represent an alternative 

treatment in non-severe cases of infectious diseases. They can also be a possible source for 

new potent antibiotics to which pathogenenic strains are not resistant (Elujoba  et al., 2005; 

Ogbonnaa et al., 2008).  

Malaria  remains  uncontrolled  and  requires  newer  drugs  and  vaccines.  Untill  the  malaria 

vaccine and newer class of antimalarial drugs become available, the existing drugs need to be 

used cautiously. This is because the irrational use of antimalarial drugs can cause the drug 

resistant malaria. Effective usage of existing antimalarial drugs for malaria control strategies 
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requires continuous input of the drug resistance pattern in the field. Resistance to antimalarial 

drugs can be assessed in vivo and also in vitro by parasite susceptibility assays or by the use 

of  molecular  techniques  including  Polymerase  Chain  Reaction  (PCR)  methods  to  detect 

genetic markers. In vivo tests are traditionally the “gold standard” method for detecting drug 

resistance  (WHO,  1996).   This  involves  the  assessment  of  clinical  and  parasitological 

outcomes of treatment over a certain period following the start of treatment, to check for the 

re-appearance of parasites in the blood.  In vitro assays are based on the inhibition of the 

growth and development of malaria parasites by different concentrations of a given drug, in 

relation  to  drug-free  controls  (WHO,  1996).  The  WHO  in  vitro micro-test  is  based  on 

counting the parasites developing into schizonts,  while the isotopic micro-test is based on 

measurement of the quantity of radio-labeled hypoxanthine, a DNA precursor, incorporated 

into  the  parasites  (Childs et  al.,  1988).  Molecular  methods  are  now  being  used  for  the 

detection of malaria infection in both clinical and research laboratories using PCR method 

(Mens et al., 2006). 

PCR is the most important new scientific technology to come along in the last hundred years 

(Beck, 1999; de Monbrison  et al., 2003).  This technique is more accurate than microscopy 

and its value lies in its sensitivity with the ability to detect ≤5 parasites/µl of blood with 100% 

sensitivity and equal specificity. PCR  methods are particularly useful for studies on strain 

variation, mutations and studies of parasite genes involved in drug resistance. Rapid real-time 

assays  (Real  time  PCR,  Quantitative  Nucleic  Acid  Sequence  Based  Amplification,  QT-

NASBA) based on the polymerase chain reaction are emerging as high-throughput genotyping 

platforms (Ojurongbe et al., 2007).  Molecular studies using various markers can provide the 

advance information on the emergence of drug resistance pattern in the field and such can be 

used to design malaria control strategies. Using molecular studies, point mutations on the P. 

falciparum Chloroquine  Resistant  Transporter  (PfCRT)  and  P.  falciparum Multi-drug 

Resistant1 (PfMDR1) genes have been reported to play an additional role for the chloroquine 

resistance in  P. falciparum isolates while dhfr and dhps were associated with resistance to 

sulfadoxine-pyrimethamine (Ittarat  et al., 1994; Adagu and Warhurst, 1999).

 

A major breakthrough in the search for the genetic basis of CQR in  P. falciparum  was the 

identification of PfCRT gene, which encodes a putative transporter or channel protein (Fidock 
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et  al.,  2000).  A  K76T  change  on  the  PfCRT  gene  appears  necessary  for  the  resistance 

phenotype, and is the most reliable molecular marker of resistance among the various fifteen 

polymorphic  amino  acid  positions  in  PfCRT gene  associated  with  CQR in  field  isolates 

(Djimde et al., 2001; Plowe, 2003; Ojurongbe et al., 2007). PfMDR1, is a homologue of the 

mammalian multiple drug resistance gene encoding a P-glycoprotein on the chromosome 5 of 

the  P.  falciparum.  Several  field  studies  indicated  the  positive  association  between  the 

asparagine to tyrosine change at position 86 (N86Y) and the chloroquine resistance both  in 

vitro (Adagu and Warhurst, 1999; Basco and Ringwald, 2001; Pickard  et al., 2003) and  in  

vivo (Ringwald and Basco, 1999; Basco and Ringwald, 2001; Dorsey et al., 2001). However, 

other studies have cast doubts on this association (Pillai et al., 2001; Ojurongbe et al., 2007).

In  vitro  resistance  of  P.  falciparum  to  pyrimethamine  and  to  chlorcycloguanil  is  due  to 

specific point mutations in P. falciparum Dihydrofolate reductase (DHFR), which is encoded 

by a bi-functional gene (dhfr-ts) also encoding thymidylate synthase (Kublin  et al.,  2002; 

Marks  et  al.,  2005).  A single point  mutation  causing a  Serine (Ser)  to Asparagine (Asn) 

change  at  codon  108  causes  pyrimethamine  resistance  with  only  a  moderate  loss  of 

susceptibility to chlorcycloguanil. The addition of Asn to Isoleucine (Ile) at position 51 and/or 

Cysteine (Cys) to  Arginine (Arg)  at  position 59  confers  higher  levels  of  pyrimethamine 

resistance. Ile to Leucine (Leu) at position 164, when combined with Asn108 and Ile51 and/or 

Arg59,  confers  high-level  resistance  to  both drugs.  Point  mutations  in  the  gene encoding 

DHPS have similarly been associated with in vitro resistance to the sulfa drugs and sulfones. 

Mutations associated with decreased susceptibility to sulfas include Ser to Alanine (Ala) at 

position 436, Ala to Glycine (Gly) at position 437, Ala to Gly at position 581, and Ser to 

Phenylalanine (Phe) at position 436 coupled with Ala to Threonine (Thr)/Ser at position 613 

(Plowe  et al.,  1998; Marks  et al.,  2005; McCollum  et al.,  2006). Both DHFR and DHPS 

mutations occurs in a progressive, step-wise fashion, with higher levels of in vitro resistance 

occurring in the presence of multiple mutations (Plowe et al., 1998; Marks et al., 2005)

In the absence of effective and practical preventive measures, the only current options for 

reducing the morbidity and mortality of malaria especially in Africa are chemoprophylaxis 

and chemotherapy.  For  this  reason,  the  increasing  prevalence  of  strains  of  P.  falciparum 

resistant to antimalarial drugs poses a serious problem for the control of malaria. 
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In  Nigeria,  malaria  accounts for high infant and childhood mortality  and it  imposes great 

burden on the country in terms of pains and trauma suffered by its victims as well as loss in 

outputs and cost of treatments.  In addition to the use of orthodox medicine for treatment, 

personal communication has shown that malaria is often treated in Nigeria with local herbs 

and the services of spiritualists/traditional priests.  Similarly,  common prevention measures 

include use of drugs (prophylaxis), insecticides (coils and sprays), ordinary mosquito nets, 

Insecticide-Treated Nets (ITNs) and window/door nets (Ojo, 2005).   

1.2 Justification/Rationale of the Study

Emerging  drug-resistant  P.  falciparum strains  are  making  malaria  a  resurging  infectious 

disease. Moreover, in recent years the situation has worsened in many ways mainly due to the 

malaria parasite becoming resistant to almost all available antimalarial drugs.

Newer drug therapies,  unfortunately,  have not eluded drug resistant  strains of the malaria 

parasite  as  there  have  also  been  case  reports  of  resistance  against  new  drugs  such  as 

Atovaquone-proguanil, (malarone®) cotrifazid, doxycycline, mefloquine (Lariam®).

Effective usage of existing antimalarial drugs requires continuous input of the drug resistance 

pattern in the field. In-Vitro drug sensitivity assays  provide information on the quantitative 

drug response of  P. falciparum;  they are therefore important tools for monitoring the drug 

response of  P. falciparum  and they provide background information  for development  and 

evaluation of drug policies. 

In addition,  in-vitro drug sensitivity assays serve as epidemiological tools to assess baseline 

sensitivity which can be an indicator of future therapeutic failure. They can also guide on the 

partner drug in Artemisinin Combination Therapies (ACTs).

This study was therefore designed to assess the in vitro sensitivity pattern and the molecular 

characteristics of P. falciparum that are likely to influence the observed resistance to these 

new antimalarial drugs; and also to test the efficacy of some selected Nigerian herbs used as 

local antimalarial drugs. This will contribute to the development of novel antimalarial drugs 

thus circumventing the resistance potentials of this parasite. 
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1.3 Objectives of the Study 

The objectives of this study are to:

1. establish  the  incidence  of   malaria  (Plasmodium infection)  in  Ogun  State, 

Southwestern Nigeria

2. assess the resistance patterns of P. falciparum to the current antimalarial drugs

3. determine the prevalence of  molecular markers of resistance to different classes of 

antimalarial drugs 

4. establish  the  factors  that  may  contribute  to  the  development  of  antimalarial  drug 

resistance in Southwestern Nigeria.

5. determine the efficacy of some Nigerian herbs used as local antimalarial drugs/drinks 

in vitro.

1.4 Scientific Hypotheses

1. There is a wide spread of multidrug drug resistant P. falciparum

2. In vitro susceptibility testing can provide information on drug resistance pattern of P.

falciparum to the new drugs that are currently in use.

3.  Molecular studies using various markers can provide advance information on the

 emergence of drug resistance pattern in the field. 

4. The misuse/abuse of antimalarial drugs results in fast development of resistance of P. 

falciparum to antimalarial drugs.

5. There is efficacy in the local herbs used as antimalarial drugs 

CHAPTER TWO

LITERATURE REVIEW

 2.1. Disease Incidence and Trends

Malaria remains an important public health concern in countries where transmission occurs 

regularly, as well as in areas where transmission has been largely controlled or eliminated. In 

particular, young children, pregnant women, and non-immune visitors to malarious areas are 
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at greatest risk of severe or fatal illness. Ninety percent of the global burden of malaria occurs 

in Africa, south of Sahara and in spite of the considerable efforts in the campaign against 

malaria, the number of cases and deaths associated with the disease remain almost unvaried 

(WHO,  2001).  Reasons  for  this  include  the  emergence  of  parasite  resistance  to  drugs, 

resistance of their vectors to insecticides, demographic growth with ensuing deterioration of 

living  and  infrastructure  standards  in  endemic  areas,  environmental  degradation,  armed 

conflicts  leading to large movement of refugees,  uncontrolled movement through endemic 

areas and natural disasters (Bourdy et al., 2008) 

2.1.1. Geographical Distribution and Populations at Risk

Malaria occurs in over 90 countries worldwide (Bloland, 2001). WHO estimated that 36% of 

the global population live in areas where there is risk of malaria transmission, 7% reside in 

areas where malaria has never been under meaningful control and 29% live in areas where 

malaria was once transmitted at low levels or not at all, but where significant transmission has 

been re-established (WHO, 1996a). The development and spread of drug-resistant strains of 

malaria parasites has been identified as a key factor in this resurgence (Bloland, 2001) and is 

one of the greatest challenges to malaria control today. Malaria transmission occurs primarily 

in tropical and subtropical regions in sub-Saharan Africa,  Central and South America, the 

Caribbean island of Hispaniola, the Middle East, the Indian subcontinent, South-East Asia, 

and  Oceania  (Hay  and  Snow,  2006).  In  areas  where  malaria  occurs,  however,  there  is 

considerable variation in the intensity of transmission and risk of malaria infection. Highlands 

(greater than 1500 m) and arid areas with less than 1000 mm rainfall per annum typically 

have  less  malaria,  although  they  are  also  prone  to  epidemic  malaria  when  parasitaemic 

individuals provide a source of infection and climate conditions are favourable to mosquito 

development (WHO 1996). Although urban areas have typically been at lower risk, explosive, 

unplanned  population  growth  has  contributed  to  the  growing  problem  of  urban  malaria 

transmission (Knudsen and Slooff, 1992).

Each year an estimated 300 to 650 million clinical cases of malaria occur, making it one of 

the most common infectious diseases worldwide (Hay et al., 2004). Malaria can be, in certain 

epidemiological  circumstances,  a  devastating  disease  with  high  morbidity  and  mortality, 

demanding a rapid, comprehensive response. In other settings, it can be a more pernicious 
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public health threat.  In many malarious areas of the world, especially sub-Saharan Africa, 

malaria is ranked among the most frequent causes of morbidity and mortality among children 

(Greenwood et al., 2005). It has been estimated that more than 90% of the 1.5 to 3.0 million 

deaths attributed to malaria each year occur in African children (Hay  et al.,  2004). Other 

estimates  based  on a  more  rigorous  attempt  to  calculate  the  burden of  disease  in  Africa 

support  this  level  of  mortality  (Snow  et  al., 1999).  In  addition  to  its  burden in  terms of 

morbidity and mortality, the economic effects of malaria infection can be tremendous. These 

include  direct  costs  for  treatment  and  prevention,  as  well  as  indirect  costs  such  as  lost 

productivity  from morbidity  and mortality;  time spent seeking treatment,  and diversion of 

household resources (Sachs and Malaney, 2002).  The annual economic burden of malaria 

infection in 1995 was estimated at  US$ 0.8 billion,  for Africa alone (Bloland 2001). This 

heavy toll can hinder economic and community development activities throughout the region. 

More than ever before malaria is both a disease of poverty and a cause of poverty (Bourdy et  

al., 2008).

Nigeria is known for high prevalence of malaria and it is a leading cause of morbidity and 

mortality in the country (Ademowo et al., 2006). Available records show that at least 50 per 

cent of the population of Nigeria suffers from at least one episode of malaria each year and 

that  malaria  accounts  for  over  45% of  all  out  patient  visits.  It  was  reported  that  malaria 

prevalence (notified cases) in year 2000 was about 2.4 million (Sowunmi et al., 2004). The 

disease accounts for 25 per cent of infant mortality and 30 per cent of childhood mortality in 

Nigeria.  Therefore,  it  imposes  great  burden on the  country in  terms of  pains  and trauma 

suffered by its victims as well as loss in outputs and cost of treatments (Ogungbamigbe et al., 

2005).  

2.2. Causative Agents

Malaria is caused by intracellular protozoan parasites of the genus Plasmodium. The parasite 

belongs  to  Kingdom  Protista,  Phylum  Apicomplexa,  Class  Aconoidasida,  Order 

Haemosporida, Family Plasmodiidae, Genus  Plasmodium and Species  falciparum The most 

serious forms of the disease are caused by P. falciparum and P.  malariae, but other related 

species  (P.  ovale,  P.  vivax)  can  also  infect  humans.  This  group  of  human-pathogenic 

Plasmodium species is usually referred to as  malaria parasites  (Trampuz  et al., 2003).  P. 
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falciparum,  P.  vivax,  P.  ovale,  and  P.  malariae  differ  in  geographical  distribution, 

microscopic  appearance,  clinical  features,  periodicity  of  infection,  potential  for  severe 

disease, ability to cause relapses, and potential for development of resistance to antimalarial 

drugs.  To date,  drug resistance has only been documented in  two of the four species,  P. 

falciparum and P. vivax (Bloland, 2001). 

2.3 Transmission and Biology of P. falciparum

Malaria can be transmitted by several species of female anopheline mosquitoes that differ in 

behavior (Greenwood et al., 2005). There are about 460 species of the Anopheles mosquito, 

but only 68 transmit malaria.  Anopheles gambiae, found in Africa is one of the best malaria 

vectors  since  it  is  long-lived,  prefers  feeding  on humans,  and  lives  in  areas  near  human 

habitation (Cowman, 2006). 

Prior to transmission,  P. falciparum resides within the salivary gland of the  mosquito. The 

parasite is in its sporozoite stage at this point. As the mosquito takes its blood meal, it injects 

a small amount of saliva into the skin wound. The saliva contains antihemostatic and anti-

inflammatory enzymes that disrupt the clotting process and inhibit the pain reaction (Bruce 

Chwatt,  1985).  Typically,  each infected  bite  contains  5-200  sporozoites which proceed to 

infect  the  human  (Gilles  et  al.,  1993).  Once  in  the  human  bloodstream,  the  sporozoites 

circulate for a few minutes before infecting liver cells. 

Liver Stage

After  circulating  in  the  bloodstream,  the  P.  falciparum sporozoites enter  hepatocytes to 

initiate  the  exoerythrocytic  stage.  At  this  point,  the  parasite  loses  its  apical  complex and 

surface coat, and transforms into a  trophozoite. Within the parasitophorous vacuole of the 

hepatocyte,  P.  falciparum undergoes  schizogonic  development.  In  this  stage,  the  nucleus 

divides multiple times with a concomitant increase in cell size, but without cell segmentation. 

This exoerythrocytic schizogony stage of P. falciparum has a minimum duration of roughly 

5.5 days. After segmentation, the parasite cells are differentiated into  merozoites (Miller  et  

al., 1994). After maturation, the merozoites are released from the hepatocytes and enter the 

erythrocytic portion of their life-cycle. The released merozoites do not reinfect hepatocytes.
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 Erythrocytic Stage

After release from the hepatocytes, the  merozoites enter the bloodstream prior to infecting 

red blood cells. At this point, the merozoites are roughly 1.5μm in length and 1 μm in 

diameter, and use the apicomplexan invasion organelles (apical complex, pellicle and 

surface coat) to recognize and enter the host erythrocyte (Bruce Chwatt  1985).The 

parasite first binds to the erythrocyte in a random orientation. It then reorients such 

that the apical complex is in proximity to the erythrocyte membrane. A tight junction 

is formed between the parasite and erythrocyte. As it enters the red blood cell,  the 

parasite  forms  a  parasitophorous  vesicle,  to  allow  for  its  development  inside  the 

erythrocyte (Gilles et al., 1993). 

After  invading  the  erythrocyte,  the  parasite  loses  its  specific  invasion  organelles  (apical 

complex and  surface  coat)  and  differentiates  into  a  round  trophozoite located  within  a 

parasitophorous vacuole in the red blood cell cytoplasm. The young  trophozoite (or "ring" 

stage,  because  of  its  morphology  on  stained  blood  films)  grows  substantially  before 

undergoing schizogonic division (Arora and Arora, 2005). The growing parasite replicates its 

DNA multiple times without cellular segmentation to form a schizont. These schizonts then 

undergo cellular segmentation and differentiation to form roughly 16-18 merozoite cells in the 

erythrocyte (Gills et al., 1993). The merozoites burst from the red blood cell, and proceed to 

infect other erythrocytes. The parasite then stays in the bloodstream for roughly 60 seconds 

before  invading another  erythrocyte.  This  infection  cycle  occurs  in  a  highly  synchronous 

fashion,  with  roughly  all  of  the  parasites  throughout  the  blood  in  the  same  stage  of 

development.  This  precise  clocking  mechanism  has  been  shown  to  be  dependent  on  the 

human host's  own  circadian  rhythm.  Specifically,  human body temperature  changes,  as  a 

result of the circadian rhythm, seem to play a role in the development of P. falciparum within 

the erythrocytic stage (Bruce Chwatt, 1985).

Within  the  red  blood  cell,  the  parasite  metabolism  depends  greatly  on  the  digestion  of 

hemoglobin. Infected erythrocytes are often sequestered in various human tissues or organs, 

such as the heart,  liver and brain. This is caused by parasite-derived cell  surface proteins 

being present on the red blood cell membrane and it is these proteins that bind to receptors on 

human cells. Sequestration in the brain causes cerebral malaria,  a very severe form of the 

disease,  which  increases  the  victim's  likelihood  of  death.  The  parasite  can  also  alter  the 
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morphology of the red blood cell, causing knobs on the erythrocyte membrane (Miller et al., 

1994).

Gametocyte Differentiation

During the erythrocytic stage, some merozoites develop into male and female gametocytes in 

a process called gametocytogenesis (Billker et al., 1998). These gametocytes take roughly 8-

10 days  to  reach  full  maturity  and remain  within  the  erythrocytes  until  taken  up by the 

mosquito host.

Mosquito Stage

The gametocytes of P. falciparum are taken up by the female Anopheles mosquito as it takes 

its blood meal from an infected human. Upon being taken up by the mosquito, they leave the 

erythrocyte shell and differentiate into gametes. The female gamete maturation process entails 

slight morphological changes, as it becomes enlarged and spherical. On the other hand, the 

male gamete maturation involves significant morphological development. The male gamete's 

DNA divides three times to form eight nuclei  and concurrently,  eight  flagella are formed. 

Each  flagella pairs  with a nucleus to form a microgamete,  which then separates from the 

parasite  cell  in a  process referred  to  as  exflagellation (Gilles  et  al., 1993).Gametogenesis 

(formation of gametes) has been shown to be caused by: 1) a sudden drop in temperature upon 

leaving the human host, 2) a rise in pH within the mosquito, and 3) xanthurenic acid within 

the mosquito (Billker et al., 1998). 

Fertilization of the female gamete by the male gamete occurs rapidly after gametogenesis. 

The fertilization event produces a  zygote. The  zygote then develops into an  ookinete. The 

zygote and ookinete are the only diploid stages of P. falciparum. The diploid ookinete is an 

invasive form of P. falciparum within the mosquito. It traverses the peritrophic membrane of 

the  mosquito midgut and crosses the midgut epithelium. Once through the epithelium, the 

ookinete enters the basil  lamina,  and forms an  oocyst.  During the  ookinete stage,  genetic 

recombination can occur. This takes place if the ookinete was formed from male and female 

gametes  derived  from different  populations.  This  can  occur  if  the  human  host  contained 

multiple populations of the parasite, or if the  mosquito fed on multiple infected individuals 

within a short time-frame (Bruce Chwatt, 1985).
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Over the period of 1-3 weeks, the oocyst grows to a size of tens to hundreds of micrometres. 

During  this  time,  multiple  nuclear  divisions  occur.  After  maturation,  it  divides  to  form 

multiple  haploid  sporozoites  in  a  process  referred  to  as  sporogony.  Immature  sporozoites 

break through the oocyst wall into the haemolymph, then migrate to the salivary glands and 

complete their differentiation. Once mature, the sporozoites can proceed to infect a human 

host during a subsequent mosquito bite (Gilles et al., 1993).
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Fig 2.1 Life cycle of Plasmodium Species.

(Bruce Chwatt, 1985)
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2.4. Symptoms

Malaria is a complex disease that varies widely in epidemiology and clinical manifestation in 

different parts of the world. This variability is due to factors such as the species of malaria 

parasites  that  occur  in  a  given  area,  their  susceptibility  to  commonly  used  or  available 

antimalarial  drugs,  the  distribution  and efficiency  of  mosquito  vectors,  climate  and other 

environmental conditions and the behavior and level of acquired immunity of the exposed 

human  populations  (Greenwood  et  al.,  1991;  Mockenhaupt  et  al., 2000).  The  parasites 

multiply within the red blood cells, causing symptoms that include symptoms of anemia (light 

headedness, shortness of breath, tachycardia etc.), as well as other general symptoms such as 

fever,  chills,  nausea,  flu-like  illness,  arthralgia (joint  pain),  vomiting,  anemia caused  by 

hemolysis,  hemoglobinuria,  and  convulsions and in  severe  cases,  coma and death  (WHO 

1991). 

The classical symptom of malaria is cyclical occurrence of sudden coldness followed by rigor 

and then fever and sweating lasting four to six hours, occurring every two days in P. vivax and 

P.  ovale infections,  while  it  occurs  every  three  days  in  P.  malariae  (Boivin,  2002).  P. 

falciparum can  have  recurrent  fever  every  36-48 hours  or  a  less  pronounced and almost 

continuous fever (Trampuz  et al., 2003). For reasons that are poorly understood, but which 

may be related to high intracranial pressure, children with severe malaria frequently exhibit 

abnormal posturing, a sign indicating severe brain damage (Idro  et al., 2007). Malaria has 

been  found  to  cause  cognitive  impairments,  especially  in  children.  It  causes  widespread 

anemia during  a  period  of  rapid  brain  development  and  also  direct  brain  damage.  This 

neurologic  damage  results  from  cerebral  malaria  to  which  children  are  more  vulnerable 

(Boivin, 2002).

Consequences of severe malaria  include  coma and death if  untreated,  young children and 

pregnant women are especially vulnerable. Splenomegaly (enlarged spleen), severe headache, 

cerebral  ischemia,  hepatomegaly (enlarged liver),  hypoglycemia,  and hemoglobinuria  with 

renal failure may occur (Trampuz  et al., 2003). Renal failure may cause  blackwater fever, 

where hemoglobin from lysed red blood cells leaks into the urine (Idro et al., 2007). Severe 

malaria can progress extremely rapidly and cause death within hours or days. In the most 

severe  cases  of  the  disease  fatality  rates  can  exceed  20%,  even  with  intensive  care  and 
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treatment (Kain  et al., 1998). In endemic areas, treatment is often less satisfactory and the 

overall fatality rate for all cases of malaria can be as high as one in ten (Mockenhaupt et al., 

2004). Over the longer term, developmental impairments have been documented in children 

who have suffered episodes of severe malaria (Trampuz et al., 2003). Chronic malaria is seen 

in both P. vivax and P. ovale, but not in P. falciparum. Here, the disease can relapse months 

or years after exposure, due to the presence of latent parasites (hypnozoites) in the liver (Kain 

et  al., 1998).  Severe malaria  is  almost exclusively  caused by  P. falciparum infection  and 

usually arises 6-14 days after infection.

2.5. Diagnosis

Direct microscopic examination of intracellular parasites on stained blood films is the gold 

standard for definitive diagnosis in nearly all  settings.  However,  several other approaches 

exist or are in development, some of which are discussed here.

2.5.1. Microscopy

Simple  light  microscopic  examination  of  Giemsa  stained  blood  films  is  the  most  widely 

practiced  and  useful  method  for  definitive  malaria  diagnosis.  Advantages  include 

differentiation between species, quantification of the parasite density and ability to distinguish 

clinically  important  asexual  parasite  stages  from gametocytes  which  may  persist  without 

causing  symptoms  (WHO,  1991).  These  advantages  can  be  critical  for  proper  case-

management and evaluating parasitological response to treatment. Specific disadvantages are 

that slide collection, staining, and reading can be time-consuming and microscopists need to 

be trained and supervised to ensure consistent reliability. While availability of microscopic 

diagnosis has been shown to reduce drug use in some trial settings (Chanda et al., 2009). Any 

programme aimed at  improving the availability  of reliable  microscopy should also retrain 

clinicians in the use and interpretation of microscopic diagnosis. 

Another  method is  a  modification  of light  microscopy called the Quantitative  Buffy Coat 

Method  (QBCTM,  Becton-Dickinson).  Originally  developed  to  screen  large  numbers  of 

specimens for complete blood cell counts, this method has been adapted for malaria diagnosis 

(Levine et al., 1989). The technique uses microhaematocrit tubes precoated with fluorescent 

acridine  orange  stain  to  highlight  malaria  parasites.  With  centrifugation,  parasites  are 
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concentrated at a predictable location. Advantages to QBC are that less training is required to 

operate  the  system than  for  reading  Giemsa-stained  blood  films  and  the  test  is  typically 

quicker to perform than normal light microscopy. Disadvantages are that electricity is always 

required, special equipment and supplies are needed, the per-test cost is higher than simple 

light microscopy, and species-specific diagnosis is not reliable. Field trials have shown that 

the QBC system may be marginally more sensitive than conventional microscopy under ideal 

conditions (Levine et al., 1989; Tharavanij, 1990). 

2.5.2. Clinical (presumptive) Diagnosis 

Although  reliable  diagnosis  cannot  be  made  on  the  basis  of  signs  and  symptoms  alone 

because of the non-specific nature of clinical malaria, clinical diagnosis of malaria is common 

in many malarious areas (WHO, 1997). In much of the malaria-endemic world, resources and 

trained health personnel are so scarce that presumptive clinical diagnosis is the only realistic 

option (Smith et al., 1994). Clinical diagnosis offers the advantages of ease, speed, and low 

cost. In areas where malaria is prevalent, clinical diagnosis usually results in all patients with 

fever and no apparent other cause being treated for malaria. This approach can identify most 

patients who truly need antimalarial treatment, but it is also likely to misclassify many who do 

not (Olivar  et al., 1991). Over-diagnosis contributes considerably to misuse of antimalarial 

drugs  (Ogungbamigbe  et  al.,  2008).  Considerable  overlap  exists  between  the  signs  and 

symptoms of  malaria  and other  frequent  diseases,  especially  acute  lower  respiratory  tract 

infection and can greatly increase the frequency of misdiagnosis and mistreatment (Redd et  

al., 1992).

Attempts to improve the specificity of clinical diagnosis for malaria by including signs and 

symptoms other than fever or history of fever have met with only minimal success (Smith et  

al., 1994). The Integrated Management of Childhood Illnesses (IMCI) programme defined an 

algorithm that has been developed in order to improve diagnosis and treatment of the most 

common childhood illnesses in areas relying upon relatively unskilled health care workers 

working  without  access  to  laboratories  or  special  equipment.  With  this  algorithm,  every 

febrile child living in a “high-risk” area for malaria should be considered to have, and be 

treated for, malaria. “High risk” has been defined in IMCI Adaptation Guides as being any 

situation where as little as 5% of febrile children between the ages of 2 and 59 months are 
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parasitaemic (WHO, 1997), a definition that will likely lead to significant over-diagnosis of 

malaria in areas with low to moderate malaria transmission.

2.5.3. Antigen detection tests (rapid or “dipstick” diagnostic tests)

A third  diagnostic  approach  involves  the  rapid  detection  of  parasite  antigens  using  rapid 

immunochromatographic  techniques.  Multiple  experimental  tests  have  been  developed 

targeting  a  variety  of  parasite  antigens  (WHO,  1996;  Bloland,  2001).  A  number  of 

commercially  available  kits  (e.g.  ParaSight-F®,  Becton-Dickinson;  Malaquick®,  ICT, 

Sydney, New South Wales, Australia) are based on the detection of the histidine-rich protein 

2 (HRP-II) of  P. falciparum.  Compared with light microscopy and QBC, this test yielded 

rapid and highly sensitive diagnosis of P. falciparum infection (WHO, 1996; Craig and Sharp, 

1997).  Advantages  to  this  technology  are  that  no special  equipment  is  required,  minimal 

training is needed, the test and reagents are stable at ambient temperatures and no electricity is 

needed.  The principal  disadvantages  are  a  currently  high per-test  cost and an inability  to 

quantify the density of infection. Furthermore, for tests based on HRP-II, detectable antigen 

can persist for days after adequate treatment and cure; therefore, the test cannot adequately 

distinguish a resolving infection from treatment failure due to drug resistance, especially early 

after treatment (WHO, 1996). 

Additionally, a test based on detection of a specific parasite enzyme (lactate dehydrogenase or 

pLDH) has been developed (OptiMAL®, Flow Inc. Portland, OR, USA) and reportedly only 

detects viable parasites, which if true, eliminates prolonged periods of false positivity post-

treatment (Makler et al., 1998; Palmer et al., 1999). Newer generation antigen detection tests 

are able to distinguish between falciparum and non-falciparum infections, greatly expanding 

their  usefulness in areas where non-falciparum malaria  is transmitted frequently (Bloland, 

2001).

2.5.4. Molecular tests

Detection of parasite genetic material through polymerase-chain reaction (PCR) techniques 

has become a more frequently used tool in the diagnosis of malaria, as well as the diagnosis 

and surveillance of drug resistance in malaria. Specific primers have been developed for each 

of the four species of human malaria. One important use of this new technology is in detecting 
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mixed infections or differentiating between infecting species when microscopic examination 

is inconclusive (Beck, 1999). In addition, improved PCR techniques could prove useful for 

conducting  molecular  epidemiological  investigations  of  malaria  clusters  or  epidemics 

(Purfield  et al.,  2004). Primary disadvantages to these methods are overall  high cost, high 

degree of training required, need for special equipment, absolute requirement for electricity, 

and potential for cross-contamination between samples (Berzins and Anders, 1999).

