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Abstract 

  
This study is devoted to investigate the radiation and viscous dissipation effects on the laminar boundary layer 

about a flat-plate in a uniform stream of fluid (Blasius flow), and about a moving plate in a quiescent ambient 

fluid (Sakiadis flow) both under a convective surface boundary condition. Using a similarity variable, the 

governing nonlinear partial differential equations have been transformed into a set of coupled nonlinear 

ordinary differential equations, which are solved numerically by using shooting technique along side with the 

sixth order of Runge-Kutta integration scheme and the variations of dimensionless surface temperature and 

fluid-solid interface characteristics for different values of Prandtl number Pr, radiation parameter NR, 

parameter a and the Eckert number Ec, which characterizes our convection processes are graphed and 

tabulated. Quite different and interesting behaviours were encountered for Blasius flow compared with a 

Sakiadis flow. A comparison with previously published results on special cases of the problem shows excellent 

agreement. 

 

 Keywords: Heat transfer; Blasius/Sakiadis flows; Thermal radiation; Eckert number; 
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1.  Introduction 

 
Investigations of boundary layer flow and heat transfer of viscous fluids over a flat sheet are important 

in many manufacturing processes, such as polymer extrusion, drawing of copper wires, continuous 

stretching of plastic films and artificial fibers, hot rolling, wire drawing, glass-fiber, metal extrusion, 

and metal spinning. Among these studies, Sakiadis [1] initiated the study of the boundary layer flow 

over a stretched surface moving with a constant velocity and formulated a boundary-layer equation for 

two-dimensional and axisymmetric flows. Tsou et al. [2] analyzed the effect of heat transfer in the 

boundary layer on a continuous moving surface with a constant velocity and experimentally confirmed 

the numerical results of Sakiadis [1]. Erickson et al. [3] extended the work of Sakiadis [1] to include 

blowing or suction at the stretched sheet surface on a continuous solid surface under constant speed 

and investigated its effects on the heat and mass transfer in the boundary layer. The related problems of 

a stretched sheet with a linear velocity and different thermal boundary conditions in Newtonian fluids 

have been studied, theoretically, numerically and experimentally, by many researchers, such as Crane 

[4], Fang [5-8], Fang and Lee [9]. The classical problem (i.e., fluid flow along a horizontal, stationary 

surface located in a uniform free stream) was solved for the first time in 1908 by Blasius [10]; it is still 

a subject of current research [11,12] and, moreover, further study regarding this subject can be seen in 

most recent papers [13,14]. Recently, Aziz [15], investigated a similarity solution for laminar thermal 

boundary layer over a flat plate with a convective surface boundary condition. Very more recently, 

Makinde & Olanrewaju [16] studied the effects of thermal buoyancy on the laminar boundary layer 

about a vertical plate in a uniform stream of fluid under a convective surface boundary condition. 
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Olanrewaju & Makinde [17] presented the combined effects of internal heat generation and buoyancy 

force on boundary layer over a vertical plate with a convective surface boundary condition.  

On the other hand, convective heat transfer with radiation studies are very important in process 

involving high temperatures such as gas turbines, nuclear power plants, thermal energy storage, etc. In 

light of these various applications, Hossain & Takhar [18] studied the effect of thermal radiation using 

Rosseland diffusion approximation on mixed convection along a vertical plate with uniform free 

stream velocity and surface temperature. Furthermore, Hossain et al. [19,20] have studied the thermal 

radiation of a gray fluid which is emitting and absorbing radiation in a non-scattering medium. 

Moreover, Bataller [21] presented a numerical solution for the combined effects of thermal radiation 

and convective surface heat transfer on the laminar boundary layer about a flat-plate in a uniform 

stream of fluid (Blasius flow), and about a moving plate in a quiescent ambient fluid (Sakiadis flow). 