2.5.5 Serology

Techniques  also  exist  for  detecting  anti-malaria  antibodies  in  serum specimens.  Specific 

serological markers have been identified for each of the four species of human malaria. A 

positive test generally indicates a past infection. Serology is not useful for diagnosing acute 

infections because detectable levels of anti-malaria antibodies do not appear until weeks into 

infection  and persist  long after  parasitaemia  has resolved.  Moreover,  the test  is  relatively 

expensive, and not widely available (Bloland, 2001).

2.6. Antimalarial Drugs

For the past 50 years, there have been two main classes of antimalarial  agents in use, the 

antifolates and the cinchona alkaloids or the quinoline-containing drugs (Philips, 2001). The 

quinoline-containing  drugs  include the cinchona alkaloids,  quinine and quinidine,  and the 

aminoalcohol quinine analogues mefloquine (a 4-quinoline methanol) and halofantrine (a 9-

phenathrene methanol), which are recent introductions (ter Kuile 1993; Philips 2001). There 

are also the 8-aminoquinoline primaquine, which is used for its gametocidal effect and its 

action on the liver stage of P. Vivax, and the 4-aminoquinolines, chloroquine and its relative 

amodiaquine  (White,  1997).  The  antifolates  include  the  diaminopyrimidines,  such  as 

pyrimethamine and trimethoprim; the biguanides, represented by proguanil (cycloguanil) and 

chlorproguanil; and the sulfa drugs, including the sulfonamides and the sulfones. 

2.6.1. Quinine and related compounds 

Quinine is the oldest and most famous anti-malarial (Dorvault, 1982). It has a long history 

stretching from Peru, to the discovery of the Cinchona tree and the potential uses of its bark, 

to the current day and a collection of derivatives that are still frequently used in the prevention 

and treatment of malaria (Segurado et al., 1997). Quinine is an alkaloid that acts as a blood 
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schizonticidal and  weak  gametocide against  Plasmodium  species.  As  an  alkaloid,  it  is 

accumulated  in  the  food  vacuoles of  Plasmodium,  especially  P.  falciparum.  It  acts  by 

inhibiting the hemozoin biocrystallization, thus facilitating an aggregation of cytotoxic heme. 

Quinine is less effective and more toxic as a blood schizonticidal agent than  Chloroquine; 

however it is still very effective and widely used in the treatment of acute cases of severe P. 

falciparum (Foley and Tilley, 1998). It is especially useful in areas where there is known to be 

a  high  level  of  resistance  to  Chloroquine,  Mefloquine and  sulfa  drug combinations  with 

pyrimethamine (Foley  and Tilley, 1998). Quinine is also used in post-exposure treatment of 

individuals  returning  from  an  area  where  malaria  is  endemic (Foley  and  Tilley,  1997). 

Quinine,  along with  its  dextroisomer,  Quinidine,  has  been the  drug of  last  resort  for  the 

treatment of malaria, especially severe disease. 

Quinimax and Quinidine are the two most commonly used alkaloids related to Quinine, in the 

treatment  or prevention  of Malaria.  Quinimax is  a combination  of four alkaloids  (namely 

Quinine, Quinidine, Cinchoine and Cinchonidine) (Mills and Bone, 2000). This combination 

has been shown in several studies to be more effective than Quinine, supposedly due to a 

synergistic action between the four Cinchona derivatives. Quinidine is a direct derivative of 

Quinine.  It  is  a  distereoisomer,  thus  having  similar  anti-malarial  properties  to  the  parent 

compound.  Quinidine  is  recommended  only  for  the  treatment  or  severe  cases  of  malaria 

(Foley and Tilley, 1998).

Chloroquine

Chloroquine is a 4-aminoquinolone derivative of quinine, first synthesized in 1934 and has 

since been the most widely used antimalarial drug until recently (WHO, 2001). Historically, it 

has been the drug of choice for the treatment of non-severe or uncomplicated malaria and for 

chemoprophylaxis. It is believed to reach high concentrations in the vacuoles of the parasite, 

which, due to its alkaline nature, raises the internal  pH. It controls the conversion of toxic 

heme to  hemozoin by inhibiting  the  biocrystallization of  hemozoin (Lobel  and Campbell, 

1986) thus  poisoning  the  parasite  through  excess  levels  of  toxicity.  Other  potential 

mechanisms through which it may act include interfering with the biosynthesis of parasitic 

nucleic acids, the formation of a chloroquine-haem or chloroquine-DNA complex. It was the 

original prototype from which most other methods of treatment are derived (Foley and Tilley, 
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1997).  It  is  also  the  least  expensive,  best  tested  and  safest  of  all  available  drugs.  The 

emergence  of  drug  resistant  parasitic  strains  is  rapidly  decreasing  its  effectiveness 

(Rieckmann et al., 1978; Wellems and Plowe, 2001); however it is still the first-line drug of 

choice  in  most  sub-Saharan  African countries.  It  is  now  suggested  that  it  is  used  in 

combination with other antimalarial drugs to extend its effective usage.

The most significant level of activity found is against all forms of the schizonts (with the 

obvious  exception  of  chloroquine-resistant  P.  falciparum and  P.  vivax strains)  and  the 

gametocytes of  P. vivax, P. malariae,  P. ovale as well as the immature gametocytes of  P. 

falciparum. Chloroquine also has a significant anti-pyretic and anti-inflammatory effect when 

used to treat P. vivax infections, thus it may still remain useful even when resistance is more 

widespread  (Alene  and  Bennett,  1996).  A  slightly  different  drug  called  nivaquine or 

chloroquine phosphate was also invented (Bloland 2001).

Amodiaquine

Amodiaquine is a 4-aminoquinolone anti-malarial drug similar in structure and mechanism of 

action to Chloroquine (Winstanley et al., 1987). It is thought to be more effective in clearing 

parasites in uncomplicated malarial than Chloroquine, thus leading to a faster rate of recovery 

(Olliaro and Taylor. 2002). However, some fatal adverse effects of the drug were noted during 

the 1980’s, thus reducing its usage in chemoprophylaxis. The WHO’s advice on the subject 

maintained that the drug should be used when the potential risk of not treating an infection 

outweighs the risk of developing side effects (Basco, 1991). It has also been suggested that it 

is  particularly  effective  and less  toxic  than  other  combination  treatments  in  HIV positive 

patients (Parise  et al., 1998). Adverse reactions are generally similar in severity and type to 

that seen in Chloroquine treatment. In addition,  bradycardia, itching, nausea, vomiting and 

some abdominal pain have been recorded. Some blood and hepatic disorders have also been 

seen in a small number of patients (Olliaro et al., 1996).

Mefloquine

Mefloquine was developed during the  Vietnam War and is chemically related to quinine. It 

was developed to protect American troops against multi-drug resistant P. falciparum. It is a 

very potent blood schizonticide with a long half-life (Mockenhaupt, 1995). It is thought to act 
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by  forming  toxic  heme  complexes  that  damage  parasitic  food  vacuoles.  Mefloquine 

(Lariam®) is effective in prophylaxis and for acute therapy (Palmer  et al., 1993). It is now 

strictly used for resistant strains (and is usually combined with Artesunate) (van Vugt et al., 

1998). It has been linked with an increased number of stillbirths (Palmer et al., 1993) and is 

not  recommended  for  use  during  the  first  trimester,  although  considered  safe  during  the 

second and third trimesters. Mefloquine frequently produces side effects, including nausea, 

vomiting,  diarrhea,  abdominal  pain  and  dizziness.  Several  associations  with  neurological 

events  have  been  made,  namely  affective and  anxiety  disorders,  hallucinations,  sleep 

disturbances,  psychosis,  toxic  encephalopathy,  convulsions  and  delirium.  Moreover 

cardiovascular effects  have been recorded with bradycardia  and  sinus arrhythmia (Ridley, 

1997)

Atovaquone

Atovaquone  is  a  hydroxynapthoquinone  that  is  currently  being  used  most  widely  for  the 

treatment  of  opportunistic  infections  in  immunosuppressed  patients.  It  is  effective  against 

chloroquine-resistant  P.  falciparum,  but  because  when  used  alone,  resistance  develops 

rapidly, atovaquone is usually given in combination with proguanil (Looareesuwan, 1996). A 

fixed  dose  antimalarial  combination  of  250mg  atovaquone  and  100mg  proguanil 

(MalaroneTM)  was introduced to market  worldwide and was additionally  being distributed 

through a donation programme (Foege,  1997). Two drugs originally  synthesized in China 

were recommended for field trials. Pyronaridine was reported to be 100% effective in one trial 

in Cameroon (Ringwald et al., 1996); however, it was only between 63% and 88% effective 

in  Thailand  (Looareesuwan,  1996).  Lumefantrinel,  a  fluoromethanol  compound,  was  also 

produced  as  a  fixed  combination.  Atovaquone produces  no  side-effects  such  as  the 

cardiovascular effect with mefloquine which can trigger heart rhythm problems. 

Primaquine

Primaquine is a highly active 8-aminoquinolone that was used in treating all types of malaria 

infection (Olliaro and Trigg, 1995). It was most effective against gametocytes but also acts on 

hypnozoites, blood schizonticytes and the dormant plasmodia in  P. vivax and  P. ovale. It is 

the only known drug to cure both relapsing malaria infections and acute cases (Looareesuwan, 

1996). The mechanism of action is thought to mediate some effect through creating oxygen 
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free  radicals that  interfere  with the  plasmodial  electron  transport  chain during  respiration 

(Bloland  et  al.,  1997).  There  are  few  significant  side  effects  such  as  anorexia,  nausea, 

vomiting,  cramps,  chest  weakness,  anaemia,  some  suppression  of  myeloid activity  and 

abdominal pains; In cases of over-dosage granulocytopenia may occur (Bruce-Chwatt,, 1985).

Halofantrine

Halofantrine was developed by the  Walter  Reed Army Institute  of Research in the 1960s 

(Mills and Bone, 2000). It is a phenanthrene methanol, chemically related to Quinine and acts 

as a blood schizonticide effective against all Plasmodium parasites (ter Kuile et al., 1993). Its 

mechanism of action is similar to other anti-malarials. Cytotoxic complexes are formed with 

ferritoporphyrin XI that cause plasmodial membrane damage (Bloland, 2001). Despite being 

effective  against  drug  resistant  parasites,  Halofantrine  was  not  commonly  used  in  the 

treatment  (prophylactic  or  therapeutic)  of  malaria  due  to  its  high  cost,  very  variable 

bioavailability  and most importantly  it  has been shown to have potentially  high levels of 

cardiotoxicity (Nosten et al., 1993). A popular drug based on halofantrine is Halfan. 

2.6.2 Antifolate drugs

This class of drugs includes effective casual antimalarial prophylactic and therapeutic agents, 

some  of  which  act  synergistically  when  used  in  combination.  They  are  of  various 

combinations of dihydrofolate-reductase inhibitors (proguanil, chlorproguanil, pyrimethamine 

and trimethoprim) and sulfa drugs (dapsone, sulfalene,  sulfamethoxazole,  sulfadoxine,  and 

others).  Although these  drugs  have  antimalarial  activity  when  used  alone,  parasitological 

resistance can develop rapidly (Kupferschmidt et al., 1988). When combined, they produce a 

synergistic effect on the parasite and can be effective even in the presence of resistance to the 

individual  components  (Kublin  et  al., 2002).  Typical  combinations  include 

sulfadoxine/pyrimethamine  (SP  or  Fansidar1),  sulfalene-pyrimethamine  (metakelfin)  and 

sulfamethoxazole-trimethoprim (co-trimoxazole). A newer antifolate combination drug which 

is a combination of chlorproguanil and dapsone, also known as Lapdap, has a much more 

potent  synergistic  effect  on  malaria  than  existing  drugs  such  as  SP.  Benefits  of  this 

combination include a greater cure rate, even in areas currently experiencing some level of SP 

resistance,  a  lower  likelihood  of  resistance  developing  because  of  a  more  advantageous 

pharmacokinetic and pharmacodynamic profile and probable low cost (Kublin et al., 2002).
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Sulphadoxine Pyrimethamine

Sulfadoxine-pyrimethamine (SP) has been widely used as first-line therapy for uncomplicated 

P. falciparum malaria throughout sub-Saharan Africa, because of its affordability, its ease of 

administration  and  until  recently,  its  effectiveness.  It  is  currently  the  only  option  for 

intermittent treatment of malaria during pregnancy (McCollum et al., 2006). SP, which has 

potent  efficacy  against  chloroquine-resistant  and  pyrimethamine-resistant  P.  falciparum,  

became available in 1971 and became the standard second-line therapy against chloroquine-

resistant falciparum malaria. Pyrimethamine acts by inhibiting dihydrofolate reductase in the 

parasite, thus preventing the biosynthesis of purines and pyrimidines and therefore halting the 

processes of DNA synthesis, cell division and reproduction. It acts primarily on the schizonts 

during  the  hepatic  and  erythrocytic  phases  (Kuznetsov et  al., 1984).  The  action  of 

sulphadoxine is focused on inhibiting the use of para-aminobenzoic acid during the synthesis 

of dihydropteroic acid. When combined the two key stages in DNA synthesis in the plasmodia 

are prevented. 

Proguanil

Proguanil (Chloroguanadine)  is  a  biguanide;  a  synthetic  derivative  of  pyrimidine.  It  was 

developed in 1945 by a British Antimalarial research group (Mills and Bone, 2000). It has 

many  mechanisms  of  action  but  primarily  is  mediated  through  conversion  to  the  active 

metabolite cycloguanil pamoate. This inhibits the malarial dihydrofolate reductase enzyme. 

Its most prominent effect is on the primary tissue stages of  P. falciparum, P. vivax and  P. 

ovale. It has no known effect against  hypnozoites therefore is not used in the prevention of 

relapse.  It  has  a  weak  blood  schizonticidal  activity  when  combined  with  Atovaquone (a 

hydroxynaphthoquinone). Proguanil is used as a prophylactic treatment in combination with 

another drug, most frequently Chloroquine (Kublin et al., 2002). Proguanil has been used in 

combination with dapsone for prophylaxis and treatment (Shanks et al., 1992; Mutabingwa et  

al., 2005) and recently, proguanil/dapsone has been combined with artesunate (Nzila  et al., 

2002).  There are very few side effects to Proguanil, with slight hair loss and mouth ulcers 

being occasionally reported following prophylactic use.
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2.6.3 Antibiotics

Tetracycline and derivatives such as doxycycline are very potent antimalarials and are used 

for  both  treatment  and  prophylaxis  (Kremsner  et  al., 1994).  In  areas  where  response  to 

quinine has deteriorated, tetracyclines are often used in combination with quinine to improve 

cure rates. Clindamycin has been used but offers only limited advantage when compared to 

other available antimalarial drugs as parasitological response is slow and recrudescence rates 

are high (Kremsner et al., 1994). 

 Doxycycline

Doxycycline is  a  Tetracycline compound derived  from  Oxytetracycline.  The tetracyclines 

were one of the earliest  groups of antibiotics to be developed and are still  used widely in 

many types of infection. It is a bacteriostatic agent that acts to inhibit the process of protein 

synthesis by binding to the 30S ribosomal subunit thus preventing the 50s and 30s units from 

bonding (Kremsner  et  al., 1989).  Doxycycline  is  used primarily  for  chemoprophylaxis  in 

areas where quinine resistance exists. It can be used in resistant cases of uncomplicated  P. 

falciparum but has a very slow action in acute malaria. The most commonly experienced side 

effects are permanent enamel hypoplasia, transient depression of bone growth, gastrointestinal 

disturbances and some increased levels of photosensitivity. Due to its effect on bone and tooth 

growth it is not used in children under 8, pregnant or lactating women and those with a known 

hepatic dysfunction (Kremsner et al., 1994). Tetracycline is only used in combination for the 

treatment of acute cases of P. falciparum infections due to its slow onset. Unlike Doxycycline 

it  is  not  used  in  chemoprophylaxis.  Oesophageal  ulceration,  gastrointestinal  upset  and 

interferences with the process of  ossification and depression of bone growth are known to 

occur. The majority of side effects associated with Doxycycline are also experienced.

Clindamycin

Clindamycin is a derivative of Lincomycin, with a slow action against blood schizonticides. It 

is  only  used  in  combination  with Quinine  in  the  treatment  of  acute  cases  of  resistant  P. 

falciparum infections and not as a prophylactic (Kremsner et al., 1989; 1994)
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2.6.4. Artemisinin compounds

Artemisinin is a Chinese herb (Qinghaosu) that has been used in the treatment of fevers for 

over 1,000 years (WHO, 1996), thus predating the use of Quinine in the western world. It is 

derived  from  the  plant  Artemisia  annua,  with  the  first  documentation  as  a  successful 

therapeutic agent in the treatment of malaria in 340 AD (Mueller  et al.  2000; 2004). The 

active compound was isolated first in 1971 and named Artemsinin (Mills and Bone, 2000). It 

is a sesquiterpene lactone with a chemically rare peroxide bridge linkage, which is thought to 

be responsible for the majority of its  anti-malarial  action (Hien and White,  1993).  It  has 

proven to be effective against all forms of multi-drug resistant P. falciparum, thus every care 

is taken to ensure compliance and adherence together with other behaviours associated with 

the development of resistance. It is also only given in combination with other anti-malarials.

Artemesinin  has a  very rapid action  and the vast  majority  of  acute patients  treated  show 

significant  improvement  within  1-3  days  of  receiving  treatment.  It  has  demonstrated  the 

fastest  clearance  of all  anti-malarials  currently used and acts  primarily  on the trophozoite 

phase,  thus  preventing  progression  of  the  disease.  It  is  converted  to  active  metabolite 

dihydroartemesinin  that  then  inhibits  the  Sarcoplasmic/Endoplasmic  Reticulum Calcium 

ATPase (SERCA) encoded by  P. falciparum  (Eckstein-Ludwig  et al., 2003). It was one of 

many candidates then tested by Chinese scientists from a list of nearly 200 traditional Chinese 

medicines for treating malaria. It was the only one that was effective, but it was found that it 

cleared malaria parasites from their bodies faster than any other drug in history.  Artemisia  

annua is a common herb and has been found in many parts of the world, including along the 

Potomac River, in Washington, D.C (Hien and White, 1993).

A  number  of  sesquiterpine  lactone  compounds  have  been  synthesized  from  the  plant 

Artemisia annua (artesunate, artemether, arteether) (Mills and Bone, 2000). These compounds 

are used for treatment of severe malaria and have shown very rapid parasite clearance times 

and faster fever resolution than occurs with quinine.  Artemisinin drugs first  introduced in 

South-East Asia have proven to be well tolerated and the most potent of antimalarials (White,  

1999).  They  exhibit  the  following  properties: rapid  significant  reduction  of  parasite 

biomass, rapid  resolution  of  clinical  symptoms, effective  against  multidrug  resistant  P. 

falciparum and reduction of gametocyte carriage, which may reduce transmission. However, 
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artemisinin drugs have a very short half-life and thus a multiple dose regimen of seven days is 

required to achieve an acceptable cure rate (WHO, 2003).

In some areas of South-East Asia, combinations of artemisinins and mefloquine offer the only 

reliable  treatment  for  uncomplicated  malaria,  due  to  the  development  and  prevalence  of 

multidrug resistant  falciparum malaria (White, 1999). Combination therapy (an artemisinin 

compound given in combination with another antimalarial), typically a long half-life drug like 

mefloquine) has reportedly been responsible for inhibiting intensification of drug resistance 

and for decreased malaria transmission levels in South-East Asia (Price et al., 1996; White, 

1999). Artesunate (AS) plus amodiaquine (AQ) is one artemisinin-based combination (ACT) 

recommended by the WHO for treating  P. falciparum  malaria in Africa (Sodiomon  et al., 

2009).

Artemether is a methyl ether derivative of dihydroartemesinin. It is similar to artemesinin in 

mode of action but demonstrates a reduced ability as a hypnozoiticidal compound, instead 

acting more significantly to decrease gametocyte carriage. Similar restrictions are in place, as 

with  artemesinin,  to  prevent  the  development  of  resistance,  therefore  it  is  only  used  in 

combination therapy for severe acute cases of drug-resistant P. falciparum. It was discovered 

in  1982  (Dorvault,  1982).  Artesunate,  discovered  in  1983  (Mills  and  Bone,  2000)  is  a 

hemisuccinate derivative of the active metabolite dihydroartemisin. Currently it is the most 

frequently  used  of  all  the  artemesinin-type  drugs.  Its  only  effect  is  mediated  through  a 

reduction in the gametocyte transmission. It is used in combination therapy and is effective in 

cases of uncomplicated P. falciparum. 

Dihydroartemisinin is the active metabolite to which Artemisinin is reduced. It is the most 

effective Artemisinin compound and the least  stable (Krettli,  2001). It  has a strong blood 

schizonticidal action and reduces gametocyte transmission. It is used for therapeutic treatment 

of cases of resistant and uncomplicated P. falciparum. As with artesunate, no side effects to 

treatment have thus far been recorded. 
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Arteether is an ethyl ether derivative of dihydroartemisinin. It is used in combination therapy 

for cases of uncomplicated resistant P. falciparum (Krettli, 2001). No side effects have been 

recorded. 

2.7 COMBINATION THERAPY WITH ANTIMALARIALS

The problem of the development of malaria resistance must be weighed against the essential 

goal of anti-malarial care; that is to reduce morbidity and mortality. Thus a balance must be 

reached that attempts to achieve both goals whilst not compromising either too much by doing 

so.  The  most  successful  attempts  so  far  have  been  in  the  administration  of  combination 

therapy. The key driver for combination antimalarial therapy is the need to slow development 

of acquired drug resistance to a New Chemical Entity (NCE) and so maintain high levels of 

efficacy for a longer period of time. This is best  achieved  by combining molecules which 

individually have high levels of efficacy (WHO, 2001)

Combination  therapy  can  be  defined  as,  ‘the  simultaneous  use  of  two  or  more  blood 

schizonticidal drugs with independent modes of action and different biochemical targets in the 

parasite’ (Price et al., 1999).  Much evidence has supported the use of combination therapies. 

The use of two antimalarial  drugs simultaneously,  especially  when the antimalarials  have 

different mechanisms of action, has the potential for inhibiting the development of resistance 

to  either  of  the  components.  The  efficacy  of  a  combination  of  a  4-aminoquinoline  drug 

(chloroquine  or  amodiaquine)  with  Sulfadoxine/Pyrimethamine  (SP)  has  been  reviewed 

(McIntosh and Greenwood, 1998). It  was found that the addition of either  chloroquine or 

amodiaquine to SP marginally improved parasitological clearance (compared with SP alone). 

The  studies  reviewed  were  mostly  done  in  areas  and  at  times  when  both  SP  and 

Chloroquine/Amodiaquine retained a fair amount of efficacy, and it is not clear from these 

studies how well such a combination would act in areas where one of the components was 

significantly  compromised.  However  several  problems  prevent  the  wide  use  in  the  areas 

where its use is most advisable. These include: problems identifying the most suitable drug 

for different epidemiological situations, the expense of combined therapy (it is over 10 times 

more  expensive  than  traditional  mono-therapy),  how  soon  the  programmes  should  be 

introduced and problems linked with policy implementation and issues of compliance (WHO, 
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2001). The combinations of drugs currently prescribed can be divided into two categories: 

Non-artemesinin and quinine-based combinations and artemesinin based combinations.

2.7.1 Non-Artemesinin based combinations

Sulfadoxine-pyrimethamine plus Amodiaquine: This is a combination that has been shown 

to  produce  a  faster  rate  of  clinical  recovery  than  SP  and  Chloroquine  (McIntosh  and 

Greenwood 1998). However there are serious adverse reactions associated which have limited 

its distribution. It is thought to have a longer therapeutic lifetime than other combinations and 

may  be  a  more  cost-effective  option  to  introduce  in  areas  where  resistance  is  likely  to 

develop. 

Sulfadoxine-Pyrimethamine  plus  Mefloquine:  This  is  produced  as  a  single  dose  pill 

(Fansimef®)  and has  obvious  advantages  over  some of  the  more complex regimes.  This 

combination of drugs has very different pharmokinetic properties with no synergistic action. 

This characteristic is potentially thought to delay the development of resistance; however it is 

counteracted by the very long half  life  of Mefloquine which could exert  a  high selection 

pressure  in  areas  where  intensive  malaria  transmission  occurs.  It  is  also  an  expensive 

combination. 

Tetracycline or Doxycycline plus Quinine:  Despite the increasing levels of resistance to 

Quinine this combination have proven to be particularly efficacious (Kremsner et al., 1994). 

The longer half-life of the Tetracycline component ensures a high cure rate. Problems with 

this regime include the relatively complicated drug regimen, where Quinine must be taken 

every 8 hours for 7 days. Additionally, there are severe side effects to both drugs (Cinchonism 

in Quinine) and Tetracyclines are contraindicated in children and pregnant women. For these 

reasons this combination is not recommended as first-line therapy but can be used for non-

responders who remain able to take oral medication. 

 2.7.2 Artemesinin-based combinations 

Artemesinin has a very different mode of action from conventional anti-malarials. This makes 

it particularly useful in the treatment of resistant infections (Mueller et al., 2000). However, in 

order  to  prevent  the  development  of  resistance  to  this  drug  it  is  only  recommended  in 

combination with another non-artemesinin based therapy. It produces a very rapid reduction 
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in the parasite biomass with an associated reduction in clinical symptoms and is known to 

cause a reduction in the transmission of gametocytes thus decreasing the potential  for the 

spread of resistant alleles.  Artemisinin combination therapy (ACT) has been widely adopted 

as first-line treatment for uncomplicated falciparum malaria (Ashley et al., 2007; Nosten and 

White,  2007).  Although  these  drug  combinations  appear  to  be  safe  and  well-tolerated, 

experience with their use in Africa is still limited (Talisuna et al., 2006; Staedke et al., 2008). 

Artesunate and chloroquine combination has been thoroughly tested in randomized controlled 

trials and has demonstrated that it is well tolerated with few side effects (Nosten and White, 

2007).  However,  in  one  study there  was less  than  85% cure in  areas  where Chloroquine 

resistance was known. It is not approved for use in combination therapy and is unadvised in 

areas of high  P. falciparum resistance.  Artesunate and Amodiaquine combination has also 

been  tested  and  proved  to  be  more  efficacious  and  similarly  well  tolerated  than  the 

Chloroquine combination. The cure rate was greater than 90%, potentially providing a viable 

alternative where levels of Chloroquine resistance are high (Sodiomon et al., 2009). The main 

disadvantage is a suggested link with neutropenia (Mutabingwa et al., 2005). 

Artesunate and mefloquine have been used as an efficacious first-line treatment regimen in 

areas  of  Thailand  for  many  years  (Adjuik  et  al., 2004).  Mefloquine  is  known  to  cause 

vomiting  in  children  and  it  induces  some  neuropsychiatric  and  cardiotoxic  effects, 

interestingly these adverse reactions  seem to be reduced when the drug is  combined with 

Artesunate, it is suggested that this is due to a delayed onset of action of Mefloquine. This is  

not  considered  a  viable  option  to  be  introduced  in  Africa  due  to  the  long  half-life  of 

Mefloquine,  which potentially  could exert  a high selection pressure on parasites (Bloland, 

2001). 

Artemether and Lumefantrine (Coartem®, Riamet®, and Lonart®) is a combination that has 

been extensively tested in 16 clinical trials, proving effective in children less than 5years and 

has  been  shown  to  be  better  tolerated  than  Artesunate  plus  Mefloquine  combinations 

(Mutabingwa et al., 2005). There are no serious side effects documented but the drug is not 

recommended in pregnant or lactating women due to limited safety testing in these groups. 

This is the most viable option for widespread use and is available in fixed-dose formulae thus 

increasing compliance and adherence (Lefevre et al., 2001). 
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Artesunate and Sulfadoxine-Pyrimethamine is a well tolerated combination but the overall 

level of efficacy still depends on the level of resistance to Sulfadoxine and Pyrimethamine 

thus  limiting  its  usage  (WHO,  2001).  Piperaquine-dihydroartemisinin-trimethoprim 

(Artecom®) alone and in combination with Primaquine has been studied in resistant areas of 

China and Vietnam (Yeka  et al., 2008). The drug has been shown to be highly efficacious 

(greater than 90%) even to strains resistant to Primaquine. More information is required on 

safety and tolerability in pregnant women and children and toxicology data. Pyronaridine and 

Artesunate has been tested and was shown to have a clinical response rate of 100% in one trial 

in Hainan (an area with high levels of P. falciparum resistance to Pyronaridine) (Nosten and 

White, 2007). Chlorproguanil-Dapsone and Artesunate (Lapdap plus) is the most tested drug 

currently under development and could be introduced in African countries imminently. It is 

not  recommended  as  a  monotherapy  due  to  concerns  of  resistance  developing,  thus 

threatening the future use of related compounds (Nosten and White, 2007). 

2.7.3. Traditional Antimalarial Herbs

The use of plants for therapeutic purposes dates back to the human history (Ogbonna et al., 

2008). Medicinal plants, since time immemorial, have been used in virtually all cultures as a 

source of medicine (Hoareau and Dasilva, 1999) and for a long time, natural products were 

the only sources of medication (Bourdy et al., 2008). Several medicinal plants have been used 

locally  to  treat  malaria  infection.  Some  of  such  plants  are  Enantia  chloranta,  Nauclea  

natifolia,  Salacia  Nitida  (Ogbonna  et  al.,  2008),  Acalypha  fruticosa,  Azadirachta  indica, 

Cissus  rotundifolia, Echium  rauwalfii,  Dendrosicyos  socotrana and  Boswellia  elongate  

(Merlin, 2004; Clarkson  et al.,  2004;  Alshwash  et al.,  2007),  Cymbopogon giganteus and 

Morinda  lucida  etc  .Medicinal  plants  such  as  Momordica  charantia (Ejirin  wewe),  M 

balsamina (Ejirin),  Ageratum conyzoides  (Imi Eshu), Ocimum gratissimum Cardiospermum 

grandiofiorum  (Ako Ejirin), Diospyros monbuttensis (Egun Eja) etc have been used to treat 

one ailment or the other in Africa, especially Nigeria (Awe and Makinde, 1997; Azas et al., 

2002 Otimenyin et al., 2008).

The  urgency  generated  by  drug-resistant strains  of malaria  parasites  has  accelerated 

antimalarial drug research over the last two decades. While synthetic pharmaceutical agents 
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continue  to dominate research, attention has increasingly been directed  to natural products 

(Etkin, 2003). The success  of artemisinin, isolated from Artemisia annua and its derivatives 

for  the  treatment of resistant  malaria  has  focused  attention  on  the  plants  as a  source  of 

antimalarial  drugs  (Tan  et  al.,  1998).  Moreover,  plants  have  been  the  basic  source  of 

sophisticated traditional medicine systems for thousands of years and were instrumental to 

early pharmaceutical drug discovery and industry (Elujoba et al., 2005). The world's poorest 

are the worst affected, and many treat themselves with traditional herbal medicines. These are 

often  more  available  and affordable, and sometimes  are  perceived  as  more  effective  than 

conventional antimalarial drugs (Merlin, 2004). 

Ethnobotanical information about antimalarial plants used in traditional herbal medicine, is 

essential for further evaluation of the efficacy  of plant antimalarial remedies and efforts are 

now  being  directed  towards  discovery  and  development  of new chemically  diverse 

antimalarial agents (Clarkson et al., 2004). Several rural dwellers depend on traditional herbal 

medicine for treatment  of many infectious diseases including malaria (Ali  et al., 2004). The 

reputed efficacies of these plants have been recognized and passed on from one generation to 

the other.

About 75% of the population in Africa does not have direct access to chemical treatment, 

such  as  chloroquine,  but  they  have  access  to  traditional  medicine  for  treating  fevers. 

Treatment with these remedies has suffered a number of deficiencies;  diagnosis is often a 

problem, identification of plant extracts may be insecure and the chemical content of extracts 

may vary considerably  (Azas  et  al.,  2002).  Natural  products isolated  from plants  used in 

traditional  medicine,  which have potent  antiplasmodial  action  in  vitro,  represent  potential 

sources of new antimalarial  drugs (Wright  et al,. 1994; Gasquet  et al., 1993). It had been 

advocated that direct crude drug formulation of the herbs following toxicological absolution 

may not only produce dosage forms faster but will also lead to cheaper and more affordable 

drugs for the communities that need them (Elujoba, 1998). Also, there is a belief that these 

medicines are safe because they are natural and have been used traditionally over a period of 

time (Sofowora, 1993; Willcox et al., 2003). 
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Plant  materials  remain  an  important  resource  to  combat  serious  diseases  in  the  world 

(Tshibangu et al., 2002) and pharmacognostic investigations of plants are carried out to find 

novel drugs or templates for development of new therapeutic agents (König, 1992). Moreover 

herbs can be highly effective for treating malaria if government can educate those involved in 

the practice regarding the normal dose to be taken before getting well. Therefore, government 

should provide subvention for the Ministry of Health incorporating National Agency for Food 

and Drug Administration and Control (NAFDAC) to go into more Malaria research in local 

herb just to develop new and more effective drug for prevention and control, particularly in 

view of the rapid spread of drug resistance.  Nevertheless,  much work need to be done to 

educate the community and the producers of indigenous herbal products to strictly adhere to 

environmental hygiene

2.8 Antimalarial Drug Resistance

Resistance to antimalarial drugs has been described for two of the four species of malaria 

parasite that naturally infect humans, P. falciparum and P. vivax (Nguyen-Dinh et al., 1981; 

Singh, 2000). P. falciparum has developed resistance to nearly all antimalarials in current use, 

although the geographical  distribution  of resistance  to  any single antimalarial  drug varies 

greatly  (Wongsrichanalai  et  al.,  2002;  Talisuna  et  al.,  2004).  Chloroquine-resistant 

falciparum malaria has been described everywhere that  P. falciparum malaria is transmitted 

(Verdrager, 1986; Wernsdorfer, 1991; Wellems and Plowe, 2001; Sidhu et al., 2002; White 

2004; ) except for malarious areas of Central America (north-west of the Panama Canal), the 

island of Hispaniola, and limited areas of the Middle East and Central Asia (Bloland, 2001). 

Verdrager (1995) has described Localized permanent epidemics as the genesis of chloroquine 

resistance in P. falciparum. 

Sulfadoxine/Pyrimethamine (SP) resistance occurs frequently in South-East Asia and South 

America  and  is  more  prevalent  in  Africa  as  the  drug  is  increasingly  being  used  as  a 

replacement for chloroquine (Price et al., 1999; Purfield et al., 2004). Mefloquine resistance 

is frequent in some areas of South-East Asia and has been reported in the Amazon region of 

South America and sporadically  in Africa (Mockenhaupt,  1995). Cross-resistance between 

halofantrine and mefloquine is suggested by reduced response to halofantrine when used to 

treat mefloquine failures (ter Kuile et al., 1993).  Noedl and others (2008) in a recent study 
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have  shown that  artemisinin  is  losing  its  potency  in  Cambodia  and increased  efforts  are 

required to prevent artemisinin-resistant malaria from spreading across the globe.  

2.8.1 Definition of antimalarial drug resistance

Antimalarial drug resistance has been defined as the “ability of a parasite strain to survive 

and/or multiply despite the administration and absorption of a drug given in doses equal to or 

higher than those usually recommended but within tolerance of the subject” (WHO, 1972). 

This definition was later modified to specify that the drug in question must “gain access to the 

parasite or the infected red blood cell for the duration of the time necessary for its normal 

action”  (Wernsdorfer  and Wernsdorfer,  1995).  Most researchers  interpret  this  as  referring 

only to persistence of parasites after treatment doses of an antimalarial rather than prophylaxis 

failure, although the latter is a useful tool for early warning of the presence of drug resistance 

(Lobel and Campbell, 1986).

This definition of resistance requires demonstration of malaria parasitaemia in a patient who 

has  received  an  observed  treatment  dose  of  an  antimalarial  drug  and  simultaneous 

demonstration  of  adequate  blood  drug  and  metabolite  concentrations  using  established 

laboratory methods (such as high performance liquid chromatography) or in vitro tests (Basco 

and Ringwald, 2000). In practice, this is rarely done with  in vivo  studies.  In vivo  studies of 

drugs  for  which true  resistance  is  well  known (such as  chloroquine)  infrequently  include 

confirmation of drug absorption and metabolism. Demonstration of persistence of parasites in 

a patient receiving directly  observed therapy is usually considered sufficient.  Some drugs, 

such as  mefloquine,  are  known to  produce  widely  varying  blood levels  after  appropriate 

dosing and apparent resistance can often be explained by inadequate blood levels (Slutsker, 

1990; Basco, 1991). 

2.8.2 Malaria treatment failure

Drug resistant parasites are often used to explain malaria treatment failure. However, they are 

two different clinical scenarios. These are failure to clear  parasitaemia and recover from an 

acute clinical episode when a suitable treatment has been given and anti-malarial resistance in 

its true form. A distinction must be made between a failure to clear malarial parasitaemia or 

resolve clinical disease following a treatment with an antimalarial drug and true antimalarial 
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drug resistance. While drug resistance can cause treatment failure, not all treatment failures 

are due to drug resistance (Plowe, 2003). Many factors can contribute to treatment failure 

including  incorrect  dosing,  non-compliance  with  duration  of  dosing  regimen,  poor  drug 

quality, drug interactions, poor or erratic absorption, and misdiagnosis. Probably all of these 

factors, while causing treatment failure (or apparent treatment failure) in the individual, may 

also  contribute  to  the  development  and  intensification  of  true  drug  resistance  through 

increasing  the  likelihood  of  exposure  of  parasites  to  suboptimal  drug  levels  (Ariey  and 

Robert, 2003).

2.8.3 Mechanisms of antimalarial resistance

In general, resistance appears to occur through spontaneous mutations that confer reduced 

sensitivity to a given drug or class of drugs. For some drugs, only a single point mutation is 

required to confer resistance, while for other drugs, multiple mutations appear to be required 

(Lobel and Campbell,  1986). Provided the mutations are not deleterious to the survival or 

reproduction of the parasite, drug pressure will remove susceptible parasites while resistant 

parasites survive (Watkins and Mosobo, 1993). Single malaria cases have been found to be 

made  up  of  heterogeneous  populations  of  parasites  that  can  have  widely  varying  drug 

response  characteristics,  from  highly  resistant  to  completely  sensitive  (Thaithong,  1983). 

Similarly,  within  a  geographical  area,  malaria  infections  demonstrate  a  range  of  drug 

susceptibility. Over time, resistance becomes established in the population and can be very 

stable; persisting long after specific drug pressure is removed. The biochemical mechanism of 

resistance  has  been well  described for  chloroquine,  the  antifolate  combination  drugs,  and 

atovaquone (Looareesuwan, 1996; Alene and Bennett, 1996; Bloland, 2001; Alifrangis et al., 

2003).

2.8.3.1 Chloroquine resistance

The first type of resistance to be acknowledged was to Chloroquine in Thailand in 1957 (Mills 

and Bone, 2000). As the malaria parasite digests haemoglobin, large amounts of a toxic by-

product are formed. The parasite polymerizes this by-product in its food vacuole, producing 

non-toxic  haemozoin  (malaria  pigment).  It  is  believed that  resistance  of  P. falciparum  to 

chloroquine is related to an increased capacity for the parasite to expel chloroquine at a rate 

that does not allow chloroquine to reach levels required for inhibition of haem polymerization 
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(Foley and Tilley, 1997). This chloroquine efflux occurs at a rate of 40 to 50 times faster 

among resistant parasites than sensitive ones (Martin et al., 1987).

Further  evidence  supporting  this  mechanism  is  provided  by  the  fact  that  chloroquine 

resistance can be reversed by drugs which interfere with this efflux system (Martin  et al., 

1987). It is unclear whether parasite resistance to other quinoline antimalarials (amodiaquine, 

mefloquine,  halofantrine,  and quinine)  occurs  via  similar  mechanisms  but  resistances are 

thought to have occurred by similar mechanisms (Foley and Tilley, 1997).

2.8.3.2 Antifolate combination drugs

Antifolate combination drugs, such as sulfadoxine plus pyrimethamine, act through sequential 

and synergistic blockade of two key enzymes involved with folate synthesis. Pyrimethamine 

and related compounds inhibit the step mediated by dihydrofolate reductase (DHFR) while 

sulfones and sulfonamides inhibit the step mediated by dihydropteroate synthetase (DHPS) 

(Bruce-Chwatt, 1985; Kublin  et al.,  2002). Specific gene mutations encoding for resistance 

mutations have been associated with varying degrees of resistance to antifolate combination 

drugs (Plowe et al., 1998; Marks et al., 2005). Talisuna et al in Uganda [Talisuna et al.,, 

2004] have shown higher levels of resistance to  chloroquine  and  SP  in  zones  of  higher 

transmission  intensity. On  the  other  hand,  history shows  that chloroquine  resistance 

emerged  first  in  low  transmission zones and that antifolate resistance  has  increased  more 

rapidly  in  low  transmission  areas  (White 2004).

2.9 Spread of resistance

There is no single factor that confers the greatest degree of influence on the spread of drug 

resistance,  but  a  number  of  plausible  causes  associated  with  an  increase  have  been 

acknowledged. These include aspects of economics, human behaviors, pharmacokinetics, and 

the biology of vectors and parasites. The most influential causes are examined below:

2.9.1 Biological influences on resistance 

The biological influences are based on the parasite’s ability to survive the presence of an anti-

malarial thus enabling the persistence of resistance and the potential for further transmission 
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despite treatment. In normal circumstances parasites that persist after treatment are destroyed 

by the host’s immune system, therefore factors that act to reduce the elimination of parasites 

could  facilitate  the  development  of  resistance  (Bloland,  2001).  This  explains  the  poorer 

response  associated  with  immunocompromised individuals,  pregnant  women  and  young 

children.         

Based on data on the response of sensitive parasites to antimalarial  drugs  in vitro  and the 

pharmacokinetic  profiles  of  common  antimalarial  drugs,  there  is  thought  to  always  be  a 

residuum of parasites that are able to survive treatment (Wernsdorfer, 1991). Under normal 

circumstances, these parasites are removed by the immune system. Factors that decrease the 

effectiveness of the immune system in clearing parasite residuum after treatment also appear 

to  increase  survivorship  of  parasites  and  facilitate  development  and  intensification  of 

resistance. This mechanism has been suggested as a significant contributor to resistance in 

South-East Asia, where parasites are repeatedly cycled through populations of non-immune 

individuals  (Verdrager,  1986,  1995).  The  non-specific  immune  response  of  non-immune 

individuals is less effective at clearing parasite residuum than the specific immune response of 

semi-immune  individuals  (White,  1997).  The  same  mechanism  may  also  explain  poorer 

treatment  response  among  young  children  and  pregnant  women  (White,  1997).  Among 

refugee children in the former Zaire, those who were malnourished (low weight for height) 

had  significantly  poorer  parasitological  response  to  both  chloroquine  and  SP  treatment 

(Wolday  et  al., 1995).  Similarly,  evidence  from prevention  of  malaria  during  pregnancy 

suggests that parasitological response to treatment among individuals infected with the human 

immunodeficiency  virus  (HIV)  may also  be  poor.  HIV-seropositive  women  require  more 

frequent  treatment  with SP during pregnancy in order  to  have the same risk of  placental 

malaria as is seen among HIV-seronegative women (Parise et al., 1998). Some characteristics 

of  recrudescent  or  drug resistant  infections  appear  to  provide  a  survival  advantage  or  to 

facilitate  the spread of resistance conferring genes in a population (White., 1999). In one 

study,  patients  experiencing chloroquine treatment  failure  had recrudescent  infections  that 

tended to be less severe or even asymptomatic (Handunnetti et al., 1996). Schizont maturation 

may also be more efficient among resistant parasites (Lobel and Campbell, 1986; Warsame et  

al., 1991). 
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There has been evidence to suggest that certain parasite-vector combinations can alternatively 

enhance  or  inhibit  the  transmission  of  resistant  parasites,  causing  ‘pocket-like’  areas  of 

resistance. In  South-East  Asia,  two important  vectors,  Anopheles  stephensi  and  A.  dirus, 

appear to be more susceptible to drug-resistant malaria parasites than to drug sensitive malaria 

parasites (Wilkinson et al., 1976; Sucharit et al., 1977). In Sri Lanka, researchers found that 

patients  with  chloroquine-resistant  malaria  infections  were  more  likely  to  have 

gametocytaemia than those with sensitive infections and that the gametocytes from resistant 

infections were more infective to mosquitoes (Handunnetti  et al., 1996). The reverse is also 

true; some malaria vectors may be somewhat refractory to drug-resistant malaria, which may 

partially explain the pockets of chloroquine sensitivity that remain in the world in spite of 

very similar human populations and drug pressure as found in Haiti (Bloland et al., 1997). 

Many antimalarial drugs in current usage are closely related chemically and development of 

resistance  to  one  can  facilitate  development  of  resistance  to  others.  Chloroquine  and 

Amodiaquine are both 4-aminoquinolines  and cross-resistance between these two drugs is 

well known (Hall, 1975; Basco, 1991). Development of resistance to mefloquine may also 

lead to resistance to halofantrine and quinine (Foley and Tilley, 1998). Antifolate combination 

drugs have similar action and widespread use of SP for the treatment of malaria may lead to 

increased  parasitological  resistance  to  other  antifolate  combination  drugs  (Watkins  and 

Mosobo, 1993). Development of high levels of SP resistance through continued accumulation 

of DHFR mutations may compromise the useful life span of newer antifolate combination 

drugs such as chlorproguanil/dapsone (LapDap) even before they are brought into use. This 

increased risk of resistance due to SP use may even affect non malarial pathogens as the use 

of  SP  for  treatment  of  malaria  had  been  found  to  result  in  increased  resistance  to 

trimethoprim/sulfamethoxazole among respiratory pathogens (Hastings, 2003). 

There is an interesting theory that development of resistance to a number of antimalarial drugs 

among some falciparum parasites produces a level of genetic plasticity that allows the parasite 

to rapidly adapt to a new drug, even when the new drug is not chemically related to drugs 

previously experienced (Rathod et al., 1997). The underlying mechanism of this plasticity is 

currently  unknown,  but  this  capacity  may help explain the rapidity  with which strains  of 

falciparum develop resistance to new antimalarial drugs. The choice of using a long half-life 
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drug  (SP,  Mefloquine)  in  reference  to  one  with  a  short  half-life  (Chloroquine,  LapDap, 

Quinine)  has  the  benefit  of  simpler,  single  dose  regimens  which  can  greatly  improve 

compliance or make directly observed therapy feasible (Lefevre et al., 2001). Unfortunately, 

that same property may increase the likelihood of resistance developing, due to prolonged 

elimination  periods  (Newton  et  al.,  2006).  Parasites  from new infections  or  recrudescent 

parasites from infections that did not fully clear will be exposed to drug blood levels that are 

high  enough  to  exert  selective  pressure  but  are  insufficient  to  provide  prophylactic  or 

suppressive protection  (Wernsdorfer,  1991).  When blood levels  drop below the  minimum 

inhibitory  concentration (the level  of drug that  fully inhibits  parasite  growth),  but remain 

above  the  concentration  of  drug  that  produces  5%  inhibition  of  parasite  growth  (EC5), 

selection of resistant parasites occurs.  This selection was illustrated in one study in Kenya 

that  monitored  drug  sensitivity  of  parasites  reappearing  after  SP  treatment  (Watkins  and 

Mosobo, 1993). Parasites reappearing during a period when blood levels were below the point 

required to clear pyrimethamine-resistant parasites, but still above that level required to clear 

pyrimethamine-sensitive parasites, were more likely to be pyrimethmine-resistant than those 

reappearing  after  levels  had  dropped  below  the  level  required  to  clear  pyrimethamine-

sensitive parasites (Watkins and  Mosobo, 1993). This period of selective pressure lasts for 

approximately one month for mefloquine, whereas it is only 48 hours for quinine. In areas of 

high malaria transmission, the probability of exposure of parasites to drug during this period 

of selective pressure is high (Trape and Rogier, 1996). In Africa, for instance, people can be 

exposed to as many as 300 infective bites per year;  in rare cases,  even as much as 1000 

infective bites per year and during peak transmission, as many as five infective bites per night 

(Trape and Rogier, 1996).

Mismatched  pharmacokinetics  can  also  play  a  role  in  facilitating  the  development  of 

resistance.  For instance the elimination half-life of pyrimethamine is  between 80 and 100 

hours and is between 100 and 200 hours for sulfadoxine, leaving an extended period when 

sulfadoxine is “unprotected” by synergy with pyrimethamine (Watkins and Mosobo, 1993). 

This  sort  of  mismatched  pharmacokinetics  is  even more  apparent  in  the  mefloquine  plus 

sulfadoxine-pyrimethamine  combination  used  in  Thailand  where  mefloquine  has  an 

elimination half-life of approximately 336 to 432 hours (Palmer  et al., 1993; McIntosh and 

Greenwood, 1998). It is apparent that there are more genetically distinct clones per person in 
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areas of more intense transmission than in areas of lower transmission (Babiker and Walliker, 

1997). However, the interpretation of this and its implications for development of resistance 

has  variously  been  described  as  resistance  being  more  likely  in  low-transmission 

environments  (Paul  and  Day,  1998),  high-transmission  environments  (Mackinnon,  1997; 

Mackinnon and Hastings, 1998; Babiker and Walliker, 1997), or either low- or high- but not 

intermediate-transmission environments (Hastings 1997; Hastings and Mckinnon, 1998).

 

The relationship between transmission intensity and parasite genetic structure is obviously 

complex  and  subject  to  other  confounding/contributing  factors  (Hastings  and  Mckinnon, 

1998). What is clear is that the rate at which resistance develops in a given area is sensitive to 

a number of factors beyond mere intensity of transmission. Such factors are initial prevalence 

of mutations, intensity of drug pressure, population movement between areas, the nature of 

acquired  immunity  to  the  parasite  or  its  strains,  etc.  However,  reducing  the  intensity  of 

transmission  will  likely  facilitate  prolonging  the  useful  life  span  of  drugs  (Hastings  and 

Mckinnon, 1998).

2.9.2 Programmatic influences on resistance

Programmatic influences on development of antimalarial drug resistance include overall drug 

pressure,  inadequate  drug  intake  (poor  compliance  or  inappropriate  dosing  regimens), 

pharmacokinetic and pharmacodynamic properties of the drug or drug combination, and drug 

interactions  (Wernsdorfer  and  Wernsdorfer,  1995).  Additionally,  reliance  on  presumptive 

treatment can facilitate the development of antimalarial drug resistance. Overall drug pressure 

especially  that  exerted  by  programmes  utilizing  mass  drug  administration  (e.g  Eko  free 

malaria  programme,  Federal  government  Malaria  intervention  programme using  Coartem) 

probably has the greatest impact on development of resistance (Payne, 1988; Wernsdorfer, 

1999). Studies have suggested that resistance rates are higher in urban and periurban areas 

than rural communities, where access to and use of drug is greater (Ettling et al., 1995). 

Confusion over proper dosing regimen has been described. In Thailand the malaria control 

programme recommended 2 tablets (adult dose) of SP for treating malaria based on studies 

suggesting that this was effective. Within a few years, this was no longer effective and the 

programme increased the regimen to 3 tablets (Price  et al.,  1996). Although unproven, this 
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may have contributed to the rapid loss of SP efficacy there. Similar confusion over the proper 

SP dosing regimen exists in Africa (Salako, 1998). To simplify treatment, many programmes 

dose  children  based  on  age  rather  than  weight  and  depending  on  the  regimen  being 

recommended, this has been shown to produce systematic under dosing among children of 

certain weight and age groups (Plowe, 2003). 

The use of presumptive treatment for malaria has the potential for facilitating resistance by 

greatly increasing  the  number  of  people  who  are  treated  unnecessarily  but  will  still  be 

exerting selective pressure on the circulating parasite population (Wernsdorfer et al, 1994). In 

some areas and at some times of the year, the number of patients being treated unnecessarily 

for malaria  can be very large (Persidis, 2000). Concurrent treatment with other drugs can 

increase  the  likelihood  of  treatment  failure  and  may  contribute  to  development  of  drug 

resistance.  For instance,  folate administration for treatment  of anaemia and possibly when 

used as a routine supplement during pregnancy can increase treatment failure rates (Ballereau, 

1997).  Similarly,  concurrent  illness  and  malnourishment  may  have  an  influence  on  drug 

resistance (Payne, 1988). 

Drug quality has also been implicated in ineffective treatment and possibly drug resistance 

(Shakoor  et  al.,  1997).  Either  through  poor  manufacturing  practices,  intentional 

counterfeiting, or deterioration due to inadequate handling and storage, drugs may not contain 

sufficient quantities of the active ingredients. In an analysis of chloroquine and antibiotics 

available in Nigeria and Thailand, between 37% and 40% of samples assayed had substandard 

content  of  active  ingredients,  mostly  from poor  manufacturing  practices  (Shakoor  et  al., 

1997). Another study in Africa found chloroquine stored under realistic tropical conditions 

lost at least 10% of its activity in a little over a year (Ballereau, 1997).

2.10 Detection of resistance

In general, four basic methods have been routinely used to study or measure antimalarial drug 

resistance:  in  vivo,  in  vitro,  animal  model  studies,  and molecular  characterization  (Basco, 

2007). Additionally, less rigorous methods have been used, such as case reports, case series, 
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or passive surveillance. Much discussion has occurred regarding the relative merits of one test 

over  another,  with  the  implication  always  being  that  one  type  of  test  should  be  used 

preferentially.  Careful  consideration  of  the  types  of  information  each  yields  indicates, 

however, that these are complementary, rather than competing, sources of information about 

resistance. Recognition of drug resistance (or, treatment failure) in individual patients is made 

difficult in many settings by operational issues such as availability and quality of microscopy. 

Especially in Africa, where presumptive diagnosis and treatment for malaria is most common, 

detection of treatment failures also tends to be presumptive (persistence or reappearance of 

clinical  symptoms in a patient  recently  receiving  malaria  treatment).  Because of the non-

specific nature of clinical signs and symptoms of malaria and the many other causes of febrile 

disease, this can lead to a false sense that a particular drug is not working when it is, or, 

potentially, that an ineffective drug is working when it is not. In cases where microscopy is 

used, presence of parasitaemia in a supposedly fully treated patient may indicate treatment 

failure, but is not necessarily evidence of drug resistance.

2.10.1 In vivo tests

An  in  vivo  test  consists  of  the  treatment  of  a  group  of  symptomatic  and  parasitaemic 

individuals with known doses of drug and the subsequent monitoring of the parasitological 

and/or clinical response over time (Basco, 2007). One of the key characteristics of  in vivo 

tests is the interplay between host and parasite. Diminished therapeutic efficacy of a drug can 

be masked by immune clearance of parasites among patients with a high degree of acquired 

immunity (White, 1997). Of the available tests, in vivo tests most closely reflect actual clinical 

or epidemiological situations i.e. the therapeutic response of currently circulating parasites 

infecting the actual population in which the drug will be used. Because of the influence of 

external factors (host immunity, variations of drug absorption and metabolism, and potential 

misclassification  of  reinfections  as  recrudescences),  the  results  of  in  vivo  tests  do  not 

necessarily reflect the true level of pure antimalarial drug resistance. However, this test offers 

the best information on the efficacy of antimalarial treatment under close to actual operational 

conditions. This should be expected to occur among clinic patients if provider and patient 

compliance  is  high.  The original  methods  for  in  vivo  tests  required prolonged periods  of 

follow-up (minimum of 28 days) and seclusion of patients in screened rooms to prevent the 

possibility of re-infection. These methods have since been modified extensively and the most 

42



widely  used  methods  now  involve  shorter  periods  of  follow-up  (7  to  14  days)  without 

seclusion, under the assumption that reappearance of parasites within 14 days of treatment is 

more  likely  due  to  recrudescence  rather  than  re-infection  (WHO,  1996b).  Additional 

modifications reflect the increased emphasis on clinical response in addition to parasitological 

response.  Traditionally,  response  to  treatment  was  categorized  purely  on  parasitological 

grounds as sensitive, resistance I (RI), RII, and RIII (WHO, 1996). Later modifications have 

combined, to varying extent, parasitological and clinical indicators (WHO, 1996). 

Since anaemia can be a major component  of malaria illness,  in vivo  methodologies allow 

investigation  of  haematological  recovery  after  malaria  therapy  (Boland,  2001).  Failure  of 

complete parasitological clearance, even in situations where recurrence of fever is rare, can be 

associated  with  lack  of  optimal  haematological  recovery  among  anaemic  patients. 

Standardization is however a limitation in this methodology. Major differences in sample size, 

enrolment  criteria,  exclusion  criteria,  length  and  intensity  of  follow-up,  loss-to-follow-up 

rates, and interpretation and reporting of results are apparent in published papers on in vivo 

trials (Ringwald and Basco, 1999). These differences make it difficult, if not impossible, to 

compare results from one study to another with any level of confidence (Bloland, 2001). The 

methodology  currently  being  used  and  promoted,  especially  in  sub-Saharan  Africa,  is  a 

system that emphasizes clinical response over parasitological response (WHO, 1996). Close 

adherence to this protocol does provide comparable data; however, these data are not readily 

comparable  to  data  collected  using other  in  vivo  methods.  Although not called for in the 

protocol, categorization of the parasitological response using the standard WHO definitions 

(WHO 1996) would allow some ability to compare to historical levels and provide useful 

parasitological results that would aid in interpreting the clinical results.

2.10.2 In vitro tests

From the point of view of a researcher interested in pure drug resistance, in vitro tests avoid 

many of the confounding factors which influence in vivo tests by removing parasites from the 

host and placing them into a controlled experimental  environment.  In the most frequently 

used procedure, the micro-technique, parasites obtained from a finger-prick blood sample are 

exposed in microtitre plates to precisely known quantities of drug and observed for inhibition 

of maturation into schizonts (Rieckmann et al., 1978; Jenson, 1988; Basco, 2007). This test 

more accurately reflects “pure” antimalarial drug resistance. Multiple tests can be performed 
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on isolates,  several  drugs can be assessed simultaneously,  and experimental  drugs can be 

tested. In addition, falciparum erythrocytic parasites can be evaluated in-vitro. However, the 

test has certain significant disadvantages. The correlation of  in vitro  response with clinical 

response in patients is neither clear nor consistent, and the correlation appears to depend on 

the  level  of  acquired  immunity  within  the  population  being  tested.  Prodrugs,  such  as 

proguanil, which require host conversion into active metabolites, cannot be tested. Neither can 

drugs that  require  some level  of synergism with the host’s  immune system (Golenda and 

Rosenberg, 1997). These tests are technologically more demanding and relatively expensive, 

which makes them potentially more difficult to adapt successfully to routine work in the field. 

In vitro assays for the sensitivity of human malaria parasites to antimalarial drugs provide 

information complementary to that derived from the epidemiology of drug-resistant malaria 

(Basco and Ringwald, 2007). Its principles were initially based on a suboptimal short-term 

culture method reported in 1912 which was applied for the WHO macrotest system in the 

1960s ( Rieckmann et al., 1978) and used until the 1980s. The principles of in vitro culture 

underwent a major modification in 1976, when a new method for continuous culture of  P. 

falciparum  was  reported  by  Trager  &  Jensen  (1976).  The  essential  components  of  the 

complete blood-medium mixture are Roswell Park Memorial Institute (RPMI) 1640 medium 

buffered with N-(2-hydroxyethyl) piperazine-N´-(2-ethanesulfonic acid) (HEPES) and sodium 

bicarbonate,  human serum (or serum substitutes,  including animal  sera and lipid enriched 

bovine albumin) and P. falciparum-infected human erythrocytes. This technical improvement 

led to the elaboration of several  in vitro assay systems in the late 1970s and in the 1980s, 

including the WHO microtest  system (morphological  assay),  the 48-h test  (morphological 

assay) and the radioisotope microtest (Basco, 2007). Over the past few years, two novel  in  

vitro drug sensitivity assays have been evaluated:  an enzyme-linked immunosorbent  assay 

(ELISA) with monoclonal antibodies directed against either plasmodial lactate dehydrogenase 

(LDH) or  histidine-rich  protein  II  (HRP II)  and a  fluorometric  assay  with  DNA-binding 

fluorescent dyes (WHO, 1997). These two assays are non-morphological and non-radioactive 

and are also based on Trager & Jensen’s (1976) culture method.

2.10.3 Animal model studies
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This type of test is, in essence, an in vivo test conducted in a non-human animal model and 

therefore, is influenced by many of the same extrinsic factors as in vivo tests (Bloland, 2001). 

The influence of host immunity is minimized by using lab-reared animals or animal-parasite 

combinations unlikely to occur in nature, although other host factors would still be present. 

These tests allow for the testing of parasites which cannot be adapted to in vitro environments 

(provided a suitable animal host is available) and the testing of experimental drugs not yet 

approved for use in humans. A significant disadvantage is that only parasites that can grow in, 

or are adaptable to, non-human primates can be investigated.

2.10.4 Molecular techniques

These tests offer promising advantages to the methods described above. Molecular tests use 

polymerase chain reaction (PCR) to indicate the presence of mutations encoding biological 

resistance  to  antimalarial  drugs  (Plowe  et  al.,  1998).  Theoretically,  the  frequency  of 

occurrence of specific gene mutations within a sample of parasites obtained from patients 

from a given area could provide an indication of the frequency of drug resistance in that area 

analogous to information derived from in vitro  methods (Basco, 2007). Advantages include 

the need for only small amounts of genetic material as opposed to live parasites, independence 

from host and environmental factors and the ability to conduct large numbers of tests in a 

relatively  short  period  of  time (Beck,  1999).  Disadvantages  include  the obvious  need for 

sophisticated equipment and training and the fact that gene mutations that confer antimalarial 

drug resistance are currently known or debated for only a limited number of drugs primarily 

for dihydrofolate  reductase inhibitors  (pyrimethamine),  dihydropteroate  synthase inhibitors 

(sulfadoxine), and chloroquine (Plowe et al., 1998). Confirmation of the association between 

given mutations and actual drug resistance is difficult,  especially when resistance involves 

more than one gene locus and multiple mutations (Sidhu et al 2002). 
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2.10.5 Case reports and passive detection of treatment failure

Additional methods for identifying or monitoring antimalarial drug resistance include the use 

of case reports or case series of spontaneously reported treatment failure. In general, these 

methods require far less investment in time, money and personnel and can be done on an 

ongoing basis by individual health care centers (Bloland, 2001). They suffer however, from 

presenting a potentially biased view of drug resistance primarily because denominators are 

typically unknown and rates of resistance cannot be calculated. Nonetheless, case reports can 

be  useful  and  may  indicate  a  problem that  should  be  confirmed  using  one  of  the  other 

methods. In the United States for instance, case reports, especially when occurring in clusters, 

of  prophylaxis  failure  have  been  used  to  help  formulate  recommendations  for 

chemoprophylaxis of non-immune travellers to endemic areas (White, 1999). 