This study is an extension of those analyses. It is aimed at analysing the effect of viscous Eckert 

number Ec, radiation parameter NR on both Blasius and Sakiadis thermal boundary layers over a 

horizontal plate with a convective boundary condition. This boundary condition scarcely appears in the 

pertinent literature. Sajid and Hayat [22] examined the influence of thermal radiation on the boundary 

layer flow due to an exponentially stretching sheet. The most recent attempt for the Blasius and 

Sakiadis flows but without viscous dissipation term has been developed by Bataller [21] whose results 

we used for comparison including Aziz [15] and Makinde & Olanrewaju [16] which discussed Blasius 

flow. Interaction of thermal radiation and Eckert number with wall convection is included. Our results 

have been displayed for range of given parameters. Makinde and Maserumule [23] examined the 

inherent irreversibility and thermal stability for steady flow of variable viscosity liquid film in a 

cylindrical pipe with convective cooling at the surface. Makinde [24] investigated the similarity of 

hydromagnetic heat and mass transfer over a vertical plate with a convective surface boundary 

condition. Similarly, Makinde and Aziz [25] studied the MHD mixed convection from a vertical plate 

embedded in a porous medium with a convective boundary condition. Makinde [26] examined the 

MHD heat and mass transfer over a moving vertical plate with a convective surface boundary 

condition. 

The aim of the present paper is to report the effects of thermal radiation and Eckert number as well as 

Prandtl number Pr and convective parameter a on both Blasius and Sakiadis thermal boundary layers 

under a convective boundary condition. 

2. Problems formulation 

 

Taking into account the viscous dissipation and the thermal radiation terms in the energy equation, the 

governing equations of motion and heat transfer for the classical Blasius flat-plate flow problem can be 

summarized by the following boundary value problem [15-16,21] 
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  The boundary conditions for the velocity field are: 
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for the Blasius flat-plate flow problem, and  
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for the classical Sakiadis flat-plate flow problem, respectively. 

The boundary conditions at the plate surface and far into the cold fluid may be written as 
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      (6)  

Here u and v are the velocity components along the flow direction (x-direction) and normal to flow 

direction (y-direction),   is the kinematic viscosity, k is the thermal conductivity, cp is the specific 

heat of the fluid at constant pressure,  is the density, g is the acceleration due to gravity,   is the 

dynamic viscosity, qr is the radiative heat flux in the y-direction, T is the temperature of the fluid inside 

the thermal boundary layer, U is a constant free stream velocity and wU is the plate velocity. It is 

assumed that the physical properties of the fluid are constant, and the Boussinesq and boundary layer 

approximation may be adopted for steady laminar flow. The fluid is considered to be gray; absorbing-

emitting radiation but non-scattering medium. 

The radiative heat flux qr is described by Roseland approximation such that  

,
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qr
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         (7) 

where Kand *  are the Stefan-Boltzmann constant and the mean absorption coefficient, 

respectively. Following Bataller [21], we assume that the temperature differences within the flow are 

sufficiently small so that the T4 can be expressed as a linear function after using Taylor series to 

expand T4 about the free stream temperature T and neglecting higher-order terms. This result is the 

following approximation: 

.34 434

  TTTT          (8) 

Using (7) and (8) in (3), we obtain 
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In view of eqs. (9) and (8), eq. (3) reduces to  
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where 

pc

k


   is the thermal diffusivity. 

From the equation above, it is clearly seen that the influence of radiation is to enhance the thermal 

diffusivity. If we take 
3*4 




T

Kk
NR


 as the radiation parameter, (10) becomes  
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It is worth citing here that the classical solution for energy equation, eq. (11), 

without thermal radiation and viscous dissipation influences can be obtained from the above equation 

which reduces to ,
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We introduce a similarity variable η and a dimensionless stream function f(η) as  
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where prime denotes differentiation with respect to η and Rex is the local Reynolds number  

(
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 ), we obtain by deriving eq. (12) 
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And the equation of continuity is satisfied identically. 
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Nothing that in eqs. (12)-(14) UU represents Blasius flow, whereas wUU  indicates Sakiadis 

flow, respectively. We also assume the bottom surface of the plate is heated by convection from a hot 

fluid at uniform temperature Tf which provides a heat transfer coefficient hf. 

Defining the non-dimensional temperature )( and the Prandtl number Pr as  
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We substitute eqs. (12)-(14) into eqs. (2) and (11) we have: 
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Where Ec is the Eckert number. When k0 = 1 and Ec = 0, the thermal radiation and the viscous 

dissipation effects are not considered. 

The transformed boundary conditions are: 
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for the Blasius flow, and  
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for the Sakiadis case, respectively. Where 
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For the momentum and energy equations to have a similarity solution, the parameters a must be 

constants and not functions of x as in eq. (20). This condition can be met if the heat transfer coefficient 

hf is proportional to x-1/2.  