Another method that has been used is passive detection of treatment failure. In this system, 

patients are treated following usual treatment guidelines and told to come back to the clinic or 

hospital  if  symptoms  persist  or  return.  Those  cases  which  do  return  are  considered  to 

represent  the  population  of  treatment  failures.  Because  this  system  does  not  ensure 

compliance with treatment regimens through directly observed therapy and does not attempt 

to locate and determine the outcome of patients who do not return on their own, data are 

seriously biased. In a study conducted in Ethiopia and Eritrea using this method, only 1706 

(4.3%) out of 39824 patients returned to the clinic (Alene and Bennett, 1996). The assumption 

was that those patients who did not return did not have resistant parasites, yielding a very low 

prevalence  of  resistance  (1.8%  to  4.8%,  depending  on  region).  These  results  contrast 

dramatically with results from standard 7-days in vivo trials conducted at two sites in Eritrea 

in 1994 (Bloland, 2001) and one site in Ethiopia in 1993–1994 which found between 58% and 

86% RII/RIII level resistance (Tulu, 1996).

2.11 The future: prevention of drug resistance

The future of antimalarial drug resistance and efforts to combat it is defined by a number of 

assumptions. First, antimalarial drugs will continue to be needed long into the future (Breman, 

2001).  No  strategy  in  existence  or  in  development,  short  of  an  unforeseen  scientific 

breakthrough or complete eradication, is likely to be 100% effective in preventing malaria 

infection. Secondly, as long as drugs are used, the chance of resistance developing to those 
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drugs is present (Plowe, 2003). P. falciparum has developed resistance to nearly all available 

antimalarial drugs and it is highly likely that the parasite will eventually develop resistance to 

any drug that is used widely. Thirdly, development of new drugs appears to be taking longer 

than development of parasitological resistance. The development of resistance to antimalarial 

drugs in South-East Asia has been far quicker than the estimated 12 to 17 years it takes to 

develop and market a new antimalarial compound (Ridley, 1997). Fourthly, affordability is an 

essential consideration for any strategy to control drug-resistant malaria, especially in Africa 

(Foster and Phillips 1998; Goodman et al., 1999). 

The future, especially in Africa, will also be defined by how well the central tenets of malaria 

control can be reconciled with the central tenets of control of drug resistance. One of the 

cornerstones of the current approach to malaria control is the provision of prompt, effective 

malaria treatment. In much of Africa, easy access to public sector health care is limited and 

when it is accessible, health care staff are often inadequately trained, insufficiently supplied 

and supported,  ineffectively supervised and poorly motivated (Goodman et al., 2000). One 

response to this situation has been the intentional liberalization of access to drugs; instead of 

relying so heavily on the formal public sector to distribute antimalarial drugs, some people are 

suggesting that the best way to reduce the time between onset of illness and first treatment 

with an antimalarial drug is by making these drugs widely available on the open market, from 

unofficial sources of health care and at the household level (Salako, 1998). This approach is 

gaining  support  internationally.  This  approach  is  also  in  direct  conflict  with  the  primary 

methods for inhibiting development of drug resistance, limited access to and judicious use of 

chemotherapeutic agents. Clearly, some middle ground will need to be identified that will 

improve access to antimalarial drugs for those who need to be treated while at the same time 

reducing the inappropriate use of those same drugs. Prevention strategies can be divided into 

those  aimed  specifically  at  preventing  malaria  infection  and those  aimed  at  reducing  the 

likelihood of development of drug resistance. Reduction of overall malaria infection rates or 

transmission rates have an indirect impact on development of drug resistance by reducing the 

number  of  infections  needing to  be treated  (and therefore,  overall  drug pressure)  and by 

reducing the likelihood that resistant parasites are successfully transmitted to new hosts. The 

transmission reduction methods include the use of insecticide-treated bednets, indoor residual 

insecticide spraying, environmental control (mosquito breeding site or “source” reduction), 
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other  personal  protection  measures  (e.g.  use of repellent  soap or screening windows) and 

chemoprophylaxis  in  defined  populations  (Ariey  and  Robert,  2003).  An  effective  and 

deliverable vaccine would also be greatly beneficial (Good, 2001).

Interventions aimed at preventing drug resistance, generally focus on reducing overall drug 

pressure through more selective use of drugs; improving the way drugs are used and also by 

improving prescribing  by clinicians,  follow-up practices  and patient  compliance;  or  using 

drugs  or  drug  combinations  which  are  inherently  less  likely  to  foster  resistance  or  have 

properties that do not facilitate development or spread of resistant parasites (Plowe, 2003).

In Nigeria, the methods that are widely used to study antimalarial drug resistance are in-vivo 

methods, animal model studies and molecular methods (Oduola et al., 1993; Ogbonna et al., 

2008;  Ogunfowokan  et  al.,  2009).  Using in-vitro sensitivity  test  more  accurately  reflects 

“pure” antimalarial drug resistance, multiple tests can be performed on isolates, several drugs 

can  be  assessed  simultaneously  and  experimental  drugs  can  be  tested  (Basco,  2007).  In 

addition,  falciparum erythrocytic parasites can be evaluated  in-vitro. The method is also a 

good epidemiological tool to assess baseline sensitivity and to monitor the drug response of 

P.  falciparum  (Druilhe  et  al.,  2007).  Moreover,  it  provides  background  information  for 

development and evaluation of drug policies, can be an indicator of future therapeutic failure 

and can also guide on the partner drug in ACT (Basco, 2007).
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CHAPTER THREE

MATERIALS AND METHODS

3.1 Study area: 

This  study  was  carried  out  in  Ogun  State,  located  in  the  tropical  zone  of  Southwestern 

Nigeria. With its state capital in Abeokuta, Ogun State has a land area of 16,409.26 square 

kilometers and a population of 2,759,109 (Unpublished report,  Ministry of Health,  2003). 

Ogun State is bounded on the West by Benin Republic, on the South by Lagos State and the 

Atlantic Ocean, on the East by Ondo State and on the North by Oyo State. The State is made 

up of six ethnic groups viz, Egba, Ijebu, Remo, Egbado, Awori and Egun. The language of the 

majority of the people of Ogun State is Yoruba but this is however broken into scores of 

dialects.  Ogun State is in the transitional zone between the tropical rain forest and derived 

savannah zone in the southwest, Nigeria. The area experiences two seasons, the dry season 

(November to March) and the wet season (April to October). The annual temperature range is 

from 22.8oC to 34.9oC and the mean annual rainfall is about 107.3mm. Malaria is present 

throughout the year with a marked increase during the rainy season (Ojo, 2005). 

3.2 Study subjects

Children between 1-15 years, pregnant women and other adults were included in this study. 

This is because majority of malaria cases occur in children under the age of 12 years, pregnant 

women  are  also  especially  vulnerable.  The  blood  samples  were  collected  and  analyzed 

between April 2008 and June 2009.

3.3 Sampling Procedure

Ogun State, which was the study site, was divided into 4 zones for sample collection. The 4 

zones are 

• Sango – Ota (Yewa)

• Abeokuta (Egba) 

• Ijebu Ode (Ijebu) and

• Sagamu (Remo)
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Fig 2.1 Map of Ogun State, Southwestern Nigeria 

(http://ogunstate.gov.ng/eGovernment/index.php)
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Using the population size of each zone and the rate of prevalence of malaria in the state, the 

sample size for each of the four zones was calculated with a 95% CI and precision level of 5% 

as follows:   n = Z2 P(1-P) 2 /d2       

Where n=sample size

           Z=1.96 at 95% 

           P=Prevalence rate 

           d=Sampling error that can be tolerated (0.05)      

State general hospitals located in the different zones were used as sample collection centers. 

Both in and out patients who presented with uncomplicated malaria  in the hospitals  were 

recruited for the research work. Four thousand and sixty six patients were recruited into this 

study. The total number of subjects recruited in Sango-ota, Abeokuta, Ijebu-ode and Sagamu 

were 1120, 1116, 995 and 835 respectively. The mean age was 19 years (>1 –70) with 93% 

less than 25 years.

3.4 Ethical Consideration

Scientific and Ethical clearance was obtained from the Nigerian Institute of Medical Research 

- Institutional Review Board (NIMR-IRB) and Covenant University Ethics Committee for this 

work. The Ogun State Ministry of health (Hospitals Management Board) was also informed 

and clearance obtained for this study. Written informed consent was obtained from patients 

prior  to  recruitment  into  this  study.  Consent  for  the  children  was  provided  by  the 

parents/guardians while some of the participants provided the assents.

3.5. Sample collection 

Blood samples were collected for malaria screening from both fingerprick and venepuncture . 

This is to check the presence of healthy asexual parasites in the peripheral smear of patients. 

Safety procedures were adopted in the collection of finger-prick blood samples by swabbing 

the  area  to  be  sampled  with  70% alcohol  and  allowing  it  to  dry  before  collection.  The 

bleeding was done in the hospitals by clinicians and medical laboratory scientists. About 2-5 

ml of blood was then drawn (venepuncture) with a sterile disposable syringe and transferred 

to a heparinised centrifuge tube. The blood samples were transported to the laboratory at 40C. 

Drops of peripheral blood were placed on 1.5 x 7.0-cm strips of Whatman (Brentford, United 
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Kingdom) 3MM filter paper so that the blood covered half the length of the strip. The strips 

were air-dried and kept in plastic bags until use. 

3.6 Cryopreservation

The infected blood was centrifuged at 3000 revolutions per minute (rpm) for 10 min in a 

refrigerated  centrifuge.  The supernatant/plasma was removed and cells  were suspended in 

equal volume of cryopreservative. The suspension was distributed into cryotubes and quickly 

frozen  in  cryofreezer  at  -800C  and  then  transferred  into  liquid  nitrogen  (-1960C).  The 

cryopreservative was prepared by adding 28ml glycerol to 72ml of 4.2% Sorbitol in normal 

saline. The solution was sterilized by filtration through a Millipore filter of 0.22µm porosity.

3.7 Processing of Sample

3.7.1 Microscopic examination

Thick and thin films stained with Giemsa were prepared for the microscopic examination of 

the malaria parasite. The thin films were fixed with methanol and all films were stained with 

3% Giemsa stain of pH 7.0 for 30 min as recommended by WHO (WHO, 2000). Blood films 

were  examined  microscopically  using  100X  (oil  immersion)  objectives  as  described  by 

Cheesbrough (2000). The thick films were used to determine the parasite densities while thin 

films  were used to  identify  the parasite  species  and infective  stages.  Parasite  density  per 

microlitre of blood (parasitemia) was estimated from the thick film, taking the number of 

leucocytes per microliter of blood as 8,000 and was expressed as follows: 

                               

                 Parasite count x 8,000 

    Parasite density/µL =              No of WBC counted  

   

3.8. Antimalarial sensitivity testing 

3.8.1 Revival of Cryopreserved parasites

The vial was taken out of the liquid nitrogen tank and thawed quickly in a 370C water bath. 

The content was transferred to a centrifuge tube and centrifuged at 3000rpm for 10min. The 

supernatant was then removed and an equal volume of 3.5% NaCl was added. The suspension 
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was  centrifuged  again  and  the  supernatant  removed.  The  pellet  was  washed  twice  with 

complete medium supplemented with 15%serum.  

3.8.2 In vitro microtest (Mark III Test)

Drug samples were prepared in picomole (pM) quantities according to WHO in vitro micro 

test procedure (WHO, 1990; Druilhe  et al., 2001). Blood collected on heparin was washed 

twice in RPMI 1640 medium (Gibco BRL, Paisley, United Kingdom) and once with complete 

culture  medium  (Appendix  I).  Chloroquine  sulphate,  amodiaquine,  mefloquine,  SP  and 

artemisinin were dosed into 96-well microplates. Stock solutions of chloroquine sulphate (600 

ng/ml)  and  the  other  antimalarial  drugs  (ng/ml)  were  prepared  in  sterile  distilled  water 

(chloroquine, amodiaquine, mefloquine and quinine) or ethanol (sulphadoxine-pyrimethamine 

and artemisinin) and used in twofold dilutions with the culture medium in 96-well culture 

microplates  (Nunc,  Denmark)  to  obtain  nine  final  dilutions  (600  to  2.34  ng/ml  for 

chloroquine) and (appropriate dilution factor was determined for the other drugs). Parasitized 

RBCs was added to each well and to three control wells (without drug) to a final volume of 

250μl/well  at  a  2% hematocrit.  Each  isolate  was  tested  in  duplicate  and  the  plates  were 

incubated at 37°C for 24 – 30 hours. At the end of the assay, the plates were read by preparing 

thick smear from each well and determining the IC50 for each drug using the HN-NonLinn 

software package.

3.9 Antimalarial Activity Testing of Crude Organic Extracts of Medicinal

 Plants: Momordica charantia (Ejirin), Diospyros monbuttensis (Eegun eja) and Morinda 

lucida (Oruwo)

3.9.1 Preparation of Plant Extract

10g of dried extract was dissolved in 50ml alcohol (95%) for 7 days at room temperature. The 

alcohol was allowed to evaporate at room temperature. 10ml Dimethyl sulphoxide (DMSO) 

was added to 10mg of each extract to make 1mg/ml. 

3.9.2 In vitro Test 

The  assay  was  performed  in  duplicate  in  a  96-well  microtiter plate,  according  to WHO 

method [in vitro micro test (Mark III)] that is based on assessing the inhibition  of schizont 

53



maturation. RPMI 1640 (Gibco BRL, Paisley, United Kingdom) was the culture medium  used 

for cultivation  of P. falciparum (Flores  et al., 1997). Dilution was prepared from the crude 

plant extract and the final concentrations prepared by dilution were (125, 62.5, 31.25, 15.6, 

7.8,  3.9  and  1.95µg/ml).  Negative  controls  treated  by  solvent  and  positive controls 

(Chloroquine phosphate) were added to each set of experiments.  50µl from the blood mixture 

media was added to each well in plate and incubated in CO2 condition at 37.5°C for 24–30 h. 

After incubation, contents of the wells were harvested and stained for 30 min in a 2% Giemsa 

solution pH 7.2,  after  that  the developed schizonts  were counted  against the  total  asexual 

parasite count of 200. The count process was done in duplicate, and the data were analyzed by 

using HN-NonLin software to estimate IC50

3.10 Molecular studies

Polymerase  Chain  Reaction/Restriction  fragment  Length  Polymorphism (PCR/RFLP)  was 

used  to  determine  the  resistant  genes  and study the  genetic  diversity/genetic  variation  of 

antimalarial resistant Plasmodium falciparum.

3.10.1 DNA extraction 

DNA was extracted from patient blood spotted on the filter paper ("pre-culture") and cultured 

parasites ("post-culture") using the QiaAmp DNA Blood Mini kit Blood and Body Fluid Spin 

Protocol (Qiagen, Valencia, CA). The protocol for the extraction was carried out according to 

manufacturer’s instruction. 

3.10.2 PCR for detection of Pfcrt gene

The oligonucleotides primers were designed from published sequences. For amplification of 

the  1.6-kb fragment  of  pfcrt, the  lower primer was 5'-CCGTTAATAATAAATACAGGC-

3'.The upper primer was 5'-CTTTTAAAAATGGAAGGGTGT-3', (Dorsey et al., 2001). The 

primary  PCR  components, in  a  final  volume  of  20µL,  was  2.5mM  MgCl2,  640µM 

deoxynucleotide  triphosphate  (dNTPs),  buffer  10x,  10pM  of  each primer,  1U  of  Taq 

polymerase (Ampli Taq Gold; Applied Biosystems, Foster City, CA, USA) and 2µL of DNA 

samples. The cycling protocol was as follows: 95°C for 5 min for initial  denaturation;  40 

cycles of 94°C for 30 s, 52°C for 40 s and 72°C for 30 s; and a final extension of 72°C for 5 

min. 
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3.10.3 Nested PCR and RFLP for Pfcrt mutation-specific detection 

Product  from primary PCR (2µl  of  10x dilution)  was used in  a  follow-up, nested,  allele-

specific PCR amplifications to detect the codons for pfcrt 76K or 76T. These diagnostic PCR 

amplifications used a common inner primer pair 5'-GGCTCACGTTTAGGTGGA-3' and 5'-

TGAATTTCCCTTTTTATTTCCAAA-3'  (detects  the  76T  codon)  or  5'-GTTCTTTTAGC 

AAAAATCT-3' (detects the 76K codon). The PCR stages for these diagnostic  amplifications 

were at  94°C for 5 minutes,  followed by 40 cycles  at  94°C for 30 seconds,  52°C for 40 

seconds, and 72°C for  45  seconds and a  final  extension  of  72°C for  5  minutes.  Purified 

genomic DNA from P. falciparum clones HB3 (chloroquine sensitive) and Dd2 (chloroquine 

resistant) were used as positive controls, and water, extracted uninfected blood smears, and 

uninfected blood spots on filter paper were used as negative controls. The PCR products from 

the amplification reactions were evaluated by electrophoresis on 2% agarose gels containing 

ethidium bromide.  

10µl  of  the  nested  PCR  product  reaction  mixture were  treated  directly  with  3U  of  the 

restriction enzyme Apo I for 6 to 16 hours at 50°C as recommended by the  manufacturer (New 

England  Biolabs,  Beverly,  MA).  The  enzyme Apo I  recognise  and  cut  the  76K  codon, 

releasing fragment from product. It does not cut the product containing the 76T codon found 

in chloroquine-resistant P. falciparum. 

3.10.4 PCR and RFLP for detection of Pfmdr1 gene

Gene segments spanning codon 86 of the  Pfmdr1 gene were amplified in 20µl of standard 

PCR  mixture  containing  5µl  of  extracted  DNA and  primers  MDR1  5'-ATGGGTAAA 

GAGCAGAAAGA-3'  and  MDR2  5'-AACGCAAGTAATACATAAAGTCA-3'. The  PCR 

amplification  stages  were  at  94°C for  2  minutes, followed  by  35  cycles  at  94°C for  20 

seconds, 52°C for 10 seconds, 48°C for 10 seconds, and 60°C for 1.5 minutes.  A second, 

nested amplification from this segment was then performed under the same PCR conditions 

using  1µl  of  the  product solution  and  primers  MDR3  5'-TGGTAACCTCAG-

TATCAAAGAA-3' and MDR4 5'-ATAAACCTAAAAAGGAACTGG-3'.
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Presence  of  the  mutant  86Y codon  was  detected  by  digestion  of  8µl  of  the  second 

amplification product solution with 1.5U of Afl III according to the manufacturer’s instruction 

(New  England  Biolabs).  The  products of  restriction  digestion  were  separated  by 

electrophoresis on a 2% agarose gel and detected by staining with ethidium bromide. 

3.10.5 PCR assays for the detection of Pfdhfr and Pfdhps genes

Pfdhfr, and Pfdhps PCRs were performed as described by May and Meyer (2003a) and Marks 

et  a,l (2004).  For  the  Pfdhps  PCR,  two  primers  (primer  Pfdhps-F  5-ATGATTCTTTT 

TCAGATG-3_ and primer Pfdhps-R 5-CCAATTGTGTGATTTGTCCAC-3 were designed to 

amplify 747 bp of the region exhibiting mutations relevant to Sulphadoxine resistance. PCR 

was performed with a volume of 20µl (each primer at 0.2M, dNTPs at 200M, and 1U of  

Hotstar-Taq  with  the  appropriate  buffer  [Qiagen,  Valencia,  Calif.]  and  MgCl2 at  a  final 

concentration of 2.0 mM) and approximately 80ng of template genomic human DNA, with 

parasite DNA concentrations corresponding to the parasite burden in the individual. After an 

initial denaturation (15 min at 95°C), 31 cycles of 30s at 94°C, 40s at 53°C, and 1min at 72°C 

were run. Elongation of the amplicons was completed by a final cycle of 10min at 72°C. 

Subsequently, a nested PCR was performed to increase the yields of the specific amplicons 

using  primers  primer  pfdhps-F1  (5-GTTGAACCTAAACGTGCTG-3)  and  pfdhps-R1  (5-

ATTACAACATTTTGATCATTC-3). 3µl of the primary PCR product was used in a reaction 

volume of 25µl containing 0.2M of each primer, dNTPs at 200M, reaction buffer with MgCl2 

at a final concentration of 2.0 mM, and 1U of Hotstar-Taq). In the nested PCR, a high initial 

annealing  temperature  (AT),  which  ensures  a  high  level  of  specificity  of  initial  primer 

binding, is followed by a gradual decrease in the AT toward the pre-calculated optimal AT. 

The parameters consisted of an initial denaturation step (15 min at 95°C) and 43 cycles of 30s 

at 94°C, the AT for 40 s, and 72°C for 1 min, in which the ATs were 65°C (5 cycles), 60°C (5 

cycles), 56°C (7 cycles), 54°C (13 cycles), and 53°C (13 cycles). Fragment elongation was 

performed by use of a cycle of 10 min at 72°C. The amplicons were monitored for quality and 

the  expected  size  on  1% ethidium bromide-stained  agarose  gels.  Statistical  analysis  (_χ2 

tests) was performed by the use of STATA software (version 8.2; Corp., 

College Station, Tex.).
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3.10.6    PCR and RPLP assay for (SERCA) PfATPase6

P. falciparum positive samples were amplified by PCR using PfATPase6-specific primary and 

nested primer pairs. DNA extract for each sample was subjected to nested PCR amplification 

with primers flanking nucleotide codon 2307of the  PfATPase6 gene. Both the primary and 

secondary reactions comprised 2µl template, 0.25µM primer, 1.5mM MgCl2, 200µM dNTP’s, 

1x PCR buffer and 1U Taq DNA polymerase, in 25µl reactions. Amplification cycles for both 

primary and secondary reactions consisted of an initial denaturation at 940C for 2 minutes, 

followed by 25 cycles  of  denaturation  at  940C for  45  seconds,  annealing  at  460C for  45 

seconds  and  extension  at  650C  for  1  minute,  final  extension  was  run  at  650C  for  2 

minutes.  For primary amplification, the primers are 2307FW 5’-TGA GCA TGG CAC AAG 

TIT 3’; 2307RV- 5’TCA ATA ATA CCT AAT CCA CCT AAA TA-3’.For nested PCR the 

primers are FW-EN 5’-TGA GCA TGG TAG AAG TTT T-3’ and RV-EN 5’- TCA TCT 

GTA TTC TTA ATA ATA TTT AAA TCT GTA CTA-3’ (Zhang et al., 2008). 

Internal  primers  for  the  nested  PCR  amplification  (2307FW-EN  and  2307RV-EN,  were 

engineered to create Csp6 I restriction sites. One site, at  PfATPase6 nucleotide codon 1916, 

serves as the internal control for the restriction digestion assay, which is always cut by the 

enzyme. Csp6 I digestion assay comprised 4µl of secondary PCR amplicon (432bp), 1x buffer 

and 1.5U of Csp6 I restriction enzyme, in 30µl reactions. Digestion assays were incubated for 

12 hours at 37 0C.  PCR amplicon and restriction digests were analyzed by electrophoresis on 

a  2%  ethidium  bromide-stained  agarose  gel  and  visualized  under  UV  transillumination. 

Restriction digests were loaded in 15 µl volumes per lane while undigested product was run in 

5µ loading volumes. Band sizes were measured using Syngene gel imaging analysis software.

3.10.7 Molecular Genotyping of isolates using MSP1&2 and Glurp

Primers and PCR protocols were followed as previously described by Snounou et al.  (1999) 

for  family  specific  allele  analysis  of  msp-1  (block  2)  and  msp-2  (block  3).  For  PCR 

amplification, the primers for each of the families in msp-1 and msp-2 are as shown in Table 

3.1. and described by Snounou et al., 2007. PCR condition consisted of an initial denaturation 

step (5 min at 95°C) and 35 cycles of 30s at 95°C, 72°C for 30 s, and 72°C for 5 min and a 

final elongation at 72°C for 5min.

57



Polymerase Chain Reaction (PCR) amplification was performed on thermal cycler (Perkin 

Elmer 9700/2400, UK) in a final volume of 20μl. The PCR products were visualized by UV 

transillumination  at  302nm  on  gel  documentation  system  (Syngenta,  USA)  after 

electrophoresis on 2% agarose gel (Promega/Boehringer) using 0.5 × TBE buffer at 80–100 

volts. Allele sizes were calculated using Genetool programme. To understand the identity of 

Nigerian isolates with respect to isolates of other regions, sequence data available in public 

domains  were  downloaded  for  allelic  families  of  msp-1&2  and  details  are  given  below; 

Thailand(K1-M77730,  MAD20-M77722,  R033-AAA29684,  3D7-  U91676),   Vietnam(K1-

AF509651,  MAD20-AF509653&94,  FC27-AF104696,  3D7-AF104693),  Tanzania(K1-

AF061134, FC27-AY532386), Brazil(K1-AF509714, MAD20-AY714585, FC27-DQ115973, 

3D7-AF177389),  China(MAD20-AF251345),  Sudan(MAD20-AF034635),  Iran(MAD20-

AY138509,  R033-AY138507,  FC27-DQ338451),  Indonesia(K1-AF191061,  R033-

AAF18431),  Western  Africa  (R033-PFAMSA1),  Kenya(R033-AAM21583),  Ghana(FC27-

AF329577),  PNG(FC27-AF329579),  Gambia(FC27-U91668,  3D7-  U91665)  and 

Nigeria(3D7-AF148224) (Joshi et al., 2007).
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Table 3.1 PCR Primers for MSP1, MSP2 and Glutamate rich protein

Primer Name Sequence 5’-3’

Glurp GOF TGAATTGAAGATGTTCACACTGGAAC
Glurp GOR GTGGAATTGCTTTTTCTTCAACACTAA
Glurp GNF TGTTCACACTGAACAATTAGATTTAGATCA
Msp 1 F CTAGAAGCTTTAGAAGATGCAGTATTG
Msp 1 R CTTAAATAGTATTCTAATTCAAGTGGATCA
Msp 1F M AAATGAAGGAACAAGTGGAACAGCTGTTAC
Msp 1R M ATCTGAAGGATTTGTACGTCTTGAATT ACC
Msp 1F K AAATGAAGAAGAAATTACTACAAAAGGTGC
Msp 1R K GCTTGCATCAGCTGGAGGGCTTGCACCAGA
Msp 1F R TAAAGGATGGAGCAAATACTCAAGTTGTTG
Msp 1R R CATCTGAAGGATTTGCAGCACCTGGAGATC
Msp 2 F ATGAAGGTAATTAAAACATTG TCTATTATA
Msp 2 R CTTTGTTACCATCGGTACATTCTT
Msp 2F Fc AATACTAAGAGTGTAGGTGCARATGCTCCA
Msp 2R Fc TTTTATTTGGTGCATTGCCAGAACTTGAAC
Msp 2F D AGAAGTATGGCAGAAAGTAAKCCTYCTACT
Msp 2R D GATTGTAATTCGGGGGATTCAGTTTGTTCG
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Statistical Analysis. 

Statistical  analysis  was  performed  using  Stat  View 5.0.1  (SAS  Institute  Inc.,  Cary,  NC). 

Statistical  significance  was  based on  a α level  of  0.05.  The  data/statistical  analysis  for 

significance were done using Microsoft excel, SPSS and HN-NonLin analysis methods. One-

way analysis  of  variances  was  used  to  compare  the  geometric  mean  parasites  density  in 

patients from different age groups. The Student’s t-test was used to compare mean number of 

alleles  of  P.  falciparum  MSP-1,  MSP-2,  and  GLURP.  P  values  <  0.05  was  considered 

significant for all statistical analysis. Data from all the questionnaires were coded, 

entered and analysed using Epi Info 6.04 and SPSS software.

3.11 Questionnaire Administration

Structured Questionnaires were administered to patients, parents of infants and older children. 

The questionnaire seeks to identify the locality, age and sex of the respondents. In addition, 

the patients’  attitude to use of antimalarial  drugs and Insecticide treated mosquito nets or 

other  means of  controlling  man-mosquito contact  as practiced  in  the locality  and malaria 

management practices by the study population were identified. A cross sectional study was 

conducted in the four zones of Ogun State, Southwestern Nigeria.
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CHAPTER FOUR

RESULTS

4.1. Incidence of Malaria in Ogun State, Southwestern Nigeria.

4.1.1Patients Characteristics

A total of 4066 subjects comprising of 1839 males and 2227 females presenting with malaria 

in four different senatorial  districts  of Ogun state were recruited into the study. The total 

number of subjects recruited in Sango-ota, Abekuta, Ijebu-ode and Sagamu were 1120, 1116, 

995 and 835 respectively. The mean age was 19 years (>1 –70) with 93% less than 25 years.   

4.1.2 Incidence of Malaria

The overall incidence of  falciparum malaria as determined by microscopy in the study area 

was 62.7% (2250/4066). The highest incidence was observed in Sango (75.7%) while the 

lowest (48.4%) was observed in Abeokuta (Table 4.2). Table 4.1 shows the incidence of P. 

falciparum infection in Ogun State, Nigeria according to age and sex.   Age group 1-5yrs had 

the highest incidence of infection (70.8) followed by age group <1year (63.9%) while age 

group  6-15years  had  the  lowest  incidence  (52.8).  The  difference  according  to  age  was 

statistically  significant  (p<0.0001).  The  highest  falciparum malaria  mean  parasitaemia  of 

1080p/µl was recorded among the age group 1-5years while age group >40years recorded the 

lowest mean parasitaemia of 800p/µl. Females had a higher incidence of malaria infection of 

51.8% compared to males 48.2% in this study. The difference in the incidence of infection by 

sex was significant (p<0.0001). 

4.2. In Vitro Drug sensitivity Tests

In-Vitro antimalarial drugs and local herbal extracts sensitivity tests were carried out and the 

IC50 and  IC99 for  each  drug was  determined.  Sample  of  HN-NonLinn  software  statistical 

package used for the data analysis is shown in Figure 4.4. Table 4.3 shows the mean IC50 and 

IC99 values for chloroquine, amodiaquine, mefloquine, quinine, sulphadoxine/pyrimethamine 

and artesunate. The IC50 value is defined as the concentration of an antimalarial  drug that 

inhibits 50 % of schizont maturation as compared with the development in drug-free control 

wells.  IC99 gives  a  result  that  closely  approximates  a  reliable  Minimum  Inhibitory 
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Concentration (MIC). The MIC is generally  defined as the lowest drug concentration that 

inhibits  the development of rings to schizonts. Moreover, the  in vitro threshold values for 

antimalarials have been defined statistically as >2 SD above the mean (Pradines et al., 1998). 

IC50 implies  that  50%  of  the  parasite  could  not  mature  to  schizont  stage  at  that  drug 

concentration while IC99 implies that the antimalarial  drugs inhibited 99% of the parasites 

from maturing to schizont stage at that concentration.  

All  the isolates  tested were sensitive to quinine,  mefloquine and artesunate while  in vitro 

resistance was observed to chloroquine, amodiaquine and SP (Table 4.4). Highest percentage 

of resistance to chloroquine (69.8%) was recorded among isolates from Yewa zone while 

highest  percentage  resistance  to  amodiaquine  (30%) was observed in  Ijebu zone.  Highest 

resistance against SP (10%) was recorded in Yewa and Egba zones. A significant positive 

correlation was observed between the responses to artemisinin and mefloquine (P=0.001), 

artemisinin  and  quinine  (P=0.05),  quinine  and  mefloquine  (P= 0.01),  (Table  4.4).  A 

significant  negative  correlation  was  observed  between  the  responses  to  chloroquine  and 

mefloquine (P=0.05). 

4.3 Prevalence of drug resistant molecular markers

Prevalence of established antimalarial drug resistant markers was assayed for in 100 isolates 

collected from the study area. The molecular markers assayed for in the study were  Pfcrt,  

Pfmdr1, PfDhfr, PfDhps and PfATpase6.Table 4.5 shows the overall and zonewise prevalence 

of the molecular markers to various antimalarial drugs in  P. falciparum isolates from Ogun 

state, Nigeria. Sixty percent of the isolates had Pfmdr1 (Y86) resistance gene while 48% had 

Pfcrt (T76) chloroquine resistance gene. None of the isolate had the PfATpase artemisinin 

resistant gene.  Most of the isolates that showed in-vitro resistance to the drugs also harbored 

the genes coding for resistance to the drugs. Plates 4.1 – 4.5 show gel electrophoresis  results 

for the detection of Pfcrt, pfmdr1,dhfr, dhps andATPase6 genes/mutation respectively. 

4.4 In vitro antimalarial activity of herbal extracts

The results of in vitro antimalarial activity of the three herbal extracts tested for antimalarial 

activity are as shown in Table  4.6. Of the selected three herbal extracts, the highest activity 
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was obtained with extract of Diospyros monbuttensis (IC50 = 32µg/ml) while the lowest was 

obtained from Morinda lucida (IC50 =250 µg/ml).

4.5 Genetic Diversity of P. falciparum

As an estimate of multiclonality of infection, the minimal number  of P. falciparum strains in 

each individual  was determined by assessing the number of alleles of the genes encoding 

MSP-1 and MSP-2 families.  The MSP-1 and MSP-2 alleles were defined by gene family-

specific PCR assays and analysis of the resulting length polymorphisms of the PCR products. 

One  hundred  P.  falciparum  isolates  analyzed  during  the  study 

demonstrated the highly diverse nature of the field isolates in respect of 

msp-1  (block 2) and  msp-2  (central repeat region, block3). All the three 

reported families of MSP-1(K1, MAD20 and RO33) families and two MSP-2 

(FC27 and 3D7) families were observed among the isolates (Plates 4.6 - 

4.10). 

In MSP-1, Proportion of isolates with K1 family was 68% with 4 alleles in 

the range of 100 to 300 base pairs (bp). Proportion of isolates with MAD20 

family was 40% and a total of 3 alleles were observed within 100 to 300 

bp.  RO33  proportion  was  20%  and  the  family  was  observed  to  be 

monomorphic  with  an  allele  size  of  200  bp.  Observed  proportions, 

numbers and size range of alleles among the isolates are given in Table 

4.7.

In MSP-2, the reported families FC27 and 3D7 were observed among the isolates (Table 4.7).  

Proportion of FC27 family was 76% and that of 3D7 was 56%. Proportional prevalence of 

FC27 and 3D7 families  was significantly  different  (χ2 = 16.5,  P=0.002).  Three alleles  of 

FC27 in the range of 300–500 bp and 3 alleles of 3D7 in the range of 450–600 bp were 

observed in the study. Proportion of multiclonal isolates (multiple infection) is given in Table 

4.7  and  multiplicity  of  infection,  MOI  was  estimated  by  dividing  the  total  number  of 

fragments  detected  in  the  individual  system  by  the  number  of  samples  positive  in  the 

particular system (either  MSP-1  or  MSP-2) and 80% of the isolates harbour the genes that 

code for glutamate rich protein with size ranging between 700 and 900.
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The zonewise genetic diversity of P. falciparum  from Ogun State is as shown on Table 4.8. A 

high polymorphism was recorded in all the zones for MSP-1 (block 2) and MSP-2 (central 

repeat region, block 3). Highest genetic polymorphism was recorded among the field isolates 

from Yewa zone.
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4.6 Knowledge and practice on the use of antimalarial drugs

Questionnaires were administered to respondents resident in the study sites who were either 

malaria  patients  or parents/guardians  of malaria  infected children.  The age of respondents 

ranged between 18 and 75 (Table 4.9). A total of 946 questionnaires were administered to 

assess the malaria related knowledge on issues regarding the use of antimalarial drugs and 

malaria management practices. Most of the respondents were students (52.2%). The responses 

of the participants are summarized in table 4.10. About 32.1% of participants have malaria 

attack at least once in 3 months while only 26.3% normally complete their antimalarial drugs. 

The  malaria  management  practices  showed  that  24.6% attend  hospitals,  12.0% use  local 

healers while 25.0% buy antimalarial drugs without prescription by a physician. It was also 

found that  some use more  than  one method in their  management  of  malaria.  Those who 

combined antimalarial drugs with traditional medicine from local healers were found to be 

17.4%, while 1.2% reported doing nothing about malaria. Table 4.10 also shows the methods 

used in preventing mosquito bites by respondents. Only 18% of the sample population used 

Insecticide treated mosquito nets. Majority of the people (42.3%) used only window and door 

nets; 24% of the population used insecticides while 13% do not prevent mosquito bite at all.
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Table 4.1. Incidence of P. falcifarum infection in Ogun State. 

AGE 

(Yrs)

          No of Samples No of Positive Cases Mean 

Parasitaemia 

p/µl

Male Female Total Male

(%)

Female

(%)

Total

(%)

p.-value

< 1   52 56 108 33

(47.8)

36 

(52.2)

69 

(63.9)

900 <0.0001

(χ²=46.863
1-5   300 324 624 193 

(43.7)

249 

(56.3)

442 

(70.8)

1080

6-15   330 412 742 195

(47.4)

197

(50.3)

392 

(52.8)

890

16-25   901 965 1866 639

(60.8)

500

(44.0)

1139 

(61.0)

850

26-40   208 221 429 110

(41.5)

155

(58.5)

265 

(61.8)

990

> 40 100 305 405 60

(24.7)

183

(75.3)

243 

(60.0)

800

Total 

(%)

1839

(45.2)

2227 

(54.8)

4066

(100)

1230

(48.2) 

1320

(51.8)

2550

(62.7)

             918.3

p- value <0.0001  (χ²=24.632)
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Table 4.2: Zonewise Incidence of Malaria in Ogun State

 

Zone No of Samples collected No of Positive Samples Mean 

parasitaemia
Male Female Total Male Female Total

920Ijebu Ode (Ijebu) 455 540 995 315 348 663 

(66.6)
Sango Ota (Yewa) 536 584 1120 412 436 848 

(75.7)

914

Abeokuta (Egba) 502 614 1116 251 289 540 

(48.4)

860

Sagamu (Remo) 346 489 835 252 247 499 

(59.8)

980

Total (%) 1839 

(45.2)

2227 

(54.8)

4066 

(100)

1230 

(48.2)

1320 

(51.8)

2550 

(62.7)

918.3

Table 4.3: In vitro susceptibility of P. falciparum isolates to Antimalarial Drugs
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Drug IC50 Mean 

(nM/L)

IC99 Mean 

(nM/L)

Resistance Threshold 

(nM/L)
Chloroquine (CQ) 24.4 164.2 > 160
Amodiaquine (AQ) 6.3 32.4 > 80
Artesunate (AS) 3.2 7.8 > 10.5
Mefloquine (MQ) 42.1 60.8 > 64.0
Sulphadoxine  – 

Pyrimethamine

55.0

0.7

200

2.5

>300

>4.0
Quinine 60.3 298.6 >300

Table  4.4:  Zonewise  resistance  pattern  of  P.  falciparum  to  antimalarial 

drugs

Origin No. Isolates CQ res AQ res AS res MQ res SP res (%) Q res 
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Cultured (%) (%) (%) (%) (%)
Ijebu-Ode 

(Ijebu)

20 9

 (45)

6 (30) 0 (0) 0 (0) 1 (5) 0 (0)

Sango  Ota 

(Yewa)

43 30 

(69.8)

4 

(9.3)

0 (0) 0 (0) 2 (10) 0 (0)

Abeokuta 

(Egba)

25 5 

(20)

1 (4) 0 (0) 0 (0) 2 (10) 0 (0)

Sagamu 

(Remo)

12 7 

(58.3)

2 

(16.7)

0 (0) 0 (0) 0 (0) 0 (0)

Total 100 51 

(51)

13 

(13)

0 (0) 0 (0) 5 (5) 0 (0)

CQ-Chloroquine; AQ-Amodiaquine; AS-Artesunate; MQ-Mefloquine;

SP-Sulphadoxine/Pyrimethamine; Q-Quinine; res-resistance

 

Table 4.5: Zonewise Prevalence of molecular markers of resistance to antimalarial drugs 

in P.  falciparum from Ogun State, Southwestern Nigeria. 

Zone No.  of             Prevalence of resistance genes
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Isolates pfcrtK76T 

(%)

Pfmdr1Y86N 

(%)

PfdhfrS108N 

(%)

pfdhpsK540E

(%)

pfATPaseS769N

(%)
Ijebu 20 9 (45) 10 (50) 3 (15) 0 (0) 0 (0)
Yewa 43 28 (65.1) 30(69.8) 4 (9.3) 1 (2.3) 0 (0)
Egba 25 5 (20.0) 12 (48) 4 (16) 1 (4) 0 (0)
Remo 12 6 (50.0) 8 (66.7) 1 (8.3) 0 (0) 0 (0)
Total 100 48 (48) 60 (60) 12 (12.0) 2 (2) 0 (0)

Table 4.6 In vitro susceptibility of P. falciparum isolates to Local Antimalarial Herbs

Herbal Drug
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Momordica charantia                                    125.0

(Ejirin)

Morinda lucida (Oruwo)                               250.0

Diospyros monbuttensis                                  32.0

(Eegun eja)

Table 4.7: Genetic diversity of Plasmodium falciparum isolates from Ogun State, 

Southwestern Nigeria

Families         No. positive 

by PCR (%)    

No. of 

distinct 

alleles

   Sizes of 

alleles (bp) MOI
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MSP-1                      

K1 

68(68)

MAD20                       40(40)

RO33 

20(20)

MSP-2

3D7 

76(76)

FC27 

56(56)

4

3

1

3

3

100-300

100-300

200

450-600

300-500

1.1

1.2

GLURP

80 (80)

5 700-900 1.3

* bp _ basepairs; MSP _ merozoite surface protein; GLURP _ glutamate-rich 

protein.

MOI Multiplicity of Infection
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Table 4.8: Zonewise Genetic Diversity of P. falciparum from Ogun State, Southwestern 

Nigeria

Legend:  MSP 1-  Merozoite  surface  protein  1;  MSP 2-  Merozoite  surface  protein  2 

Glurp- Glutamate rich protein.

Prediposing Factors to Antimalarial Drug resistance

Table 4.9:  Age Range of respondents

Zone No  of 

Isolates

                          MSP 1 MSP 2

Glurp 

(%)

K1 (%) MAD20 

(%)

RO33 

(%)

3D7 (%) FC27 

(%)

Ijebu 20 14 (20.6) 9 (22.5) 6 (30) 16 (21.1) 13 (23.2) 16 (20)
Yewa 43 31 (45.6) 21 (52.5) 8 (40) 38 (50) 18 (32.1) 33 (41.3)
Egba 25 15 (22.1) 7 (17.5) 4 (20) 12 (15.8) 18 (32.1) 21 (26.3)
Remo 12 8 (11.8) 3 (7.5) 2 (10) 10 (13.2) 7 (12.5) 10 (12.5)
Total 100 68 (100) 40 (100) 20 (100) 76 (100) 56 (100) 80 (100)

Age range (Years) Frequency (%)
18-25 527 55.7
26-35 231 24.4
36-45 126 13.3
>45 62 6.6
Total                                                  946 10073



Table 4.10: Knowledge on prevention and control of malaria among respondents

Variable N = 946 %

Episode of Malaria Infection

         Once in a month

         Once in three months

         Twice in a year

         Once in a year

         Others          

312

304

144

141

45

33

32.1

15.2

14.9

4.8
Reasons for stopping drug usage

        When I feel okay/cured

        Price of drugs

        When I complete dosage

        Anytime I like

340

236

249

121 

35.9

24.9

26.3

12.8
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Antimalarial used as prophylaxis

       Quinolines

       Sulphonamides

       Artesunate

       Artemisinin Combination Therapies

       Local herbs

       Others

385

316

74

30

142

2

40.7

33.5

7.9

3.2

15.1

0.3
Mosquito bite Preventive methods used

       Insecticide treated Bed nets

       Insecticides

       Mosquito repellant cream

       Window nets

       None

170

227

26

400

123

18

24

2.7

42.3

13
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Figure 4.1. Sample of HN-NonLinn Software Statistical Package for the analysis of in-vitro 

drug sensitivity data for Plasmodium species  
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AQ,
13AQ,

87

CQ, 51CQ, 49

Res

Res

Sens

Fig 4.2 Cross Resistance between Chloroquine and Amodiaquine, n=64. The figure shows 

a cross resistance between chloroquine and amodiaquine. All the P. falciparum isolates that 

showed resistance to amodiaquine were resistant to chloroquine.
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Plate 4.1: DNA bands of wild type and mutated P.
falciparum chloroquine resistance genes

M

265bp

132bp

Plate  4.1:  Gel  Electrophoresis  showing  the  DNA bands  of  wild  type  and  mutated  Pfcrt  

(K76T) gene after digestion with APO I enzyme. The undigested DNA fragments (265 bp) are 

the resistance genes while the digested DNA fragments with 132 bp are the sensitive strains as 

shown on plates. 
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Plate Plate 4.2:4.2: P. falciparumP. falciparum Multidrug Resistance Multidrug Resistance 
Genes showing the wild type and mutated genesGenes showing the wild type and mutated genes

165bp

325bp

M

Plate 4.2 shows the Pfmdr1 (Y86N) genes on gel electrophoresis after digestion with Afl III 

enzyme. The isolates with DNA fragments of size 325bp are the wild type i.e. sensitive strains 

while  the mutated  strains  were cut  by the  restriction  enzyme to 165bp. M respresent  the 

molecular size marker
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Plate 4.3: DNA band of Dihydrofolate reductase gene 
(DHFR 108)

322bp

708bp

M

Plate 4.3 shows the wild type and mutated genes of DHFR 108 for Sulphadoxine resistance.

The wild type gene has a band size of 708bp while the mutated gene has a band size of 322bp.
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Plate 4.4: DNA band of Di hydropteroate synthase gene (DHPS 540)

M

441bp

756bp

M M

Plate 4.4 shows the DNA band of wild type and mutated genes of Dihydropteroate synthase 

(DHPS 540). The band size of wild type is 756bp while that of the mutated gene is 441bp
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Plate 4.5: DNA band of wild type Pf ATPase6

M M

The band size of the genes coding for pfATPase6 of between 430bp and 432bp is as shown on 

plate 4.5. There was no digestion which means that none of the isolates harbour resistance 

genes coding for artemisinin resistance.

82



 

M

M

180bp

300bp 200bp

Plate 4.6: DNA bands of P. falciparum MSP1 MAD20 on Gel

Legend: M-marker; bp-base pair; 180bp, 200bp 300bp - different alleles for MSP1 MAD family

The DNA bands of genes coding for  P. falciparum Merozoite Surface Proteins 1 (MSP1) 

MAD and K and RO33 are as shown on Plates 4.6, 4.7 and 4.8 respectively. The band size for 

MAD is between 180 and 300 basepairs (bp) while that of K is 100-300bp.  For RO33 the 

band size in the range of 200 bp. M is the molecular size marker  
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Plate 4.7: DNA bands of P. falciparum
MSP1 K1 on Gel

M

M
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M

200bp 200bp

Plate Plate 4.8:4.8: DNA bands of DNA bands of P. falciparumP. falciparum MSP1 RO33 on GelMSP1 RO33 on Gel

Legend: M-Molecular marker; bp-basepairs; 200bp-allelic size
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Plate 4.9: DNA bands of P. falciparum MSP2  
3D7 on gel

M

M
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600bp

500bp

Legend: M-molecular marker; bp-basepairs; 400-600-allelic sizes

The DNA bands of genes coding for  P. falciparum Merozoite Surface Proteins 2 (MSP-2) 

3D7 and FC27 are as shown on Plates 4.9 and 4.10 respectively. The band size for 3D7 is  

between 400 and 600bp while that of FC27 is 400-500bp. M is the molecular size marker.
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Plate 4.10: DNA bands of P. falciparum
Merozoite Surface Protein 2  FC27 on gel

M

400bp
500bp

Legend: M-Marker; 400bp, 500bp- allelic sizes
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Plate 4.11: DNA band of P. falciparum Glutarmate rich protein 

900bp
800bp

M

700bp

Legend: M-molecular marker; bp-basepairs; 700-900bp-allelic sizes

The DNA bands of genes coding for P. falciparum Glutamate Proteins are as shown on Plate 

4.11. The band size is between 700 and 900 basepairs (bp).is 400-500bp.  M is the molecular 

size marker  
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CHAPTER FIVE

DISCUSSION

Plasmodium falciparum which  causes  the  most  serious  type  of  malaria  especially  in  sub 

Saharan Africa was studied in this research work among the people of Ogun State Nigeria. 

Malaria is the most prevalent tropical disease in the world today and in sub-Saharan Africa, it  

is  ranked  among  the  most  frequent  causes  of  morbidity  and  mortality  especially  among 

children and is often the leading identifiable cause (Greenwood et al., 2005). Four thousand 

and sixty six (4066) subjects were included in the study on the incidence of  P. falciparum 

infection in Ogun state, South Western Nigeria. Two thousand, five hundred and fifty (62.7%) 

were positive for  falciparum malaria with an average parasitaemia of 918. This result is in 

agreement with earlier observations that Nigeria is known for high prevalence of malaria and 

it  is  a  leading  cause  of  morbidity  and  mortality  in  the  country  (Sowunmi  et  al.,  2004; 

Ademowo et al., 2006).  The high incidence rate of falciparum malaria in the selected study 

site  is  similar  to  the  results  of  earlier  studies  in  other  parts  of  the  country  and  other 

neighboring countries. Adefioye et al. (2007) and Marielle et al. (2003) recorded a prevalence 

rate of 72% and 70% among pregnant women in Oyo state, Nigeria and Gabon respectively.  

A prevalence rate of 76% was also reported by Aribodor  et al.  (2003) in Anambra State, 

South East Nigeria.

The result  of  this  study was  differs  from that  of  Uko  et  al.  (1998) who recorded  a  low 

prevalence rate of (6.8%). This may be due to the fact that the study was carried out during 

dry season alone when infection rate was low. Chanda  et al.,  (2009) reported a very low 

incidence of 0.7% among children less than five years attending a local  health  facility  in 

Zambia. In this study, 63.9% of children below one year and 70.8% of the children 1-5 years 

were positive for falciparum malaria and highest parasitaemia was also observed in this age 

group. This was followed by age range 16-25years with a prevalence of 52.8%. This findings 

was in agreement with those of Aribodor et al. (2003) who also observed a high prevalence 

rate among age group 10-19 years followed by age group 20-29 years old. In highly endemic 

malarious area where semi-immune adults usually have substantially acquired resistance to 

local strains of plasmodia, the prevalence of clinical malaria is higher and its severity greater 

in pregnant women, children and young adults. The high prevalence rate in the study area 
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could result to cerebral malaria in children, maternal anaemia and low birth weight and death 

as  reported  by  other  workers  (Mockenhaupt  et  al.,  2000;  WHO, 2003).  This  is  probably 

because they are more exposed to malaria parasite due to bad environmental conditions and 

their life styles

In-vitro method was used in  this  study to determine  the quantitative  drug response of  P. 

falciparum to  various  antimalarial  drugs  that  are  in  use  in  Nigeria.  Resistance  to 

antimalarial  drugs  can  be  assessed  in  vitro  by  the  degree  of  parasite  growth 

inhibition exerted by particular antimalarial drugs (Basco and Ringwald, 2007; Oduola et al., 

1993).  In  any  therapeutic  strategy,  establishment  of  the  baseline  sensitivity  of  local  P. 

falciparum  isolates to commonly prescribed drugs that are still  effective in some endemic 

areas and new drugs that are not yet widely available in a country but might be employed in 

the near future (e.g. artemisinin derivatives) is important. The  in vitro assay is particularly 

useful for fulfilling this function as it provides an objective, quantitative measure.

In-vitro resistance  against  chloroquine,  amodiaquine  and 

sulphadoxine/pyrimethamine was observed among Nigerian isolates of  P. 

falciparum tested. In the cross sectional study, an IC50 of 24.4nM/L and IC99 

of  164.2nM/L  was  recorded  for  chloroquine  respectively.  These  results 

were similar to earlier findings of  Wongsrichanalai  et al. (2000) where a high  IC50 

was also recorded.  Resistance threshold  of  isolates against chloroquine 

and  amodiaquine  were  above  160nM/L  and  80nM/L  respectively  which 

denoted resistance against the drugs. Moreover, resistance threshold of 

isolates  against  Sulphadoxine  and  pyrimethamine  were  300nM/L  and 

4.0nM/L respectively. All the isolates tested against mefloquine, quinine 

and  artesunate  in  this  study  were  sensitive  to  the  drugs.  The  IC50  of 

42.1nM/L observed in mefloquine in this study is slightly higher than that 

recorded  in  earlier  findings  of  Reber-Liske  (1983)  where  IC50  of  39.7nM/L  was 

observed. The sensitivity ranges observed in the current study was also within the range for 

sensitivity  of  isolates  to  the  drug  (WHO,  2001).  In-vivo resistance  against  chloroquine, 

amodiaquine, mefloquine and sulphadoxine /pyrimethamine has been reported by researchers 

in  Nigeria  (Happi  et  al.,  2004;  Ogunfowokan  et  al.,  2009).  The  in  vivo  response  of  P. 
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falciparum  to  antimalarial  drugs  is  modulated  by a  number of  factors.  These include  the 

pharmacokinetic properties of antimalarial drugs, innate and acquired immunity in the patient, 

as well as the complexity of infections in high transmission areas (Happi et al., 2004). Several 

of  these  factors  may  contribute  to  the  range  of  variations  in  the  clinical  expression  of 

chloroquine resistance and in vitro resistance patterns.

All  the  isolates  tested  in  vitro against  artemisinin  were  sensitive  to  the  drug.  However 

treatment failures have been observed by other workers from Southwestern Nigeria during in  

vivo studies (Happi  et al., 2004). Bioavailability of the drugs in the system amongst other 

factors  has  been  attributed  to  treatment  failures  (Ibrahim  et  al.,  2007).  Although 

dihydroartemisinin is the active ingredient in the artemisinin based drugs. Artesunate® which 

contains artemisinin was used for the in vitro drug testing in this study. This is because it has 

been reported that dihydroartemisinin is unstable on drug plates and that artemisinin is the 

most appropriate drug for in vitro drug assays due to its stability in pre-dosed plates (Tanariya 

et al., 2000).

High  resistance  against  chloroquine  and  amodiaquine  were  observed  among  the  isolates 

collected from Yewa and Ijebu zones while SP resistance was not observed in isolates from 

Remo zone. There was cross resistance between chloroquine and amodiaquine as some of the 

isolates that showed resistance to chloroquine also showed resistance to amodiaquine in all 

the zones. Cross-resistance between chloroquine and amodiaquine has been reported both in  

vitro  and  in vivo. Pradines  et al. (1999) have observed cross resistance of chloroquine and 

amodiaquine in earlier studies. It has also been observed that parasites may quickly develop 

resistance  to  amodiaquine  in  areas  where  extensive  chloroquine  resistance  has  been 

documented (Winkler et al., 1994). 

Antimalarial drug resistance is now generally acknowledged to be one of the greatest threats 

to our ability to “Roll Back Malaria (Molta, 1995; Federal Ministry of Health 2004). The 

situation  is  worsening,  with  the  geographic  spread  of  resistance  widening  to  previously 

unaffected  areas  and  a  remorseless  increase  both  in  the  prevalence  and  degree  of  drug 

resistance.  Resistance to chloroquine and sulfadoxine-pyrimethamine (SP) is widespread in 

Asia and South America and is spreading in Africa. This is evidenced in the results of this 

study as there was  in vitro resistance against chloroquine. The burden of disease caused by 
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malaria and its consequences has been documented in terms of childhood mortality, anemia, 

maternal and infant morbidity and mortality, neurologic disability, and economic and social 

costs.  The  burden caused specifically  by  antimalarial  drug resistance  is  more  difficult  to 

quantify. Resistance against chloroquine was observed in all the four zones where this present 

study was carried out. 

There is an increasing acceptance that the ideal approach to antimalarial treatment is the use of 

combination of two or more drugs,  rather  than a  single antimalarial  drug, preferably with 

artemisinin derivative as one of the drugs (WHO, 2001; Ashley et al., 2007). Amodiaquine in 

combination with artesunate has been introduced as first-line treatment of malaria to replace 

chloroquine in Nigeria and other malaria-endemic countries of Africa (Sodiomon et al., 2009). 

Although the  role  of  artesunate  in  this  combination  is  to  prevent  the  development  of 

amodiaquine  resistance,  parasites  may quickly  develop resistance  to amodiaquine  in areas 

where extensive  chloroquine  resistance  has  been documented.  In addition,  little  is  known 

about the mechanism or epidemiology of amodiaquine resistance. Resistant parasites may then 

likely  recrudesce under  the selective force of  the second drug in  the combination  and be 

transmitted to  mosquitoes  (WHO,  2003).Therefore,  we  cannot  rule  out  the  possibility of 

increasing selection of amodiaquine-resistant parasites with the increasing use of amodiaquine 

in combination with artesunate in Nigeria. 

Reduced in-vitro susceptibility is not synonymous with diminished therapeutic effectiveness, 

but it is the probable first step of an alarming cascade and definitely pleads for increased 

vigilance and a coordinated and rapid deployment of drug combinations. A previous study in 

Nigeria  assessed  the  quality  of  drugs  from  retail  outlets  and  pharmacies  and  attributed 

problems  to  a  lack  of  quality  control  in  manufacture  and  degradation  during  storage 

(Onwujekwe et al., 2009). A major problem with the treatment of malaria is the high level of 

treatment failures resulting in the large part from the high prevalence of counterfeit  drugs 

bought by the patients   (Hall  et al., 2006; Newton  et al., 2006; Onwujekwe  et al., 2009). 

Anti- malarials are among the most widely consumed drugs in tropical countries that have 

been particularly targeted by counterfeiters and of the anti-malarial drugs used in the world 

today
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Developing  countries,  where  malaria  is  one  of the  most  prevalent diseases,  still  rely  on 

traditional  medicine  as  a  source  for the  treatment  of this  disease.  While  synthetic 

pharmaceutical agents continue to dominate research, increasing attention has been directed to 

natural products (Alshwash et al., 2007). The success of artemisinin, isolated from Artemisia  

annua, and its derivatives for the treatment  of resistant malaria has focused attention on plants 

as a source of antimalarial drugs (Tan et al., 1998). In this study, three crude organic extracts 

obtained from medicinal plants used in Nigerian folk medicine for the treatment of fever and 

malaria were tested in vitro against P. falciparum. The most active extract was obtained from 

Diospyros  monbuttensis that  showed  appreciable  inhibition  to  the  parasites  at  all  the 

concentrations used and an IC50 of 32μg/L in the study.  Diospyros monbuttensis,  which is 

locally used for the treatment of fevers, headaches and stomach disorders, (Awe and Makinde, 

1997; Azas et al., 2002) has not been widely studied. This study represents the first conducted 

for antimalarial activity of crude extracts of Diospyros monbuttensis. The results confirm that 

those plants which are used in traditional medicine against malaria may possess in vitro and 

significant antimalarial potential and justify their use in traditional medicine. This observation 

suggests  that  the  active  constituents in  the  extract  may  be  cytotoxic  for  P.  falciparum 

trophozoites, thereby inhibiting their development to the schizont stage. 

However, in vivo studies on these medicinal plants are necessary and should seek  to determine 

toxicity of the active constituents, their side effects, serum-attainable levels, pharmacokinetic 

properties and diffusion in different body sites. Additional pharmacokinetic  investigations are 

therefore  advisable  to identify  host-related factors,  such  as  poor  absorption,  accelerated 

gastrointestinal passage  of the test drug, or metabolic peculiarities  of some patients, which 

might lead  to a faster-than-normal inactivation or elimination  of the test drug (Azas  et  al., 

2002).  The  use  of  herbs  by  some local  people  proved 100% sensitive  to  P.   falciparum 

(Merlin, 2004; Ogbonna, et al., 2008).

An IC50 observed for  Momordica charantia  in this study was 125μg/L. These observations 

suggest that the active constituents in the extract might also be cytotoxic for  P. falciparum 

trophozoites, thereby  inhibiting  their  development  to the  schizont  stage.  The  antimalarial 

activity of Momordica charantia has been previously reported (Alshwash et al., 2007). They 

found that the aqueous extract of. M. charantia leaves showed IC50 values less than 100 µg/ml 

which is  in agreement with the observations  in  this  study; the methanolic  extract  showed 
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moderate activity with IC50 =125 µg/ml. Morinda lucida also exhibited antimalarial activities 

in this study. The IC50  of 250μg/L observed in this study is comparable with other studies. 

Also for  M. lucida,  dose-dependent inhibitory outcomes were marked. Awe and Makinde, 

(1997) reported the dose-dependent and seasonal variation in the activity of M. lucida using 

both in vitro and in vivo techniques.  M. lucida was reported to contain anthraquinones which 

showed  in  vitro activity  against  P.  falciparum and  also  possesses  antifungal  properties. 

Morinda lucida  is used locally in the treatment of yellow fever and jaundice (Guido  et al., 

1995).

One of the factors to be considered in the prophylaxis, treatment, and control of Plasmodium 

falciparum malaria is the resistance of parasite strains that may arise against virtually every 

drug available. Identification of  Pfcrt  as the central determinant of chloroquine-resistant  P. 

falciparum malaria provides a molecular marker that can be used for surveillance of resistance 

and to evaluate drug treatment and prophylaxis policies. The present results further support 

this  role  of  the  Pfcrt  gene.  In the current  study,  100  P. falciparum  clinical  isolates  were 

collected during 2007-2008 and 49 (49%) of these samples were found to be chloroquine-

sensitive and  51  (51%)  chloroquine-resistant  using  the  WHO  in  vitro microtest method. 

Amplification products from all the chloroquine-sensitive  samples carried the codon for Pfcrt 

76K. Out of the 51 samples that were chloroquine-resistant by in vitro testing, 48 were found 

to  carry  the  76T  codon,  5  were  found  to  contain  mixed  76T/76K  codons,  and  3  were 

discordantly found to contain the 76K codon. The results  of work showed that  there is  a 

positive correlation between in-vitro resistance pattern of isolates and prevalence of molecular 

markers of resistance in the four zones. This finding corroborates with earlier findings where 

molecular  markers  of  resistance  were  found in  samples  that  gave  in  vivo resistance/drug 

failure (Djimde et al., 2001; Chen et al., 2001; Happi et al., 2004).