We therefore assume  

.21cxh f           (21) 

Where c is constant. Putting eq. (21) into eq. (20), we have  
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Here, a is defined by eq. (23), the solutions of eqs. (16)-(19) yield the similarity solutions, however, the 

solutions generated are the local similarity solutions whenever a is defined as in eq. (20). 

3. Numerical procedure 

The coupled nonlinear eqs. (16) and (17) with the boundary conditions in eqs. (18) and (19) are solved 

numerically using the sixth-order Runge-Kutta method with a shooting integration scheme and 

implemented on Maple [27]. The step size 0.001 is used to obtain the numerical solution with seven-

decimal place accuracy as the criterion of convergence. 

 

4. Results and discussion 

Numerical computations have been carried out for different embedded parameters coming into the flow 

model controlling the fluid dynamics in the flow regime. The Prandtl number used are 0.72, 1, 3, 5, 

7.1, 10 and 100; the convective parameters a used are 0.1, 0.5, 1.0, 5.0, 10, and 20; the radiation 

parameters NR used are 0.7, 5.0, 10, and 100; and Eckert number(Ec) used are Ec > 0. Comparisons of 

the present results with previously works are performed and excellent agreements have been obtained. 

We obtained the results as shown in Tables 1 - 4 and figures 1-8 below.  

Table 1 shows the comparison of Aziz [15] and Makinde and Olanrewaju [16] (in the absent of 

radiation and viscous dissipation parameters) work with the present work for Prandtl numbers (Pr = 

0.72, and 10) and it is noteworthy to mention that there is a perfect agreement in the absence of 
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radiation parameter and the viscous dissipation term. Table 2 shows the comparison of Bataller [21] 

work for Blasius and Sakiadis flows for Prandtl numbers (Pr = 0.72, 1.0, 5.0, 10 and 100) and radiation 

parameter (NR = 0.7, 5.0, 10 and 100) and it is noteworthy to mention that there is a perfect agreement 

in the absence of viscous dissipation parameter. Accurately, the results at a = 0.5, Pr = 5 and NR = 0.7 

for the missed plate temperature θ(0) values were numerically obtained as θ(0) = 0.55489763 for 

Blasius flow, and θ(0) = 0.44474556 for Sakiadis flow, respectively (see table 2). In table 3, we show 

the influence of the embedded flow parameters on the temperature at the wall plate for the Blasius and 

Sakiadis flow. It is clearly seen that when Biot number a increases the wall temperature for Blasius and 

Sakiadis flow increases while increase in Prandtl number Pr, radiation parameter NR, and Eckert 

number Ec decreases the wall temperature for both Blasius and Sakiadis flow. Table 3 shows the 

influence of the flow parameters on the Nusselt number and the Skin friction for Blasius flow. Increase 

in the convective parameter a, Prandtl number Pr, thermal radiation parameter NR, and the Eckert 

number Ec bring an increase in the Nusselt number. Skin friction increases with an increase in the 

convective parameter and the Eckert number while increase in the Prandtl number and the radiation 

parameter decreases the Skin friction at the wall plate. In table 4, we show the effect of flow embedded 

parameters on the Nusselt number and the Skin friction for Sakiadis flow. Increase in all the flow 

parameters brings an increase in the Nusselt number and also in the Skin friction except the Eckert 

number. 

 

 

 

Table 1: Values of Blasius)0( for different values of a without thermal radiation and viscous 

dissipation term. Parenthesis indicates results from Ref. [15,16]. 

a Pr = 0.72 Pr = 10 Pr = 0.1 

0.05 0.14466116 (0.1447) 0.06425568 (0.0643) 0.25357322(0.2536) 

0.20 0.40352252 (0.4035) 0.21548442 (0.2155) 0.57606722(0.5761) 

0.60 0.66991555 (0.6699) 0.45175915 (0.4518) 0.80301752(0.8030) 

1.00 0.77182214 (0.7718) 0.57865638 (0.5787) 0.87170149(0.8717) 

10.0 0.97128537 (0.9713) 0.93212791 (0.9321) 0.98549531(0.9855) 

20.0 0.98543355 (0.9854) 0.96487184 (0.9649) 0.99269468(0.9927) 

 

 

Table 2: Values of Blasius)0( and Sakiadis)0( for different values of a, Pr, and NR in the absent of 

viscous dissipation parameter. Parenthesis indicates results from Ref. [21]. 