The high prevalence  of  mutations  at  codons 76T,  that  code for  chloroquine  resistance  in 

Nigerian P. falciparum isolates suggests that the population of P. falciparum that circulates in 

South-Western Nigeria has been selected by the long use of CQ. The overall picture emerging 

from this study is that resistance to this drug is abundant in south- Western Nigeria, and this 

finding strongly supports withdrawal of CQ as the first-line drug for treatment of falciparum 

malaria in Nigeria. This observation also supports the view that the  Pfcrt  polymorphism at 
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position 76 is in fact a significant factor of CQ resistance, as shown in previous studies from 

Cameroon (Basco and Ringwald, 2001.), Mali (Djimde et al., 2001), Mozambique (Mayor et  

al., 2001),  Nigeria  (Adagu  and  Warhurst,  2001),  Sudan  (Babiker  et  al.,  2001),  Uganda 

(Kyosiimire-Lugemwa et  al.,  2002),  Madagascar  (Ariey  et  al.,  2002), Laos  (Labbe  et  al., 

2001), Papua New Guinea (Maguire et al., 2001), and Thailand (Chen et al., 2001; Jürgen and 

Christian, 2003). CQ resistance has been attributed to a single mutation at codon 76 in the 

Pfcrt gene (Djimde et al., 2001; Basco and Ringwald, 2001). 

It has been observed that the Pfcrt K76 and the Pfmdr1 Y86 alleles are closely associated in 

chloroquine resistant strains (Adagu and Warhurst, 1999). A similar observation was made in 

this study as all isolates carrying Pfcrt mutated allele were also positive for Pfmdr1 mutated 

allele. However, studies comparing the associations of the Pfmdr 1 variant and the Pfcrt K76 

variant have shown that the impact of the pfcrt gene was stronger than that of the pfmdr gene 

(Djimde et al., 2001; Dorsey et al., 2001; Ojurongbe et al., 2007). It has been suggested that 

the degree of chloroquine resistance is further modulated by factors linked to genes other than 

Pfcrt or Pfmdr (Chen et al., 2001). 

Consistent with other studies, one can assume that the prevalence of Pfcrt T76 is a function of 

the actual chloroquine level, age of the patient, and also influenced by acquired immunity and 

natural resistance factors of the host (Wellems and Plowe 2001). Furthermore, one can assume 

that chloroquine intake contributes essentially to the selection of the Pfcrt T76 allele. Based 

on these observations, chloroquine appears to have an extended influence on the distribution 

of the  Pfcrt polymorphism in an isolate.  Thus, sub-therapeutic blood levels of chloroquine 

promote the emergence of drug resistance by direct selection.

Molecular  methods that detect  genetic  markers of drug resistance are potentially  powerful 

tools for tracking drug-resistant malaria. In this study, the combination of  Pfcrt and  Pfmdr1 

mutations in isolates associated with  in vitro amodiaquine resistance was observed. Mutant 

PfcrtT76 and Pfmdr1Y86 alleles were observed in 48% and 60% of the samples, respectively. 

A previous study in Sudan (Babiker  et al.,  2001) found that the mutant  PfcrtT76 allele is 

associated with amodiaquine treatment failure. The high prevalence of the mutant  PfcrtT76 

allele (48%) and Pfmdr1 allele (60%) observed in Ogun State, Nigeria confirms recent reports 

of the high prevalence rate of this alleles in parasites obtained from similar studies (Happi et  
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al.,  2006) and is  also consistent  with rates  ranging  from 60% to  100% reported  in  other 

malaria-endemic  regions  (Maguire  et  al.,  2001;  Basco and Ringwald,  2001; Djimde  et  al 

2001). The non-significant selection of the mutant  PfcrtT76 by amodiaquine may be due to 

the high prevalence of this allele in the P. falciparum population from South Western Nigeria. 

Selection of  Pfmdr1Y86 by amodiaquine has also been reported previously in the Gambia 

(Happi  et  al.,  2003).  Although  the  importance  of  point  mutations  in  Pfcrt in  producing 

chloroquine resistance is beyond dispute (Basco and Ringwald, 2001; Maguire  et al., 2001; 

Chen et al., 2001) recent transfection studies of Pfcrt have shown that isolates expressing the 

mutant PfcrtT76 allele  retain  sensitivity  to  amodiaquine  while  showing  a  reduced 

susceptibility to monodesethyl amodiaquine, the active metabolite of amodiaquine (Happi et  

al., 2003). The selection of the mutant  PfcrtT76 and Pfmdr1Y86 alleles indicates the primary 

involvement of these two genes in the mediation of amodiaquine resistance. Thus, similar to 

chloroquine  resistance,  amodiaquine  resistance in  P. falciparum may depend primarily  on 

mutation(s) in Pfcrt and additional mutations in Pfmdr1 or other Plasmodium genes may also 

have significant roles in increasing resistance to the drug. 

The combination  of  pfcrtT76 and  pfmdr1Y86 mutations  was associated with  amodiaquine 

treatment  failure.  These  two  alleles  have  been  shown to  be  in  linkage  disequilibrium  in 

chloroquine-resistant isolates of P. falciparum from The Gambia and Nigeria (Happi  et al., 

2003). The similarity in the chemical structures of chloroquine and amodiaquine and their 

possible likely common mode of action suggests that the molecular basis of resistance to these 

two drugs may be similar. 

Resistance against Sulphadoxine and Pyrimethamine was observed in this study. Among the 

isolates analyzed for resistance markers,  PfdhfrS108N and  PfdhpsK540E genes coding for 

Pyrimethamine and Sulphadoxine respectively were detected. It has been earlier observed that 

Resistance to pyrimethamine is primarily conferred by a non synonymous point mutation at 

codon  108  and  is  consecutively  enhanced  by  mutations  at  codons  51  and  59  of  the  P. 

falciparum pfdhfr gene located on chromosome 4 (Bruce-Chwatt, 1985; Kublin et al., 2002). 

The enzyme is part of the folate pathway and, thus, of DNA replication. In this study genes 

that code for sulphadoxine and pyrimethamine resistance were detected among the isolates 

screened  for  markers  of  resistance  against  these  drugs.  PfdhfrS108N  and  PfdhpsK540E 

alleles were detected in 12 and 2 isolates respectively.
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On the  basis  of  evolutionary  theories,  biological  disadvantages  are  expected  for  parasites 

carrying resistance-mediating mutations in the absence of drug pressure. The fitness deficit 

conferred by the  PfdhfrS108N mutation in the absence of pyrimethamine use is considered 

quite low. Enduring resistance in the absence of strong drug pressure implies that the expected 

decline  in  the  prevalence  of  resistant  parasites  is  balanced  by  mechanisms  that  confer 

biological advantages with regard to survival fitness, replication and transmission probability, 

invasion, reproduction, and vector properties that favor transmission. As Sub-Saharan African 

countries are confronted with the rapid emergence of resistance against virtually every drug 

that  is  used  for  the  treatment  of  P.  falciparum,  malaria  drug  pressure  is  considered  to 

essentially promote the emergence of SP resistance, which is now widespread in East Africa, 

but also well recognized in West Africa. 

Selection for the Ser to Asn substitution at codon 108 of the Pfdhfr gene has been shown to be 

linked to parasite survival after treatment with pyrimethamine -containing regimens (Plowe et  

al., 1998;  Marks  et  al.,  2005).  Accordingly,  the  high  frequencies  of  resistant  parasite 

populations  have  been  attributed  to  increased  pyrimethamine  consumption  (Marks  et  al., 

2005).  An  Asp  to  Ile  substitution  at  codon  Pfdhfr51  (PfdhfrN51I)  and/or  a  Cys  to  Arg 

exchange at codon pfdhfr59 (pfdhfrC59R) appears to enhance pyrimethamine resistance if one 

or  both  of  these  occur  concurrently  with  PfdhfrS108N.  PfdhfrS108N-N51I-C59R  is  the 

combination  of  mutations  most  strongly  associated  with  pyrimethamine  resistance.  Point 

mutations  at  codons  437  and  540  of  the  Pfdhps  gene  located  on chromosome  8  of  P. 

falciparum  are  considered  responsible  for  sulphadoxine  resistance.  Pfdhps  encodes  a  key 

enzyme in the folate pathway, as does  Pfdhfr. The Ala to Gly substitution at position 437 

(PfdhpsA437G) is, in general, the first mutation to occur. In Africa this is followed by the Lys 

to Glu substitution at position 540 (PfdhpsK540E), which confers higher levels of resistance. 

It was recently shown that the presence of the three Pfdhfr mutations combined with the two 

Pfdhps mutations (quintuple mutation) is strongly associated with SP resistance (Marks et al., 

2005).

Geographical clustering was reported for chloroquine-resistant  Pfcrt (Wootton  et al., 2002) 

and anti folate resistant Pfdhfr and Pfdhps haplotypes (Cortese et al., 2003), indicating distinct 

ancestral  selection  events  in  different  areas.  One important  aspect  in  the  possible  setting 
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leading to drug resistant parasites in Western Nigeria is the genetic background of the local 

parasite population. Multidrug-resistant  P falciparum is common, with a high rate of  Pfcrt,  

Pfmdr1, Pfdhfr and Pfdhps resistance haplotypes. Thus, selection pressures were exerted on a 

heavily  mutated  genetic  background.  The  several  PfATPase6  haplotypes  harbouring  the 

S769N mutation indicate that selections of such mutants are therefore not impossible in the 

nearest  future.  As  chloroquine  and  SP  are  replaced  by  more  effective  artemisinin-based 

combination therapies  (ACTs), strategies  for monitoring  (and, if  possible,  deterring)  drug-

resistant malaria must be updated and optimized.  In vitro methods for measuring resistance 

will be critical for confirming and characterizing resistance to ACTs. Molecular markers are 

useful for tracking the emergence and dissemination of resistance and guiding treatment policy 

where resistance is low or moderate.

One hundred samples that were positive for P. falciparum by microscopy were subjected to 

PCR genotyping for estimating prevalence of the PfATPase codon S769N mutation. All the 

100 (100%) isolates carried the artemisinin sensitive wild type allele, S769. This observation 

is  similar  to  the  ones  observed  in  several  African  countries  where  artemisinin  and  its 

derivatives are used as first line of treatment of uncomplicated malaria (Basco and Ringwald, 

2001; Djimde  et al., 2001; Mayor  et al., 2001; Adagu and Warhurst, 2001; Babiker  et al., 

2001;  Kyosiimire-Lugemwa et  al.,  2002). However  Artemisinin  resistant  genes have been 

detected by some workers especially in South Asia (Labbe et al., 2001; Maguire et al., 2001; 

Chen  et  al.,  2001;  Jürgen and  Christian,  2003).  Artemisinin  derivatives  are  an  essential 

component of treatment against multidrug-resistant  falciparum malaria. The genes that code 

for artemisinin resistance was not detected in any of the isolates screened for antimalarial 

resistance genes. Widespread multidrug-resistant falciparum malaria led WHO to recommend 

combination drug therapy as first-line treatment, with formulations containing an artemisinin 

compound as policy standard. Artemisinin and its derivatives are the most potent and rapidly 

acting antimalarials. However, artemisinin resistance has been reported in murine models of 

malaria (Ferrer-Rodiriguez et al., 2004). Diligent surveillance is needed to monitor continued 

susceptibility to artemisinin derivatives in endemic areas.

Numerous studies have demonstrated that children under five years and pregnant women are 

at a higher risk of suffering from clinical malaria (Sachs and Malaney, 2002; Greenwood et  
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al.,  2005;  Adefioye  et.  al., 2007;  Sotimehin  et  al.,  2008),  and drug prevention has  been 

advocated for years, using either weekly or monthly prophylaxis or, more recently in several 

countries, intermittent presumptive treatment, IPT (Cot and Deloron, 2003). At a time, many 

countries in the Sub Saharan region recommended a weekly chloroquine prophylaxis for each 

pregnant woman from the beginning of pregnancy to delivery. One possible drawback of such 

increased drug consumption is an increased drug pressure that may lead to the selection of 

drug-resistant parasites. There is some evidence in favor of this hypothesis. For instance, in 

countries where Artemisinin resistance has been discovered, all resistant isolates came from 

areas with uncontrolled use of artemisinin derivatives (Ronan et al., 2005)

There  is  little  existing  knowledge  about  actual  quality  of  drugs  provided  by  different  

providers  in Nigeria  and  in  many  sub-Saharan  African  countries.  Such information is 

important  for  improving  malaria  treatment  that  will  help  in  the  development  and 

implementation of actions designed to improve the quality of treatment. A study conducted in 

South-East Nigeria found that there was a high prevalence of poor quality drugs (Onwujekwe 

et al., 2009). Such findings provide areas for public intervention to improve the quality of 

malaria treatment services and to forestall resistance.

The Merozoite Surface Protein1 (MSP-1) and Merozoite Surface Protein2 (MSP-2) are highly 

polymorphic markers and the large allelic polymorphism has been reported in the block 2 of 

the  msp-1  gene  and  the  central  repetitive  domain  (block3)  of  the  msp-2  gene.  Families 

differing in nucleotide sequences and in number of repetitive sequences (length variation) 

were used for genotyping purposes. This study evaluates the extent of genetic diversity in the 

field isolates of  P. falciparum  obtained from Ogun State in South Western Nigeria.   The 

population structure of  the isolates analyzed with the polymorphic markers  MSP-1, MSP-2, 

and Glutamate Rich Protein (GLURP) in this study showed extensive diversity in parasite 

populations in the four zones in Ogun State, South Western Nigeria. The MSP-1, MSP-2, and 

GLURP markers showed 8, 6, and 5 allelic families, respectively. This diversity of the  P. 

falciparum  population in South Western Nigeria is reflected in the complexity of parasite 

populations in the samples. A catalog of genetically distinct parasite populations co-infecting 

those  infected  with  malaria,  based  on  PCR amplification  of  these  markers,  showed  that 

multiplicity of infection was common. Multiclonality of infections has been shown to be a 
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common feature in  most malaria-endemic areas  (Happi  et  al.,  2004;  Ntoumi  et  al.,  1995; 

Magesa et al., 2001; Nzila et al., 2006). Epidemiologic data from some study sites in Africa 

suggest that the multiplicity of P. falciparum infection may be directly related to the intensity 

of transmission (Arnot, 1998; Babiker  et al., 1997). This multiplicity of infections may also 

have important implications for the epidemiology of drug-resistant P. falciparum malaria and 

the outcome of treatment in patients. The initial presence of several parasite populations with 

different drug response profiles would result in elimination of drug sensitive populations and 

selection  of resistant  parasites.  The findings  in  this  study are in  agreement  with those of 

previous studies involving asymptomatic carriers and symptomatic patients in holoendemic 

areas, both in the complexity of population structure and multiplicity of parasites in human 

hosts (Ntoumi et al., 1995; Snounou et al., 1999). All the MSP 1, MSP2 and Glurp families 

were represented in each of the four zones in Ogun state where samples were collected.

In  considering  possible  strategies  for  the  reduction  of  the  burden  of  antimalarial  drug 

resistance, it is useful to differentiate between the current burden of drug resistance and the 

potential  burden in the future resulting from the continued emergence and spread of drug 

resistance.  The  factors  that  are  likely  to  contribute  to  the  development  of  antimalarial 

resistance were studied through administration of questionnaire to people who live in the four 

zones of Ogun State, South Western Nigeria. 33% of respondents do have malaria at least 

once in a month and 32.1 would have malaria at least once in three months respectively. This 

means about 80.3% will have malaria at least once in a year. It was also found in this study 

that the rate of exposure to antimalarial drugs including the artemisinins is very high. 40.7% 

of  the  sample  population  use  quinolines  as  prophylaxis  while  more  than  33%  use 

sulphonamides and about 3.2% use artemisinins as prophylaxis. As long as drugs are used, the 

chance of resistance developing to those drugs is present (Plowe, 2003). It has been observed 

that  the  development  of  resistance  to  antimalarial  drugs  in  South-East  Asia  has  been far 

quicker than the estimated 12 to 17 years it takes to develop and market a new antimalarial 

compound (Ridley, 1997). 

Affordability is an essential consideration for any strategy to control drug-resistant malaria, 

especially in Africa (Foster and Phillips 1998; Goodman et al.,  1999). In the current study, 

about 25% of the sample population stops the use of drugs because of price or when they 
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finish the one they could afford. The future, especially in Africa, will also be defined by how 

well the central tenets of malaria control can be reconciled with the central tenets of control of 

drug resistance.  One of the cornerstones of the current approach to malaria  control  is  the 

provision of prompt, effective malaria treatment.  In much of Africa, easy access to public 

sector health care is limited and when it is accessible, health care staff are often inadequately 

trained, insufficiently supplied and supported, ineffectively supervised and poorly motivated 

(Goodman et al., 2000). Central to achieving a reduction in both current and future burdens is 

an  improvement  in  drug usage  by  patients  and  providers  so  that  good  quality  drugs  are 

available and taken at the correct dose and for a sufficient length of time to affect a radical 

cure and reduce the likelihood that partially resistant parasites will survive. Improving drug 

use is most effective where the parasite is still  sensitive to the drug. Where resistance has 

rendered  the  drug  ineffective,  the  current  burden  of  resistance  can  only  be  reduced  by 

replacing the failing drug regimen with one that is effective. The difficulty lies in deciding 

which drug regimen to switch to, since the choice of drug or drug combination will determine 

the  subsequent  development  of  drug resistance.  Reducing the  future  burden of  resistance 

requires that effective antimalarial drugs continue to be available in the future and requires the 

continuous search for and development of potential new antimalarial drugs.

However, the complete drug development process can take 10−15 years, making it imperative 

that the currently available drugs are deployed in a way most likely to maximize their lifespan 

by decreasing the likelihood that resistance will develop. The key strategy put forward to do 

this  is  to  use  available  drugs  in  combination  to  prevent  the  emergence  and  spread  of 

resistance. Once a drug-resistant mutant has arisen, preventing spread of resistance is difficult. 

Spread  is  facilitated  by  the  exposure  of  malarial  parasites  to  sub-therapeutic  levels  of 

antimalarial drugs, that kill sensitive parasites but allows parasites with a resistance mutation 

to  survive and reproduce.  Ensuring that  drugs are  taken in  at  a  sufficient  dose and for a 

sufficient duration reduces this risk. Drug pressure is higher where a drug with a long half-life 

is taken because the drug remains in the patient’s blood at low levels for weeks, exposing any 

newly introduced malarial parasites to sub-therapeutic levels (Bloland, 2001).

This  is  particularly  likely  to  occur  in  high  transmission  areas  where  people  are  not  only 

infected more frequently, but also take antimalarial drugs frequently whether or not they are 

having malaria. Theoretically,this form of drug pressure can be reduced by using drugs with a 
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shorter half-life and by restricting the use of the first line drug to patients with confirmed 

malaria: i.e., only treating those with a definitive diagnosis.

CONCLUSION

This study has established the incidence of falciparum malaria in Ogun State, Southwestern 

Nigeria. Moreover, a baseline for both genetic polymorphisms and drug sensitivity profiles of 

P. falciparum isolated from Ogun State Nigeria has been established. This data should serve 

as a baseline for future studies to monitor the changes in antimalarial drug resistance in this 

part of the country. To prevent resistance to antimalarial drugs, a high degree of vigilance is 

required;  the  level  of  antimalarial  drug  sensitivity  of  P.  falciparum  should  be  closely 

monitored while compliance to antimalarial drug use should be encouraged.
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CONTRIBUTIONS TO KNOWLEDGE

This research work has contributed to knowledge in the following ways.

1. The  incidence  of  malaria  (Plasmodium infection)  in  Ogun  state,  South  Western 

Nigeria  has  been  established.  This  would  help  in  planning  prevention/control 

operations, resource allocation, and upgrading medical facilities in hospitals to treat severe 

and complicated cases.

2. The resistance pattern of Plasmodium falciparum isolates from Ogun State to existing 

antimalarial  drugs  established  in  this  study  would  tailor  drug  choices  specific  to 

geographic regions.

3. The molecular diversity of P. falciparum strains in Ogun State, Southwestern Nigeria 

has  been established.  This  Knowledge would help to  type and characterize  the  P. 

falciparum strains in Nigeria and compare their diversity with the rest of the world.

4. Results from molecular studies on the drug resistance genes of P. falciparum obtained 

in this study would provide advance information on the emergence of drug resistance 

in the field. This knowledge should facilitate the ability to begin to anticipate genomic 

responses to drugs yet unseen by the parasite.

5. Some of the factors which contribute to the development of resistance of Plasmodium 

to antimalarial drugs have been established. This should lead to the development of 

strategies and policies to control the use of existing antimalarial drugs and forestall 

resistance to new drugs. 

6. Antimalarial  efficacy of some local herbs used as herbal drugs has been established. 

This is expected to lead to the discovery of novel antimalarial drug of local origin. 
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RECOMMENDATION

There is an urgent need to find and develop alternative drugs against multidrug-resistant  P. 

falciparum.  One group of alternative antimalarial  drugs comprises artemisinin (qinghaosu) 

and  its  derivatives.  Artemisinin  is  a  traditional  Chinese  medicinal  herb  derived  from 

Artemisia annua.  Newer antimalarial drugs and approaches to overcome parasite resistance 

are  needed  to  deal  with  the  expanding  problem  of  drug  resistance  which  continues  to 

challenge  malaria  control  efforts  based on early diagnosis  and treatments.  Only a  limited 

number  of  antimalarial  drugs  are  currently  at  an advanced stage  of  clinical  development. 

There must therefore be a renewed interest in plant products. An attractive option for poor and 

developing countries is the exploitation of the possible therapeutic effects of their local herbs.

Efforts must be made to reduce drug pressure which can lead to the selection of drug-resistant 

parasites. 

Since there was positive correlation between artesunate and mefloquine; artesunate quinine, 

drugs containing these combinations should be recommended for Ogun State, the study area.

There  is  little  existing  knowledge  about  actual  quality  of  drugs  provided  by  different  

providers  in Nigeria  and  in  many  sub-Saharan  African  countries.  Such information is 

important  for  improving malaria  treatment  that  will  help  in  reducing  the  development  of 

resistance to the antimalarial drugs in use. 

104



REFERENCES

Abu-Raddad  L,  Patnaik  P,  Kublin  J  (2006).  "Dual  infection  with  HIV  and  malaria  

fuels  the  spread  of  both  diseases  in  sub-Saharan  Africa".  Science 314(5805):  

1603-1606.

Adagu IS, Warhurst DC (1999). Association of cg2 and pfmdr1 genotype with chloroquine 

resistance in field samples of Plasmodium falciparum from Nigeria.  

Parasitology 119: 343–348. 

Adagu IS, Warhurst DC (2001). Plasmodium falciparum: linkage disequilibrium between  

loci in chromosomes 7 and 5 and chloroquine selective pressure in northern  

Nigeria. Parasitology 123: 219–224.

Adefioye OA, Adeyeba OA, Hassan WO and Oyeniran OA (2007). Prevalence of Malaria  

Parasite Infection among Pregnant Women in Osogbo, Southwest, Nigeria.  

American-Eurasian Journal of Scientific Research  2 (1): 43-45. 

Ademowo OG, Nneji CM and Adedapo ADA  (2006). In vitro antimalarial activity of 

methylene blue against field isolates of Plasmodium falciparum from children in 

Southwest Nigeria. Indian Journal of  Medical Research 126:45-49

Adjuik  M,  Babiker  A,  Garner  P,  Olliaro  P,  Taylor  W,  White  N  (2004).  International  

Artemisinin Study Group: Artesunate combinations for treatment of malaria:  

metaanalysis. Lancet 363:9-17.

Alene  GD  and  Bennett  S  (1996).  Chloroquine  resistance  of  Plasmodium  falciparum  

malaria  in  Ethiopia  and  Eritrea.  Tropical  Medicine  &  International  Health  

1:810–815.

Ali AN, Al-rahwi AK and Lindequist  U (2004).  Some medicinal  plants used in Yemeni  

herbal medicine to treat malaria. African Journal of Traditional Medicine 1: 72–

76. 

Ali AN, Attif OA and Mohammed MI (1999). Herbal medicine in two Yemeni provinces-

ethno botanical study. Yemeni Medical Journal 3:13–23. 

Alifrangis M, Lemnge MM, Ronn AM, Segeja MD, Mageja SM, Khalil IF, and Bygbjerg  

IC (2003). Increasing  prevalence  of wild  types  in  the  dihydrofolate  reductase   

gene  of Plasmodium falciparum  in  an  area  with  high  levels of sulphadoxine-

pyrimethamine  resistance  after introduction of treated bed nets. American  

Jornal of Tropical Medicine Hygiene  69:238-243. 

105



Alshawsh MA, Mothana RA, Al-shamahy HA, Alsllami SF and Ulrike L (2007). Assessment 

of antimalarial activity against Plasmodium falciparum and phytochemical  

screening  of some  Yemeni  medicinal  plants.  

eCAM, doi:10.1093/ecam/nem148

Aribodor UDN, Njoku OO, Eneanya CI and Onyali  IO (2003). Studies on prevalence of  

malaria and management Practices of the Azia community,  Ihiala LGA, Anambra  

State, Southeast Nigeria. Nigerian Journal of Parasitology 24:33-38. 

Ariey F, Randrianarivelojosia M, Duchemin JB, Rakotondramarina D, Ouledi A, Robert V,  

Jambou R, Jahevitra M, Andrianantenaina H, Raharimalala L and Mauclere P  

(2002).  Mapping  of  a  Plasmodium  falciparum pfcrt  K76T  mutation:  a  useful  

strategy  for  controlling  chloroquine  resistance  in  Madagascar.  Journal  of  

Infectious Diseases 185: 710–712. 

Arnot  D  (1998).  Unstable  malaria  in  Sudan:  the  influence  of  the  dry  season.  Clone  

multiplicity of  Plasmodium  falciparum  infections  in  individuals  exposed  to  

variable levels of disease  transmission.  Transactions  of  the  Royal  Society  of  

Tropical Medicine and Hygiene 92: 580–585.

Arora  DR and Arora  B (2005).  Protozoa.  Medical  Parasitology  2nd ed,  CBS publishers,  

India. 67-98

Ashley AA, Stepniewska K, Lindegårdh N, McGready R,  Hutagalung R, Singtoroj T, Hla  

G, Brockman A, Proux S, Wilahphaingern J, Singhasivanon P, White N J and  

Nosten F (2007). Pharmacokinetic study of artemether-lumefantrine given once 

daily for the treatment of uncomplicated multidrug-resistant falciparum  

malaria. Tropical Medicine and International Health 12:201-208. 

Aubouy A, Migot-Nabias F and Deloron P (2003a). Polymorphism in two merozoite 
surface proteins of Plasmodium falciparum isolates from Gabon. Malaria Journal 
2:12

Aubouy A, Bakary M, Keundjian A, Mbomat B, Makita JF, Cot M, Le Bras J and Deloron  P  

(2003b). Combination of drug level measurement and parasite genotyping  data  

for  an  improved  assessment  of  amodiaquine  and  sulfadoxine-pyrimethamine  

efficacy  in  treating  Plasmodium  falciparum  malaria  in  Gabonese  children.  

Antimicrobial Agents Chemotherapy  47:231-237

106



Awe SO and Makinde, JM (1997).  Evaluation of the antimalarial activity of Morinda lucida 

using both in vivo and in vitro techniques. West African Journal of Pharmacological  

Drugs Research 13 (1 & 2): 39-44.

Azas N, Laurencin N, Delmas F, Di-Giorgio C, Gasquet M., Laget M and Timon-David, P  

(2002). Synergistic in vitro antimalarial activity of plant extracts used as traditional  

herbal remedies in Mali.  Parasitology Research 88: 165-171.

Babiker HA and Walliker D (1997). Current views on the population structure of 

Plasmodium falciparum: implications for control. Parasitology Today 13:262–

267. 

Babiker HA, Lines J, Hill WG, Walliker D (1997). Population structure of Plasmodium 

falciparum in villages with different malaria endemicity in east Africa. American 

Journal of Tropical Medicine and Hygiene 56:141–147.

Babiker HA, Pringle SJ, Abdel-Muhsin A, Mackinnon M, Hunt P and Walliker D (2001). 

High-level chloroquine resistance in Sudanese isolates of P. falciparum is 

associated with mutations in the chloroquine resistance transporter gene pfcrt and 

the multidrug resistance gene pfmdr1. Journal of Infectious Diseases 183:1535–

1538.

Ballereau F (1997). Stability of essential drugs in the field: results of a study conducted over 

a two-year period in Burkina Faso. American Journal of Tropical Medicine and 

Hygiene 57:31–36.

Basco  LK  (1991).  Inefficacy  of  amodiaquine  against  chloroquine-  resistant  malaria.  

Lancet 338:1460–1460.

Basco LK (2007). Field application of in-vitro assays for the sensitivity of human malaria 

parasites to antimalarial drugs. WHO/Global Malaria Programme/WC/750. France. 5-

135.

Basco  LK  and  Ringwald  P  (2000).  Molecular  epidemiology  of  malaria  in  Yaounde,  

Cameroon. VII.  Analysis  of  recrudescence  and  reinfection  in  patients  with  

uncomplicated  falciparum malaria.  American Journal  of  Tropical  Medicine  and  

Hygiene 63: 215– 221.

107



Basco LK and Ringwald P (2001). Analysis of the key pfcrt point mutation and in vitro and  

in  vivo response  to  chloroquine  in  Yaounde,  Cameroon.  Journal  of  Infectious  

Diseases 183: 1828–1831.

Basco LK and Ringwald P (2007). Molecular epidemiology of malaria in Cameroon. XXIV. 

Trends of in vitro antimalarial drug responses in Yaounde, Cameroon. American 

Journal of Tropical Medicine and Hygiene 76(1):20-26.

Bauchner  H,  Pelton  SI  and  Klein  JO  (1999).  Parents,  physicians,  and  antibiotic  use.  

Pediatrics 103:395–401.

Beck HP (1999).  How does molecular epidemiology help to understand malaria? Tropical  

Medicine and International Health 4:1–3.

Berzins K, and Anders RF (1999). The malaria antigens in Wahlgren M, Perlmann P, eds. 

Malaria: Molecular and Clinical Aspects. Amsterdam: Harwood Academic  

Publishers, 181−216.

Billker  O, Lindo  V,  Panico  M,  Etienne  AE,  Paxton  T,  Dell  A,  Rogers  M,  Sinden RE,  

Morris (1998).  "Identification  of  xanthurenic  acid  as  the  putative  inducer  of  

malaria development in the mosquito." Nature 392: 289–292. 

Bloland BP (2001). Drug Resistance in Malaria. WHO/CDS/CSR/DRS/2001.4:1

Bloland PB, Kazembe PN,  Watkins WM, Doumbo OK, Nwanyanwu OC, Ruebush TK.

(1997). Malarone-donation programme in Africa. Lancet 350:1624–1625.

Bogreau H, Renaud F, Bouchiba H, Durand P, Assi SB, Henry MC, Garnotel E, Pradines B,   

Fusai  T,  Wade  B,  Adehossi  E,  Parola  P,  Kamil  MA,  Puijalon  O, and  Rogier 

C (2006).  Genetic diversity and structure of African Plasmodium falciparum 

populations in urban and rural areas. American Journal of Tropical Medicine 

and Hygiene 74: 953-959. 

Boivin MJ (2002). "Effects of early cerebral malaria on cognitive ability in Senegalese 

children," Journal of Developmental and Behavioral Pediatrics 23 (5):353–364. 

Bourdy M, Willcox L, Ginsburg H, Rasoanaivo P, Graz B, and Deharo E (2008). 

Ethnopharmacology and malaria: New hypothetical leads or old efficient 

antimalarials? International Journal for Parasitology 38: 33–41. 

108

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12394524&dopt=Citation
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12394524&dopt=Citation


Breman J (2001). "The ears of the hippopotamus: manifestations, determinants, and 

estimates of the malaria burden.” American Journal of Tropical Medicine and 

Hygiene 64: 1-11. 

Bruce Chwatt LJ (1985). Essential Malariology. 2nd Ed. London, Heinemanna. 61-270

Chanda  P,  Hamainza  B,  Mulenga  S,  Chalwe  V,  Msiska  C  and  Chizema-Kawesha  E  

(2009).Early  results  of  integrated  malaria  control  and  implications  for  the  

management of fever in under-five children at a peripheral health facility: A  

case study of Chongwe rural health centre in Zambia. Malaria Journal 8:49  

Cheesbrough M.  (2000).  District  laboratory  practice  manual  in  Tropical  Countries  pt  2.  

Cambridge University press.

Chen  N,  Russell  B,  Staley  J,  Kotecka  B,  Nasveld  P  and  Cheng  Q  (2001).  Sequence  

polymorphisms  in  pfcrt  are  strongly  associated  with  chloroquine  resistance  in  

Plasmodium falciparum. J Infect Dis 183: 1543–1545.

Childs GE, Wimonwattrawatee T, Pooyindee N (1988). Evaluation of an in vitro

assay system for drug susceptibility of field isolates of Plasmodium falciparum

from southern Th ailand. American Journal of Tropical Medicine and Hygiene 

38:19–23.

Clarkson  C,  Maharaj  VJ,  Crouch  NR,  Grace  OM,  Pillay  P,  Matsabisa  MG  (2004).  In  

vitro antiplasmodial  activity  of medicinal  plants  native  to or  naturalised  in  

South Africa. Journal of Ethnopharmacology 92: 177–191.

Cortese  JF,  Caraballo  A,  Contreras  CE,  Plowe CV (2003).  Origin  and dissemination  of  

Plasmodium falciparum  drug-resistance  mutationsin  South  America.  Journal  of  

Infectious Diseases  186: 999–1006.

Cot,  M.  and  Deloron,  P.  (2003).  Malaria  prevention  strategies:  pregnancy-associated  

malaria (PAM). British Medical Bulletin 67:137–148.

Cowman  AF  (2006).  "Invasion  of  Red  Blood  Cells  by  Malaria  Parasites".  Cell 124:  

755–766. 

Craig  MH  and  Sharp  BL  (1997).  Comparative  evaluation  of  four  techniques  for  the  

diagnosis  of  Plasmodium  falciparum  infections.  Transactions  of  the  Royal  

Society of Tropical Medicine and Hygiene 91:279–282. 

109

http://www.ajtmh.org/cgi/reprint/64/1_suppl/1-c
http://www.ajtmh.org/cgi/reprint/64/1_suppl/1-c


de Monbrison F, Raynaud D, Latour-Fondanaiche C, Staal A, Favre S, Kaiser K, Peyron F  

and Picot S (2003). Real-time PCR for chloroquine sensitivity assay and for  

pfmdr1-pfcrt single nucleotide polymorphisms in Plasmodium falciparum J  

Microbiological Methods. 54:391–401. 

Desai M, ter Kuile FO, Nosten F, McGready R, Asamoa K, Brabin B, 

Newman RD (2007).

Epidemiology and burden of malaria in pregnancy. Lancet Infect Dis 

7:93-104.

Djimde A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, Diourte Y, Dicko A, Su XZ, 

Nomura T, Fidock DA, Wellems TE, Plowe CV, Coulibaly D, 2001. A molecular  

marker  for  chloroquine-resistant  falciparum  malaria.  New  England  Journal  of  

Medicine 344: 257–263. 

Dorsey  G,  Kamya  MR,  Singh  A,  Rosenthal  PJ  (2001).  Polymorphisms  in  the  

Plasmodium  falciparum  pfcrt and  pfmdr-1 genes  and  clinical  response  to  

chloroquine  in  Kampala,  Uganda.  Journal  of  Infectious  Diseases 183:1417-

1420.

Dorsey  G,  Staedke  S,  Clark  TD,  Njama-Meya  D,  Nzarubara  B,  Maiteki-Sebuguzi  C,  

Dokomajilar C, Kamya MR and Rosenthal PJ (2007). Combination therapy for  

uncomplicated falciparum malaria in Ugandan children: a randomized trial.  Jama  

297:2210-2219. 

Dorvault F (1982). L’officine, xxi ed. Vigot. Paris. Pp 110

Druilhe P, Moreno A, Blanc C, Brasseur P, and Jacquier P (2001). Colorimetric in vitro  

drug sensitivity assay for P. falciparum based on a highly sensitive double- site  

pLDH antigen capture ELISA assay. American Journal of Tropical Medicine  

and Hygiene 64:233-241

Druilhe  P,  Philippe  B,  Catherine  B,  and  Michael  M  (2007). Improved  Assessment  of  

Plasmodium vivax Response to Antimalarial Drugs by a Colorimetric Double-

Site  Plasmodium Lactate Dehydrogenase Antigen Capture Enzyme-Linked Immunosorbent  

Assay. Antimicrobial Agents Chemotheapy 51(6): 2112–2116. 

Eckstein_Ludwig U, Webb RJ, Van Goethem ID, East JM, Lee AG, Kimura M, O’Neill PM, 

Bray PG, Ward SA, and Krishna S (2003). Artemisinins target the SERCA  of 

P. falciparum. Nature 21:957-961

110



Elujoba AA (1998).  The role of pharmacognosy in phytotherapy, the challenges of our time. 

Nigerian Journal of Natural Products and Medicine 2: 5-8.

Elujoba AA, Odeleye OM and Ogunyemi CM (2005). Traditional medicine development for 

medical and dental primary health delivery systems in Africa.  African Journal of  

Traditional Medicine 21:46-61.

Etkin  NL  (2003).  The  co-evolution  of people,  plants,  and  parasites:  biological  and  

cultural  adaptations  to malaria.  Proceedings  of  the  Nutritional  Society 62:  

311–317.

Ettling  M,  Bloland,  PB,  Ruebush,  TK  (1995).  Chloroquine  efficacy  study  in  Zambia  

Environmental Health Project Activity Report 15.

Federal Ministry of Health (2004). National Antimalarial Treatment report 4-5

Federal  Ministry  of  Health,  National  Malaria  and  Vector  Control  Division  (2001).  

Malaria. 5

Ferrer-Rodiriguez  I,  Perez-Rosado  J,  Gervais  GW,  Peters  W and  Robinson  BL (2004).  

Plasmodium  yoelii:  identification  and  partial  characterization  of  an  mdr1  

gene in an artemisinin-resistant line. Journal of Parasitology 90:152–160.

Fidock  DA,  Nomura  T,  Cooper  RA,  Su  X,  Talley  AK,  Wellems  TE,  (2000).  Allelic  

modifications of the cg2 and cg1 genes do not alter the chloroquine response  

of drug-resistant Plasmodium falciparum. Molecular Biochemistry and  

Parasitology 110: 1–10.

Flores  MVC,  Berger-Eiszele  SM,  Stuart  TS  (1997).  Long-term  cultivation  of 

Plasmodium falciparum in  media  with  commercial  non-serum  

supplements. Parasitological Research 83: 734–6.

Foege WH (1997). Malarone-donation programme. Lancet 350:1628–1629.

Foley M and Tilley L (1997). Quinoline antimalarials: mechanisms of action and resistance. 

International Journal for Parasitology 27:231–240.

Foley M and Tilley L (1998). Quinoline antimalarials: mechanisms of action and resistance and  

prospects for new agents. Pharmacology and Therapeutics 79(1): 55-87.

Foster  S  and  Phillips  M  (1998).  Economics  and  its  contribution  to  the  fight  against  

malaria. Annals of Tropical Medicine & Parasitology 92:391–398.

Gilles  HM,  Warrell  DA  and  Edward  A  (1993).  Diagnostic  Methods  in  Malaria.  Bruce  

Chwatt’s Essential Malariology 3rd ed London 78-95.

111



Golenda  CF,  Li  J  and  Rosenberg  R  (1997).  Continuous  in  vitro  propagation  of  the  

malaria  parasite  Plasmodium  vivax.  Proceedings  of  the  National  Academy  of  

Sciences of the United States of America 94:6786–6791.

Good MF (2001). Towards a blood-stage vaccine for malaria: are we following all the leads? 

Nature Reviews, Immunology 1: 117-125.

Goodman CA, Coleman PG, Mills AJ (1999). Cost effectiveness of malaria control in sub-

Saharan Africa. Lancet 354:378–384. 

Goodman C, Coleman P and Mills A (2000). Economic analysis of malaria control in sub-

Saharan Africa.  Strategic  Research Series 1.  Global Forum for Health Research  

(World Health Organisation, Geneva).

Greenwood B and Mutabingwa T (2002). "Malaria in 2002". Nature 415: 670–672.   

Greenwood  BM,  Bojang  K,  Whitty  CJ,  Targett  GA  (2005).  "Malaria".  Lancet 365:  

1487-1498. 

Guido R, Menavanza N and Kurt H (1995). Antifungal anthaquinones from Morinda lucida. 

International Journal of Pharmacology 33(2): 107-114.

Hall  KA,  Newton  PN,  Green  MD,  DeViej  M,  Vandenabeele  P,  Pizzanelli   D,  

Mayxay  M,  Dondorp   A  and   Fernandez   FM (2006).  Characterization   of   

counterfeit   artesunate   antimalarial  tablets  from  southeast  Asia.  American  

Journal of Tropical Medicine and Hygiene 75:804-811. 

Hall AP (1975). Amodiaquine resistant falciparum malaria in Thailand. American Journal  of  

Tropical Medicine & Hygiene 24:575–580.

Handunnetti, S. M., D. M. Gunewardena, P. P. Pathirana, K. Ekanayake,    

S.Weerasinghe, and K. N. Mendis (1996). Features of recrudescent 

chloroquine-resistant P. falciparum infections confer a survival advantage on 

parasites and have implications for disease control. Transactions of the Royal 

Society for Tropical Medicine and Hygiene. 90:563–567.

Happi TC, Thomas SM, Gbotosho GO, Falade CO, Akinboye DO, Gerena L, Hudson T,  

Sowunmi  A,  Kyle  DE,  Milhous  W,  Wirth  DF,  Oduola  AM  (2003).  Point  

mutations in  the  pfcrt  and  pfmdr-1  genes  of  Plasmodium  falciparum  and  

clinical response  to  chloroquine,  among  malaria  patients  from  Nigeria.  

Annals of Tropical Medical Parasitology 97: 439–451.

112



Happi CT, Gbotosho GO, Sowunmi A, Falade CO, Akinboye DO, Hudson T, Gerena L,  

Kyle DE,  Milhous  W,  Wirth  DF,  Oduola  AMJ  (2004).  Molecular  analysis  of  

Plasmodium falciparum recrudescent  malaria  infections  in  children  

treated with chloroquine in Nigeria. American Journal of Tropical Medicine and 

Hygiene 70: 20–26

Hastings  IM  (2003).  Malaria  control  and  evolution  of  drug  resistance:  an  intriguing

link. Trends in Parasitology 19:70-73. 

Hastings  IM  (1997).  A  model  for  the  origins  and  spread  of  drug-resistant  malaria.  

Parasitology 115:133–141.

Hastings  IM  and  Mckinnon  MJ  (1998).  The  emergence  of  drug-resistant  malaria.  

Parasitology 117:411–417.

Hay S,  Guerra  C,  Tatem A,  Noor  A and Snow R (2004).  "The  global  distribution  and  

population at risk of malaria: past, present, and future." Lancet 4(6): 327-336. 

Hay SI  and Snow RW (2006).  "The Malaria  Atlas  Project:  Developing Global  Maps of  

Malaria Risk." PLoS Medicine 3(12): e473.  

Hien TT and White NJ (1993). Qinghaosu. Lancet 341:603-608.

Hoareau L and Dasilva EJ (1999). Medicinal plants: a re-emerging health aid.  Electronic  

Journal of Biotechnology 2(2): 56-69.

Holding  PA  and  Snow  RW  (2001).  "Impact  of  Plasmodium  falciparum  malaria  on  

performance  and  learning:  review  of  the  evidence."  American  Journal  of  

Tropical Medicine and Hygiene 64(1–2): 68–75. 

Hyde  JE  (2002).  Mechanisms  of  resistance  of  Plasmodium  falciparum to  antimalarial  

drugs. Microbes Infection 4: 165-174.

Ibrahim ML, Gay-Andrieu F, Adehossi E, Lacroix V, Randrianarivelojosia M, Duchemin  

JB (2007).   Field-based   evidence   for   the   linkage   of   pfcrt  and   pfdhfr  

drug-resistant  malaria genotypes and clinical profiles  for  severe malaria  in  

Niger. Microbes  Infection 9: 599-604

Idro  R,   Otieno  G,  White  S,  Kahindi  A,  Fegan G,  Ogutu  B,  Mithwani  S,  Maitland  K,  

Neville  BG  and  Newton  CR  (2007).  "Decorticate,  decerebrate  and  

opisthotonic posturing and seizures in Kenyan children with cerebral malaria".  

Malaria Journal 4:57. 

113

http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16336645
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16336645
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11425179&dopt=Citation
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11425179&dopt=Citation
http://medicine.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pmed.0030473
http://medicine.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pmed.0030473


Ittarat I, Asawamahasakda W and Meshnick SR (1994). The effects of antimalarials on the  

Plasmodium  falciparum  dihydroorotate  dehydrogenase.  Experimental  

Parasitology 79:50–56.

Jensen JB (1988). In vitro cultivation of malaria parasites: erythrocytic stages. In:

Wernsdorfer WH, McGregor IA, eds. Malaria. Principles and practice of 

malariology,

Vol 1, London, Churchill Livingstone Ltd, 307–320.

John TD and Petri WA (2006) Markell and Voge’s Medical Parasitology 9th ed. Elsevier inc.  

USA. 79-106.

Joshi H, Valecha N, Verma A, KaulA, Mallick PK, Sneh S1, Prajapati SK, Sharma SK,

Vas D, Sukla B, Nutan N, Malhotra MS, Sarala K S and Dash AP (2007). Genetic 

structure of Plasmodium falciparum field isolates in eastern and north-eastern 

India Malaria Journal 6:60

Jürgen  M.  And  Christian  GM  (2003).  Association  of  Plasmodium  Falciparum 

Chloroquine  Resistance  Transporter  Variant  T76  with  Age-Related  Plasma  

Chloroquine Levels.  American Journal Tropical Medicine Hygiene 68(2):143-146

Kain K, Harrington M, Tennyson S and Keystone J (1998). "Imported malaria: prospective 

analysis of problems in diagnosis and management." Clinical Infectious Diseases 

27 (1): 142-149. 

Kirsten M, Inger L, Hedvig P, Artur S, Mats W (2008). Methods in Malaria, 5th ed. MR4 / 

ATCC Manassas, Virginia. 199-289.

Knudsen AB and Slooff R (1992). Vector-borne disease problems in rapid urbanization:  new  

approaches to vector control. Bulletin of the World Health Organization 70:1–6.

Konig GM (1992). Meeresorganismen als Quelle pharmazeutisch bedentsamer Naturstoffe.  

Deutsche Apotheker Zeitung 132(14): 673-683.

Korenromp  E,  Williams  B,  de  Vlas  S,  Gouws  E,  Gilks  C,  Ghys  P,  Nahlen  B (2005). 

"Malaria  attributable  to  the  HIV-1  epidemic,  sub-Saharan  Africa."  Emerging  

Infectious Diseases 11 (9): 1410-9. 

Kremsner  PG,  Winkler  GS,  Brandts  C,  Neifer  S,  Bienzle  U,  and Graninger  W. (1994).  

Clindamycin in combination with chloroquine or quinine is an effective therapy for 

uncomplicated  Plasmodium  falciparum  malaria  in  children  from  Gabon.  The  

Journal of Infectious Diseases 169:467–470.

114

http://www.cdc.gov/ncidod/EID/vol11no09/05-0337.htm


Kremsner  PG,  Zotter  GM, Feldmeier  H,  Graninger  W, Westerman  RL,  and Rocha RM 

(1989).  Clindamycin  treatment  of  falciparum  malaria  in  Brazil.  Journal  of  

Antimicrobial Chemotherapy 23:275–281.

Krettli AU (2001). Antimalarial chemotherapy. Mechanisms of action, resistance and new  

directions  in  drug discovery.  Memorias  do  Instituto  Oswaldo  Cruz 96(8):  1185-

1186.

Krettli AU, Andrade-Neto VF, Brandao MG and Ferrari WMS (2001). The search for new 

antimalarial drugs from plants used to treat fever and malaria or plants randomly  

selected: a review. Memorias do Instituto Oswaldo Cruz 96(8): 1033-1042.

Kublin  JG,  Dzinjalamala  FK,  Kamwendo  DD,  Malkin  EM,  Cortese  JF,  Martino  LM, 

Mukadam  RA,  Rogerson  SJ,  Lescano  AG,  Molyneux  ME,  Winstanley  PA,  

Chimpeni P, Taylor TE and  Plowe  CV (2002).  Molecular markers for failure of  

sulfadoxine-pyrimethamine and Chlorproguanil-dapsone treatment of  Plasmodium  

falciparum malaria. Journal of Infectious Diseases 185:380-388. 

Kublin G James,  Padmaja Patnaik  Charles S Jere,   William C Miller,  Irving F Hoffman, 

Nelson Chimbiya ,   Richard Pendame,   Terrie E Taylor   and   Malcolm 

E Molyneux (2005). Effect of Plasmodium falciparum malaria on concentration of 

HIV-1-RNA in the blood of adults in rural Malawi: a prospective cohort study. The 

Lancet 365:233-240

Kupferschmidt  HG,  Schroder  K,  and  Beltzner  B  (1988).  Chloroquine  and  fansidar  

resistance  of  Plasmodium  falciparum  now  also  in  Ghana.  Angew.  Parasitol. 

29:211–213.

Kuznetsov  RL,  Storey  J,  Kilama  W  and  Pine  D  (1984).  Detection  of  pyrimethamine  

resistance  in  P.  falciparum  long  after  discontinuation  of  its  use.  Medica  

Parazitologie (Moskow) 4:13–16.

Kyosiimire-Lugemwa  J,  Nalunkuma-Kazibwe  AJ,  Mujuzi  G,  Mulindwa  H,  Talisuna  A,  

Egwang  TG  and  (2002).  The  Lys-76-Thr  mutation  in  PfCRT  and  chloroquine  

resistance  in  Plasmodium falciparum isolates  from Uganda.  Transactions  of  the  

Royal Society of  Tropical Medicine and  Hygiene 96: 91–95.

Labbe  AC,  Bualombai  P,  Pillai  DR,  Zhong  KJ,  Vanisaveth  V,  Hongvanthong  B,  

Looareesuwan S, Kain KC, 2001. Molecular markers for chloroquine- resistant  

115

http://www.thelancet.com/search/results?search_mode=cluster&search_area=cluster&search_cluster=thelancet&search_sort=date&restrictname_author=author&restricttype_author=author&restrictterm_author=molyneux0me&restrictdesc_author=Malcolm%20E%20Molyneux
http://www.thelancet.com/search/results?search_mode=cluster&search_area=cluster&search_cluster=thelancet&search_sort=date&restrictname_author=author&restricttype_author=author&restrictterm_author=molyneux0me&restrictdesc_author=Malcolm%20E%20Molyneux
http://www.thelancet.com/search/results?search_mode=cluster&search_area=cluster&search_cluster=thelancet&search_sort=date&restrictname_author=author&restricttype_author=author&restrictterm_author=taylor0te&restrictdesc_author=Terrie%20E%20Taylor
http://www.thelancet.com/search/results?search_mode=cluster&search_area=cluster&search_cluster=thelancet&search_sort=date&restrictname_author=author&restricttype_author=author&restrictterm_author=pendame0r&restrictdesc_author=Richard%20Pendame
http://www.thelancet.com/search/results?search_mode=cluster&search_area=cluster&search_cluster=thelancet&search_sort=date&restrictname_author=author&restricttype_author=author&restrictterm_author=chimbiya0n&restrictdesc_author=Nelson%20Chimbiya
http://www.thelancet.com/search/results?search_mode=cluster&search_area=cluster&search_cluster=thelancet&search_sort=date&restrictname_author=author&restricttype_author=author&restrictterm_author=hoffman0if&restrictdesc_author=Irving%20F%20Hoffman
http://www.thelancet.com/search/results?search_mode=cluster&search_area=cluster&search_cluster=thelancet&search_sort=date&restrictname_author=author&restricttype_author=author&restrictterm_author=miller0wc&restrictdesc_author=William%20C%20Miller
http://www.thelancet.com/search/results?search_mode=cluster&search_area=cluster&search_cluster=thelancet&search_sort=date&restrictname_author=author&restricttype_author=author&restrictterm_author=jere0cs&restrictdesc_author=Charles%20S%20Jere
http://www.thelancet.com/search/results?search_mode=cluster&search_area=cluster&search_cluster=thelancet&search_sort=date&restrictname_author=author&restricttype_author=author&restrictterm_author=patnaik0p&restrictdesc_author=Padmaja%20Patnaik
http://www.thelancet.com/search/results?search_mode=cluster&search_area=cluster&search_cluster=thelancet&search_sort=date&restrictname_author=author&restricttype_author=author&restrictterm_author=kublin0jg&restrictdesc_author=James%20G%20Kublin


Plasmodium falciparum malaria in Thailand and Laos. Annals of Tropical  Medical  

Parasitology 95: 781–788.

Lefevre  G,  Looareesuwan  S,  Treeprasertsuk  S,  et  al. (2001).  "A  clinical  and  

pharmacokinetic trial of six doses of artemether-lumefantrine for multidrug-

resistant Plasmodium falciparum malaria in Thailand". American Journal of  

Tropical Medicine and Hygiene 64 (5–6): 247–256. 

Levine  RA,  Wardlaw  SC  and  Patton  CL  (1989).  Detection  of  haematoparasites  using  

Quantitative Buffy Coat analysis tubes. Parasitology Today 5:132–133.

Lobel HO and Campbell CC (1986). Malaria Prophylaxis and distribution of drug resistance.  

Clinics in Tropical Medicine and Communicable Diseases 1:225– 242.

Looareesuwan  S  (1996).  Clinical  studies  of  atovaquone,  alone  or  in  combination  with  

other antimalarial drugs for the treatment of acute uncomplicated malaria in  

Thailand. American Journal of Tropical Medicine and Hygiene 54:62–66.

Hygiene 92:188–195.

Magesa  SM,  Mdira  KY,  Farnert  A,  Simonsen  PE,  Bygbjerg  IC,  Jakobsen  PH,  2001.  

Distinguishing  Plasmodium  falciparum  treatment  failures  from  re-infections  by  

using  polymerase  chain  reaction  genotyping  in  a  holoendemic  area  in  

northeastern Tanzania.  American Journal of Tropical Medicine and Hygiene  65: 

477–483.

Maguire JD, Susanti AI, 2001. Krisin, Sismadi P, Fryauff DJ, Baird JK. The T76 mutation  

in the pfcrt gene of Plasmodium falciparum and clinical chloroquine resistance  

phenotypes in Papua, Indonesia. Annals of Tropical Medicine  and  

Parasitology 95: 559–572.

Marielle, KBA, Denisa EIC, Modeste MM, Eric K, Pierre BM, Elie M and Maryvome K  

(2003). Prevalence of Plasmodium falciparum Infection in Pregnant women in  

Gabon. Malaria Journal 2: 1-17.

Marks F, Evans J,  Meyer CG,  Browne EN,  Flessner C,  von Kalckreuth V, 

Eggelte, TA, Horstmann  R  D,   and  May  J  (2005). High  Prevalence  of 

Markers for Sulfadoxine and Pyrimethamine Resistance in Plasmodium falciparum in the  

Absence of Drug Pressure in the Ashanti Region of Ghana. Antimicrobial  

Agents and Chemotherapy  49(3):1101-1105

116



Martin SK, Oduola AM and Milhous WK (1987).  Reversal  of  chloroquine resistance  in  

Plasmodium falciparum by verapamil. Science 235:899–901.

May  J  and  Meyer  CG  (2003).  Chemoresistance  in  falciparum  malaria.  Trends  in     

Parasitology 19:432–435. 

Mayor AG, Gomez-Olive X, Aponte JJ, Casimiro S, Mabunda S, Dgedge M, Barreto A, 

           Alonso PL (2001). Prevalence of the K76T mutation in the putative    nnnnnn

           Plasmodium falciparum chloroquine resistance transporter (pfcrt) gene and 

           its relation to chloroquine resistance in Mozambique. Journal of Infectious 

           Disease 183: 1413–1416.

McCollum AM,  Poe AC,  Hamel, M,  Huber C, Zhou Z, Shi PY, Ouma P, Vulule J,      

Bloland  P,  Slutsker  L,.  Barnwell  JW,  Udhayakumar  V,  and  Escalante  AA  

(2006).   Antifolate  Resistance  in  Plasmodium falciparum:  Multiple  rigions  and  

Identification of Novel dhfr Alleles. Journal of Infectious Diseases 194:189–97

McIntosh  HM and Greenwood BM (1998).  Chloroquine  or  amodiaquine  combined  with  

sulfadoxine-pyrimethamine as a treatment for uncomplicated malaria-a systematic  

review. Annals of Tropical Medicine & Parasitology 93:265–270.

Mens PF, Schoone GJ, Kager PA and Schallig HD (2006). "Detection and identification of 

human Plasmodium species with real-time quantitative nucleic acid sequence-

based amplification". Malaria Journal 5 (80). 

Merlin  LW  (2004).  Traditional  Medicinal  Plants  and  Malaria.  Buckingham,  Gerard  

Bodeker, University of Oxford England, UK: University of Oxford. 

Meyer  C G,  May J,  Arez AP,  Gill  J  P,  and do Rosario  V (2002).  Genetic  diversity  of  

Plasmodium  falciparum:asexual  stages.  Tropical  Medicine  and  International  

Health 7:395–408.            

Miller  CH,  Good  MF  and  Milon  G  (1994).  Malaria  pathogenesis.  Science  264:1878-

1883.

Mills  S  and  Bone  K  (2000).  Principles  and  practice  of  phytotherapy.  Churchill  

Livingstone, Edinburgh, 91-108. 

Mockenhaupt  FP  (1995).  Mefloquine  resistance  in  Plasmodium  falciparum.  

Parasitology Today 11:248–253.

Mockenhaupt  FP,  Rong  B,  Gunther  M,  Beck  S,  Till  H,  Kohn  E,  Thompson  WN  and  

Bienzle  U  (2000).  Anaemia  in  Pregnant  Ghanaian  women:  Importance  of  

117



Malaria,  iron  deficiency  and  haemoglobinopathies.  Transactions  of  the  Royal  

Society of Tropical Medicine & Hygiene 94: 477-483.

Mockenhaupt  F,  Ehrhardt  S,  Burkhardt  J,  Bosomtwe  S,  Laryea  S,  Anemana  S,  

Otchwemah R, Cramer J, Dietz E, Gellert S, Bienzle U (2004). "Manifestation and  

outcome of severe malaria in children in northern Ghana." American Journal  of  

Tropical Medicine and Hygiene 71 (2): 167-72.

Molta NB (1995). Susceptibility of Plasmodium falciparum to malaria drugs in North-

Eastern Nigeria. Transactions of the Royal Society of Tropical Medicine and  

Hygiene 89: 422–425. 

Mueller  MS,  Runyambo  N,  Wagner  I,  Bormann  S,  Dietz  K  and  Heide  L  (2004).  

Randomized  controlled  trial  of  a  traditional  preparation  of  Artemisia  annua  L.  

(Annual  Wormwood)  in  the  treatment  malaria.  Transactions  of  the  Royal  

Society of Tropical Medicine & Hygiene  98:318-321

Mueller,  M.S.,  Karhagomba,  I.B.,  Hirt,  H.M.,  Wemarkor,  E.,  Li,  S.M.,  and  Heide  L  

(2000). The potential of Artemisia annua L. as a locally produced remedy for 

malaria in the tropics: agricultural, chemical and clinical aspects. Journal  of 

Ethnopharmacology 74:487-493.

Mutabingwa  TK,  Anthony  D,  Heller  A  (2005).  "Amodiaquine  alone,  

amodiaquine+sulfadoxine-pyrimethamine,  amodiaquine+artesunate,  and  

artemether-lumefantrine  for  outpatient  treatment  of  malaria  in  Tanzanian  

children: a four-arm randomised effectiveness trial". Lancet 365 (9469): 1474–

1480. 

Newton  CR  and  Krishna  S  (1998).  Severe  falciparum  malaria  in  children:  current  

understanding  of  pathophysiology  and  supportive  treatment.  Pharmacology  and  

Therapeutics 79(1): 1-53

Newton  PN,  Green  MD,  Fernandez  FM,  Day  NPJ,  White  NJ  (2006)  Counterfeit  anti-

infective drugs.  Infectious Diseases 6:602-613. 

Nguyen-Dinh P, Hobbs JH and Campbell CC (1981). Assessment of chloroquine sensitivity  

of  Plasmodium  falciparum  in  Choluteca,  Honduras.  Bulletin  of  the  World  

Health Organization  59:641–646.

118



Noedl  H,  Se Y, Schaecher  K, Smith BL,  Socheat  D,  Fukuda MM (2008).  "Evidence  of  

artemisinin-resistant malaria in western Cambodia". New England Journal of  

Medicine 359 (24): 2619–20. 

Nosten  F  and White  NJ  (2007).  Artemisinin-based  combination  treatment  of  falciparum  

malaria. American Journal of Tropical Medicine and Hygiene 77:181-192. 

Nosten F, ter Kuile FO, Luxemburger C, Woodrow C, Kyle DE, Chongsuphajaisiddhi T and  

White NJ (1993). Cardiac effects of antimalarial treatment with halofantrine.  

Lancet 341:1054–1056. 

Ntoumi  F,  Contamin  H,  Rogier  C,  Bonnefoy  S,  Trape  J  and  Mercereau-Puijalon  O  

(1995). Age-dependent carriage of multiple Plasmodium falciparum merozoite  

surface antigen-2 alleles in asymptomatic malaria infections. American  

Journal of Tropical Medicine and Hygiene 52:81–88.

Nzila  AM,  Mberu  EK,  Nduati  E,  Ross  A,  Watkins  WM,  Sibley  CH,  2002.  Genetic  

diversity  of  Plasmodium  falciparum  parasites  from  Kenya  is  not  affected  by  

antifolate drug selection. International Journal of Parasitol 32: 1469–1476.

Oduola  AM,  Moyou-Somo  RS,  Kyle  DE,  Martin  SK,  Gerena  L,  Milhous  WK,  1989.  

Chloroquine  resistant  Plasmodium  falciparum  in  indigenous  residents  of  

Cameroon. Transactions of the Royal Society of Tropical Medicine and Hygiene   

83:308–310. 

Oduola AM, Omitowoju GO, Gerena L, Kyle DE, Milhous WK, Sowunmi A, Salako LA,  

1993.  Reversal  of  mefloquine  resistance  with  penfluridol  in  isolates  of  

Plasmodium  falciparum  from  south-west  Nigeria.  Transactions  of  the  Royal  

Society of Tropical Medicine and Hygiene 87: 81–83. 

Ogbonna  DN,  Sokari  TG,  and  Agomuoh  AA  (2008).  Antimalarial  activities  of  some  

selected  traditional  herbs  from  Southeastern  Nigeria  against  Plasmodium 

species. Research Journal of  Parasitology  3(1):25-31

Ogunfowokan  O,  Dankyau  M,  Madaki  AJ,  and  Thacher  TD  (2009).  Comparison  of  

Chlorproguanil-Dapsone with a Combination  of Sulfadoxine-Pyrimethamine and  

Chloroquine  in  Children  with  Malaria  in  Northcentral  Nigeria. American  

Journal of Tropical Medicine and Hygiene 80(2): 199–201.

119



Ogungbamigbe  T,  Ogunro  P,  Elemile  P,  Egbewale  B,  Olowu  O,  Abiodun  O  (2005).  

Presciption  patterns  of  antimalarial  drugs  among  medical  practitioners  in  

Osogbo Metropolis, South-West Nigeria. Trop Med Health 33: 201-208. 

Ogungbamigbe T O, Ojurongbe O, Ogunro P S, Okanlawon B M, Kolawole S O (2008). 

Chloroquine resistant Plasmodium falciparum malaria in Osogbo Nigeria: efficacy of 

amodiaquine + sulfadoxine-pyrimethamine and chloroquine + chlorpheniramine for 

treatment. Mem Inst Oswaldo Cruz, Rio de Janeiro 103(1): 79-84.

Ojo  DA  (2005).  Malaria  in  Endemic  Area  of  Ogun  State,  Nigeria:  Investigation  of  

Perceptions and  practices  among  the  residents  and  health  providers.  Pakistan  

Journal of Social Sciences 3 (4): 564- 571.

Ojurongbe O, Ogungbamigbe TO, Fagbenro-Beyioku AF, Fendel R, Kremsner PG, Kun JF  

2007.  Rapid  detection  of  Pfcrt  and Pfmdr1 mutations  in  Plasmodium falciparum 

isolates  by  FRET  and  in  vivo  response  to  chloroquine  among children  from  

Osogbo, Nigeria. Malaria Journal 6: 41. 

 Olliaro  P,  Nevill  C,  LeBras  J,  Ringwald  P,  Mussano  P,  Garner  P,  Brasseur  P  (1996).  

Systematic review of amodiaquine treatment in uncomplicated malaria. Lancet  

348:1196-1201.

 Olliaro P and Taylor W (2002). Amodiaquine for the treatment of uncomplicated falciparum  

malaria. WHO/CDS/TDR: 16-18.

Olivar M, Develoux M, Abari A C and Loutan L (1991). Presumptive diagnosis of 

malaria results in a significant risk of mistreatment of children in urban Sahel. 

Transactions of the Royal Society of Tropical Medicine & Hygiene 85:729–

730.

Otimenyin SO,  Uguru MO and  Auta A (2008). Anti-Inflammatory and Analgesic 

Activities of Cassia goratensis and Sacrocephalus esculentus Extracts.  Journal of  

Herbs, Spices & Medicinal Plants  13(2):59-67. 

Onwujekwe O, Kaur H, Dike N, Shu E, Uzochukwu B, Hanson K, Okoye V and Okonkwo P 

(2009).  Quality of anti-malarial drugs provided by public and private healthcare  

providers in south-east Nigeria. Malaria Journal 8:22. 

120

http://www.informaworld.com/smpp/title~db=all~content=g903597026
http://www.informaworld.com/smpp/title~db=all~content=t792306868~tab=issueslist~branches=13#v13
http://www.informaworld.com/smpp/title~db=all~content=t792306868
http://www.informaworld.com/smpp/title~db=all~content=t792306868


Palmer KJ, Holliday SM and Brogden RN (1999). Mefloquine: A review of its antimalarial 

activity, pharmacokinetic properties and therapeutic efficacy. Drugs 45:430–475.

Parise ME, Ayisi JG, Nahlen BL (1998). Efficacy of sulfadoxine pyrimethamine for 

prevention of placental malaria in an area of Kenya with a high prevalence of 

malaria and human immunodeficiency virus infection. American Journal of 

Tropical Medicine and Hygiene 59:813–22. 

Payne  D  (1988).  Did  medicated  salt  hasten  the  spread  of  chloroquine  resistance  in  

Plasmodium falciparum? Parasitology Today 4:112–115.

Phillips R S (2001). Current Status of Malaria and Potential for Control. Clinical 

Microbiology Reviews 14(1):208-226. 

Pickard  AL,  Wongsrichanalai  C,  Purfield  A,  Kamwendo  D,  Emery  K,  Zalewski  C,  

Kawamoto F, Miller RS and Meshnick SR (2003). Resistance to antimalarials in  

Southeast Asia and genetic polymorphisms in pfmdr1. Antimicrobial Agents and 

Chemotherapy 47:2418–2423

Pillai DR, Labbe AC, Vanisaveth V, Hongvangthong B, Pomphida S, Inkathone S, Zhong  

K,  Kain  KC  (2001).  Plasmodium  falciparum malaria  in  Laos:  chloroquine  

treatment  outcome  and  predictive  value  of  molecular  markers.  Journal  of  

Infectious Diseases 183: 789–795.

Plowe  CV,  Kublin  JG  and  Duombo  OK  (1998).  Plasmodium  falciparum  dihydrofolate  

reductase and dihydropteroate synthase mutations: epidemiology and role in  

clinical resistance to antifolates. Drug Resistance Updates 1:389–396.

Plowe  CV  (2003).  Monitoring  antimalarial  drug  resistance:  making  the  most  of  the  

tools at hand. Journal of Experimental Biology. 206:3745–3752.                    

Pradines B, Rogier C, Fusai T, Tall A, Trape JF, and Doury JC (1998). In Vitro activity  

of  artemether  against  african  isolates  (senegal)  of  plasmodium  falciparum  in  

comparison with standard antimalarial drugs. American Journal of Tropical  

Medicine and Hygiene 58(3): 354–357.

121



Price RN, Nosten F, Luxemburger C, ter Kuile FO, Paiphun L, Chongsuphajaisiddhi T and  

White NJ (1996). Effects of artemisinin derivatives on malaria transmissibility.  

Lancet 347:1654-1658.

Purfield A, Nelson A, Laoboonchai A, Congpuong K, McDaniel P, Miller RS,  Welch K,  

Wongsrichanalai  C,  and Meshnick  SR (2004). A new method  for  detection  of  

pfmdr1  mutations  in  Plasmodium  falciparum  DNA  using  real-time  PCR.  

Malaria Journal 3:9 

Rathod PK, McErlean T and Lee PC (1997). Variations in frequencies of drug resistance  

in Plasmodium falciparum. Proceedings of the National Academy of  

Sciences of the United States of America.  94:9389–9393.

Redd S C , Bloland P B,  Campbell C C, and Kazembe P N (1992). Usefulness of clinical 

case-definitions in guiding therapy for African children with malaria or pneumonia. 

Lancet 340:1140–1143.

Ridley  RG  (1997).   Plasmodium:  Drug  discovery  and  development—an  industrial  

perspective. Experimental Parasitology 87:293–304.

Rieckmann  KH,  Campbell  GH,  Sax  LJ  and  Mreme  JE  (1978).  Drug  sensitivity  of  

Plasmodium falciparum: an in-vitro microtechnique. Lancet 1: 22–23. 

Ringwald P and Basco LK (1999). Comparison of in vivo and in vitro tests of resistance  

in patients treated with chloroquine in Yaounde, Cameroon. Bulletin  of  World  

Health Organisation. 77:34–43. 

Ringwald  P,  Bickii  J  and  Basco  L  (1996).  Randomised  trial  of  pyronaridine  versus  

chloroquine  for  acute  uncomplicated  falciparum  malaria  in  Africa.  Lancet  

347:24–27. 

Ronan J, Eric L, Makhtar N, Nimol K, Pharath L, Béatrice V, Marie T E, Christiane B,  

Philippe E, Thierry F and Odile M (2005). Resistance of Plasmodium falciparum  

field isolates to in-vitro artemether and point mutations of the SERCA-type  

PfATPase6. Lancet 366: 1960–1963

Sachs J and Malaney P (2002). The economic and social burden of malaria. Nature 415(7): 

680- 685.

Salako LA (1998). An African perspective. World Health 3:24–25.

122



Segurado  AA,  di  Santi  SM  and  Shiroma  M  (1997).  In  vivo  and  in  vitro  Plasmodium  

falciparum  resistance  to  chloroquine,  amodiaquine  and quinine  in  the  Brazilian  

Amazon. Revista do Instituto de Medicina Tropical de São Paulo 39:85–90. 

Shakoor O, Taylor RB and Behrens RH (1997). Assessment of the incidence of substandard 

drugs in developing countries. Tropical Medicine and International  Health  

2:839–845.

Sidhu  AB,  Verdier-Pinard  D and  Fidock  DA (2002).   Chloroquine resistance in  P.  

falciparum malaria parasites conferred by pfcrt mutations. Science 298:210- 213. 

Singh  RK  (2000).  Emergence  of  chloroquine-resistant  vivax  malaria  in  south  Bihar  

(India).  Transactions  of  the  Royal  Society  of  Tropical  Medicine  and  Hygiene 

94:327.

Slutsker LM (1990). Mefloquine therapy for Plasmodium falciparum malaria in children 

under 5 years of age in Malawi: in vivo/in vitro efficacy and correlation of drug 

concentration with parasitological outcome. Bulletin of the World Health 

Organization 68:53–59.

Smith  T,  Schellenberg  JA  & Hayes  R  (1994).  Attributable  fraction  estimates  and  case  

definitions for malaria in endemic areas. Statistics in Medicine 13:2345–2358.

Snounou G, Zhu X, Siripoon N, Jarra W, Thaithong S, Brown K, Viriyakosol S (1999).  

Biased distribution of  msp1  and  msp2  allelic variants in  Plasmodium falciparum  

populations in Thailand.  Transactions of the Royal Society of Tropical Medicine  

and Hygiene 93: 369–374.

Snow RW, Craig M, Deichmann U and Marsh K (1999). Estimating mortality, morbidity  

and disability due to malaria among Africa’s non-pregnant population. Bulletin  of  

the World Health Organization 77:624–640. 

Snow RW, Trape J.F, Marsh K. (2001). The past, present and future of childhood malaria 

mortality in Africa. Trends in Parasitology  17: 593–97.

Sodiomon BS, Alfred BT, Adama G, Amidou D, Amidou O, Amadou TK, Jean-Rene K,  

Morgan CC, Olliaro PL and Walter RJT (2009). The efficacy and safety of a new 

fixed-dose combination of amodiaquine and artesunate in young African children  

with acute uncomplicated Plasmodium falciparum Malaria Journal 8:48 

Sofowora (1993). Medicinal  Plants and Traditional  Medicine in Africa.  2nd ed: Spectrum  

Books Ltd., Nigeria. Pp 32

123



Sowunmi A, Fehintola FA, Adedeji AA, Gbotosho GO, Falade CO, Tambo E (2004). 

Open randomized study of pyrimethaminesulphadoxine vs. pyrimethamine-

sulphadoxine plus probenecid for the treatment of uncomplicated Plasmodium 

falciparum malaria in children. Tropical Medicine and International Health 9: 

606-19.

Staedke SG, Jagannathan P, Yeka A, Bukirwa H, Banek K, Maiteki-Sebuguzi C, Clark TD, 

Nzarubara B, Njama-Meya D, Mpimbaza A et al., ( 2008) Monitoring antimalarial 

safety and tolerability in clinical trials: a case study from Uganda. Malaria Journal 7:107. 

Sucharit,  S.,  K.  Surathin,  W.  Tumrasvin,  and  P.  Sucharit.  (1977).  Chloroquine  resistant  

Plasmodium  falciparum  in  Thailand:  susceptibility  of  Anopheles.Journal  of  

Medical Association of Thailand 60:648–654.

      Suisse Zool. 101:865–874.

Takechi M, Matsuo M, Ziba C, MacHeso A, Butao D, Zungu IL, Chakanika I and Bustos MD 

(2001). Therapeutic efficacy of sulphadoxine/pyrimethamine and susceptibility  in  

vitro  of  Plasmodium falciparum  isolates to sulphadoxine-pyremethamine and other  

antimalarial drugs in Malawian children. Tropical Medicine  and  International  

Health. 6:429–434. 

Talisuna  AO,  Bloland  P  and  D'Alessandro  U  (2004).  History,  dynamics,  and  public  

health importance of malaria parasite resistance. Clinical Microbiological Reviews  

17:235–254. 

Talisuna AO, Staedke SG and D'Alessandro U (2006).  Pharmacovigilance of antimalarial  

treatment in Africa: is it possible? Malaria Journal 5:50. 

Tan  RX,  Zheng  WF  and  Tang  HQ  (1998).  Biologically  active  substances  from  the  

genus. Artemisia. Planta Medica 64: 295–302. 

Tan RX, Zheng WF, Tang HQ. Biologically active substances from the genus.  Artemisia.  

Planta Med ( 1998;) 64:: 295–302.[

 Thaithong  S  (1983).  Clones  of  different  sensitivities  in  drug  resistant  isolates  of  

Plasmodium falciparum. Bulletin of the World Health Organization 61: 709– 712.

Tharavanij  S  (1990).  New  developments  in  malaria  diagnostic  techniques.  Southeast  

Asian Journal of Tropical Medicine and Public Health 21:3–16.

124



ter Kuile F, White NJ, Holloway P et al. (1993). Plasmodium falciparum: in vitro studies of 

the pharmacodynamic properties of drugs used for the treatment of severe malaria. 

Experimental Parasitology  76:85–95. 

Trager, W and Jensen JB (1976). Human malaria parasites in continuous culture. Science 

193:673–675.

Trape JF and Rogier C (1996). Combating malaria morbidity and mortality by reducing  

transmission. Parasitology Today 12:236–240.

Tshibangu JN, Chifundera K, Kaminsky R, Wright AD and König GM (2002). Screening of 

African medicinal plants for antimalarial inhibitory activity. Journal of 

Ethnopharmacology 80: 25-35.

Trampuz A, Jereb M, Muzlovic I, Prabhu R (2003). "Clinical review: Severe malaria". 

Critical  Care 7 (4): 315–23.

Tulu AN (1996). Failure of chloroquine treatment for malaria in the highlands of Ethiopia. 

Transactions of the Royal Society of Tropical Medicine & Hygiene 90:556–557.

Uko EK, Emeribe AO and Ejezie GC (1998). Malaria Infection of the placenta and 

Neo-Natal Low Birth Weight in Calabar. Journal of Medical Laboratory Science 7: 

7-10.

van Vugt M, Brockman A, Gemperli B, Luxemburger C, Gathmann I, Royce C,

Slight T, Looareesuwan S, White NJ and Nosten FA (1998). A randomised comparison of 

artemether-benflumetol and artesunate-mefloquine in the treatment of multidrug-resistant 

falciparum malaria. Antimicrobial Agents and Chemotherapy 42:135–139.

Verdrager J (1986). Epidemiology of the emergence and spread of drug-resistant falciparum 

malaria in South-East Asia and Australasia. Journal of Tropical Medicine  &  Hygiene  

89:277–289.

Verdrager J. (1995). Localized permanent epidemics: the genesis of chloroquine resistance 

in Plasmodium falciparum. Southeast Asian Journal of Tropical Medicine  and  Public  

Health 26:23–28.

Warsame  M,  Wernsdorfer  WH,  Payne  D  and  Björkman  A  (1991).  Susceptibility  of  

Plasmodium  falciparum  in  vitro  to  chloroquine,  mefloquine,  quinine  and  

sulfadoxine/pyrimethamine in Somalia, relationships between the responses to  

125

http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=270697


the  different  drugs.  Transactions  of  the  Royal  Society  of  Tropical  Medicine  &  

Hygiene 85:565–569.

Watkins WM and Mosobo M. (1993). Treatment of Plasmodium falciparum malaria with 

pyrimethamine-sulfadoxine: selective pressure for resistance is a function of long 

elimination half-life. Transactions of the Royal Society of Tropical Medicine &  

Hygiene 87:75–78.

Wellems TE and Plowe CV (2001).  Chloroquine-resistant  malaria.  Journal  of  Infectious  

Diseases 184: 770–776.

Wernsdorfer  WH  (1991).  The  development  and  spread  of  drug  resistant  malaria.  

Parasitology Today 7:297–303.

Wernsdorfer  WH  (1999).  Epidemiology  of  drug  resistance  in  malaria.  Acta  Tropica  

56:143–156.

Wernsdorfer WH, Wernsdorfer MG (1995). The evaluation of in vitro tests for the 

assessment of drug response in Plasmodium falciparum. Mitt Oesterr Ges Trop 

Parasitol 17:221–228. 

White NJ (1997). Assessment of the pharmacodynamic properties of antimalarial drugs in  

vivo. Antimicrobial Agents and Chemotherapy 41:1413–1422.

White NJ (1999). Delaying antimalarial drug resistance with combination chemotherapy.  

Parasitologia 41:301-308.

White  NJ  (2004).  Antimalarial  drug  resistance. Journal  of  Clinical  Investigations  113:  

1084-1092. 

WHO (1972). The problem of Plasmodium falciparum drug resistance in Africa south of the 

Sahara. Bulletin of the World Health Organization  62 (Suppl.), 5562. 

WHO  (1990).  Mefloquine  therapy  for  Plasmodium  falciparum  malaria  in  children  

under 5 years of age in Malawi: in vivo/in vitro efficacy and correlation of drug  

concentration  with  parasitological  outcome.  Bulletin  of  the  World  Health  

Organization 68:53–59.

WHO  (1991).  Basic  Laboratory  Methods  in  Medical  Parasitology.  World  Health  

Organization Geneva 12.

126



WHO (1996). World malaria situation in part I. Weekly Epidemiological Record 71:17– 22.

WHO (1996a). A rapid dipstick antigen capture assay for the diagnosis of falciparum  

malaria. WHO informal consultation on recent advances in diagnostic techniques and 

vaccines for malaria. Bulletin of the World Health Organization 74:47–54. 

WHO  (1996b).  Assessment  of  therapeutic  efficacy  of  antimalarial  drugs  for  

uncomplicated  falciparum malaria  in  areas  with  intense  transmission.  

WHO/MAL/96.1077.

WHO (1997). Integrated Management of Childhood Illnesses Adaptation Guide. Part  2.  C.  

Technical basis for adapting clinical guidelines, feeding recommendations,  and  

local terms. Working Draft Version 3. Division of Child Health and Development,  

World Health Organization pp. 49–51.

WHO (1999). MMV comes of age. TDR News 60:6. 

WHO (2000).  Expert  Committee on Malaria,  20th Report,  World Health Organisation Technical  

Report Series, Geneva 892.

WHO  (2001).  WHO  recommended  strategies  for  the  prevention  and  control  of  

communicable disease. WHO/CDLS/CPE/ SMT/ 13:107-110.

W.H.O.  (2001).  Antimalarial  drug  combination  therapy:  Report  of  a  WHO  Technical  

Consultation 35. 

WHO (2001).  In vitro micro-test (Mark III) for the assessment of P. falciparum to 

chloroquine, mefloquine, quinine, amodiaquine, sulfadoxine/pyrimethamine and 

artemisinin. CTD/MAL/9720 Rev 2. Geneva, Switzerland.

WHO (2003). Monitoring antimalarial drug resistance: a report of a consultation. 

WHO/CDS/CSR/EPH/2002.17. WHO/CDS/RBM/2002.39. Geneva, Switzerland.

WHO (2003). Global defense against the infectious disease threat. WHO/CDS/2003/15.  

18:178-181.

Wilkinson  RN,  Noeypatimanondh  S  and  Gould  DJ  (1976).  Infectivity  of  falciparum  

malaria patients for anopheline mosquitoes before and after chloroquine treatment  

Transactions of the Royal Society of Tropical Medicine & Hygiene 70:306–307.

Willcox  M, Gamaniel  SK, Matsabisa  MG, Randriasamimanana  JR,  Wambebe  CON and  

Rasoanaivo P (2003). Guidelines for the pre-clinical  evaluation of the safety of  

traditional herbal antimalarials. In: Willcox, M.L., Bodeker, G., Rasoanaivo, P (Eds.) 

Traditional Medicine, Medicinal Plants and Malaria. London: Taylor and Francis.

127



 Winstanley  P,  Edwards  G,  Orme  M  and  Breckenridge  A  (1987).  The  disposition  of  

amodiaquine  in  man  after  oral  administration.  British  Journal  of  Clinical  

Pharmacology 23:1-7. 

Wolday  D, Kibreab  T,  Bukenya  D  and  Hodes  R  (1995).  Sensitivity  of  Plasmodium  

falciparum  in  vivo  to  chloroquine  and  pyrimethamine  sulfadoxine  in  Rwandan  

patients in a refugee camp in Zaire.  Transactions of the Royal Society of Tropical  

Medicine & Hygiene 89:654–656.

Wongsrichanalai  C,  Pickard  AL,  Wernsdorfer  WH  and  Meshnick  SR  (2002).  

Epidemiology of drug-resistant malaria. Lancet 2:209–218. 

Wootton JC, Feng X, Ferdig MT, Cooper RA, Mu J, Baruch DI, Magill AJ, Su XZ, 2002.  

Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum.  

Nature 418:320–323. 

Yeka A, Dorsey G, Kamya MR, Talisuna A, Lugemwa M, Rwakimari  JB, Staedke SG,  

Rosenthal  PJ,  Wabwire-Mangen  F  and  Bukirwa  H  (2008).  Artemether-

lumefantrine versus dihydroartemisinin-piperaquine for treating uncomplicated  

malaria: a randomized trial to guide policy in Uganda. PLoS ONE  3:2390.

Zhang G, Guan Y, Zheng B, Wu S and Tang L (2008). No PfATPaseS769N mutation 

found in Plasmodium falciparum isolates from China. Malaria Journal 7:122.

Zwetyenga J, Rogier C, Tall A, Fontenille D, Snounou G, Trape JF, Mercereau-Puijalon O 

(1998). No influence of age on infection complexity and allelic distribution in P. 

falciparum infections in Ndiop, a Senegalese village with seasonal mesoendemic 

malaria. American Journal of Tropical Medicine and Hygiene 59:726-735.

APPENDICES

APPENDIX I

Preparation of Culture Medium (Stock)

One packet of RPMI which contains 25mM of HEPES buffer was dissolved in 960ml of triple 

distilled water. 2gm of glucose was added and dissolved. 40µg/ml of Gentamycin Sulphate 
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was added to  prevent  contamination.  The solution  was sterilized  by passing  it  through a 

Millipore filter of 0.22µm porousity and was stored at 40C as 96ml aliquots in glass media 

bottles.

 Preparation of 5% Sodium Bicarbonate 

5gm of Sodium bicarbonate was dissolved in 100ml of double distilled water. The solution 

was filtered through a Millipore filter of 0.22µm porosity and stored at 40C

 Preparation of Incomplete Culture Medium (washing medium)

4.0 ml of 5% Sodium Bicarbonate was added to 96ml of stock RPMI 1640. This was prepared 

fresh when needed.

3.8.5 Preparation of Complete Culture Medium

To prepare 100ml of the medium, 90ml of RPMI 1640 solution containing 5% NaHCO3 was 

mixed with 10ml of human serum. The medium was then stored at 4oC. Complete culture 

medium  is  a  3:1  mix  (vol/vol)  of  RPMI  1640  medium  containing  4-  (2-hydroxyethyl) 

-piperazine-ethanesulfonic  acid  i.e.  HEPES (25 mM),  NaHCO3 (25 mM),  and Waymouth 

medium  (Flow  Laboratories,  Irvine,  United  Kingdom)  supplemented  with  12%  (vol/vol) 

human type AB Rhesus negative serum and hypoxanthine (10 μg/liter).

Preparation of Giemsa Stain

To prepare 400ml of Giemsa stain, 3g of Giemsa powder was dissolved in 200ml of glycerol. 

200ml of methanol was added. The solution was be incubated in water bath for two hours 

with gradual shaking at five minutes interval (Cheesebrough, 2001).

APPENDIX II

Questionnaire

A survey of the predisposing factors to the development of antimalarial 
drug resistance in Plasmodium falciparum in South Western Nigeria
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1. Residential area:   Town/City/Village …………………..
2. Sex M �       F �

3. Age 18 – 25 �   26 – 35   �   36 – 45 �   45 and above   �   

4. Educational Background:
Non formal  �  Quranic  �  Primary �  Secondary �              Post 
Secondary �

5. Main Occupation:
Teaching  �  Trading  �   Student   �   Artisan  �   Housewife  �  
Farming   �    Civil Servant �     Others  �   Specify

History of malaria disease/infection and management: 
6. How often do you have malaria – 

Once in a month �     once in three months  �     
Once a year�     Twice a year �     Others �    Specify

8.  Where  do  you  seek  Medical  advice  when  you  experience  symptoms  of 
malaria?
From: Doctors/Hospitals�    Nurse/midwife�    Pharmacists�    Chemists  �     Self 
medication �   others�  List them

9. Thick appropriately, any antimalarial drug that you have used before 
     Chloroquine   �   Amodiaquine    �    Quinine     �      Fansider �     Maloxine�

Amalar �   Malamox �   Halfan  �    Lornart �    Alaxin    �   Artesunate �  
Artemether �    arteplus�     others  �   specify 

10. Which of the above drugs do you take frequently       (mention)
……………………………… …………………………………….. 
…………………………

11. Do you take these drugs based on doctors’ prescription?  
Yes �       No �

12. If yes do you take the full regimen as directed by the doctor?
 Yes�      No.�
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13. When do you stop medication?
a) When I feel okay
b) When I complete dosage
c) Anytime I like
d) When I finish what my money can buy
e) Others (specify)

14. What factors influence you to stop the medication?
a) Price of drugs
b) Dislike for drugs
c) Fear of overdose once the fever is down
d) When I feel cured
e) Personal/religious beliefs
f) Others (specify)

15. Do you take all drugs prescribed by the doctor?
Yes�     No�    All drugs except the vitamins�

Just the ones I feel are important�
16. Do you belief there is a need for Doctors’ prescription?  

Yes�     No�  
17. Do you take antibiotics in combination with above antimalarial drugs? Yes�  
No �

18. Which antibiotics do you take in combination with antimalarial drugs? 
(Mention)………………………

19. Do you follow doctors’ prescription strictly?    Yes �       No �
20. Do you take any local herbal preparation to cure malaria?  Yes  �   No �

Mention the local name of the herb………………..
21. Do you get a medical Laboratory diagnosis before administration of    drugs?

Yes �       No�       Sometimes�

22. Do you take antimalarial drugs as prophylaxis/preventive against malaria? 
Yes�    No� If yes, mention the drugs you take to prevent 

malaria…………………

23. How effective is the antimalarial drug you commonly use in case of malaria
Highly ineffective 1 2 3 4 5 extremely effective (circle as appropriate)
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24. Which of these do you consider most effective for the cure of malaria?
� Local herbal preparation   � Doctors’ prescribed drugs
� Traditional healers             � others (specify)

25. Which method do you use to prevent mosquito bite/transmission of malaria 
infection?

� Window/door nets               � Insecticide treated bed nets 
� Insecticide spray (specify)    � Mosquito repellent creams    � mosquito 
coils    � others (specify)

APPENDIX III
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ASSENT FORM

 Title of study:                                               
IN-VITRO AND MOLECULAR STUDIES ON THE RESISTANCE OF P. 

falciparum TO ANTIMALARIAL DRUGS IN OGUN STATE, SOUTHWESTERN 

NIGERIA

  
Date

Dear participant,

This is to seek your assent despite the explanation given to you and your parent/guardian on 

the above project.  You are free to  decline to participate  even if  your parent/guardian has 

agreed on your behalf. If you agree that your blood be taken for the tests required in the study 

Please signify by nodding your head.

HEAD NODDED……………………………………..

HEAD NOT NODDED…………………………………….

Witness;

Signature……………………………………………….

Thank you,

Olasehinde, Grace I.
Principal investigator 

APPENDIX IV

CONSENT FORM
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IN-VITRO AND MOLECULAR STUDIES ON THE RESISTANCE OF P. 

falciparum TO ANTIMALARIAL DRUGS IN OGUN STATE, SOUTHWESTERN 

NIGERIA

   Date

Dear participant,
You  are  invited  to  participate  in  the  above  research  study,  which  has  been  designed  to 
determine the incidence of malaria,  the resistance patterns of the malaria  parasite and the 
possible factors that may contribute to the development of resistance to antimalarial drugs by 
the parasites in South Western Nigeria
You will  be  subjected  to  malaria  screening  test  which  requires  2mls  of  blood  from you 
through venepuncure; this same blood will be processed to get the DNA there from. The DNA 
will  be  screened  for  novel  resistance  genes  using  molecular  methods.  You  will  also  be 
required to complete a questionnaire and it will take you about 10minutes.
The information generated from this survey will  be of direct benefit  to you as it  aims at 
prevent incessant use of drugs, and will probably contribute to general knowledge on how to 
proffer public health intervention that will help control malaria in this part of the country.
Meanwhile, the study will not disclose any confidential information pertaining to you but the 
information generated can be used for public health intervention as regards the disease in 
south western Nigeria.
Your decision to participate is voluntary. You are free to decline to participate in this study, or 
to withdraw your information, at any time.
Before  you  complete  the  questionnaire  or  decide  to  participate  in  this  study,  please  ask 
questions  on any aspect  of the study that  is  not clear  to you. If  you have any additional 
questions later, you can contact Olasehinde Grace on 08055439005.
Address :

Mrs. Grace Olasehinde
Department of Biological Sciences
College of Science and Technology
Covenant University
P.M.B. 1023,Ota
Ogun State, Nigeria

            e-mail; golasehinde@yahoo.com

………………………………..                                                       ……………………..

       Signature of participant    Date 
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Fig 4.1. Parasitaemia Rate by Age
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Fig 4.2. Percentage Incidence of P. falciparum Infection in Ogun State
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Bednets, ITN (18.0%)

Insecticides (24.0%)

Mosquito repellent cream
(2.7%)

Window/door nets
(42.3%)

None (13%)

Mosquito – bite preventive methods employed by respondents.
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	 Erythrocytic Stage
	After release from the hepatocytes, the merozoites enter the bloodstream prior to infecting red blood cells. At this point, the merozoites are roughly 1.5μm in length and 1 μm in diameter, and use the apicomplexan invasion organelles (apical complex, pellicle and surface coat) to recognize and enter the host erythrocyte (Bruce Chwatt  1985).The parasite first binds to the erythrocyte in a random orientation. It then reorients such that the apical complex is in proximity to the erythrocyte membrane. A tight junction is formed between the parasite and erythrocyte. As it enters the red blood cell, the parasite forms a parasitophorous vesicle, to allow for its development inside the erythrocyte (Gilles et al., 1993). 
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