a Pr NR 
Blasius)0(  Sakiadis)0(  

0.1 5 0.7 0.19957406 (0.1996265) 0.13807609 (0.1380922) 

0.5 5 0.7 0.55489763 (0.5548979) 0.44474556 (0.4447517) 

1.0 5 0.7 0.71374169 (0.7137422) 0.61567320 (0.6156583) 

10 5 0.7 0.96143981 (0.9614407) 0.94124394 (0.9412387) 

20 5 0.7 0.98034087 (0.9803475) 0.96973278 (0.9697438) 

1 0.7

2 

0.7 0.83312107 (0.8334487) 0.84297896 (0.8623452) 

1 1.0 0.7 0.81555469 (0.8156143) 0.81785952 (0.8281158) 
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1 5 0.7 0.71374169 (0.7137422) 0.61567320 (0.6156583) 

1 10 0.7 0.66301284 (0.6630187) 0.51639994 (0.5163969) 

1 100 0.7 0.47592614 (0.4759402) 0.23747971 (0.2374795) 

5 5 0.7 0.92574298 (0.9257453) 0.88900927 (0.8890038) 

5 5 5 0.90376783 (0.9037694) 0.83172654 (0.8317292) 

5 5 10 0.90044458 (0.9004477) 0.82284675 (0.8228368) 

5 5 100 0.89700322 (0.8970060) 0.81361511 (0.8136082) 

 

 

Table 3: Values of BlasiusBlasiusBlasius andf )0()0(,)0(   for several values of the parameters 

entering the problem. 

a Pr NR Ec 
Blasius)0(  Blasius)0(  Blasiusf )0(  

0.1 5 0.7 2 0.19753138 0.08024686 0.35549045 

0.5 5 0.7 2 0.54658747 0.22670626 0.39549180 

1.0 5 0.7 2 0.70501920 0.29498079 0.41312720 

10 5 0.7 2 0.95932704 0.40672956 0.44083687 

20 5 0.7 2 0.97922106 0.41557870 0.44297550 

1 0.72 0.7 2 0.82436476 0.17563523 0.47982849 

1 1.0 0.7 2 0.80642320 0.19357679 0.46710681 

1 5 0.7 2 0.70501920 0.29498079 0.41312720 

1 10 0.7 2 0.65528104 0.34471895 0.39495048 

1 100 0.7 2 0.47246774 0.52753225 0.35527077 

5 5 0.7 2 0.92196930 0.39015346 0.43680984 

5 5 5 2 0.89982474 0.50087626 0.41431353 

5 5 10 2 0.89649412 0.51752937 0.41156519 

5 5 100 2 0.89304899 0.53475500 0.40886337 

5 5 0.7 5 0.91891118 0.40544409 0.53184089 

5 5 0.7 10 0.91631148 0.41844259 0.62020358 

5 5 0.7 20 0.91403503 0.42982480 0.70358410 

 

 

Table 4: Values of SakiadisSakiadisSakiadis andf )0()0(,)0(   for several values of the parameters 

entering the problem. 

a Pr NR Ec 
Sakiadis)0(  Sakiadis)0(

 

Sakiadisf )0(

 

0.1 5 0.7 2 0.13775550 0.08622444 0.43350645 

0.5 5 0.7 2 0.44265532 0.27867233 0.41073121 

1.0 5 0.7 2 0.61292892 0.38707107 0.39814732 

10 5 0.7 2 0.94027601 0.59723989 0.37420826 

20 5 0.7 2 0.96920391 0.61592164 0.37210806 

1 0.72 0.7 2 0.83116411 0.16883588 0.30704987 

1 1.0 0.7 2 0.80572810 0.19427189 0.32277934 

1 5 0.7 2 0.61292892 0.38707107 0.39814732 

1 10 0.7 2 0.51532923 0.48467076 0.41618829 

1 100 0.7 2 0.23744803 0.76255196 0.43957601 

5 5 0.7 2 0.88737565 0.56312172 0.37805517 

5 5 5 2 0.83090242 0.84548788 0.40210478 

5 5 10 2 0.82209565 0.88952171 0.40463142 

5 5 100 2 0.81293145 0.93534270 0.40703672 

5 5 0.7 5 0.88591024 0.57044879 0.31474240 

5 5 0.7 10 0.88457452 0.57712737 0.25349452 

5 5 0.7 20 0.88334270 0.58328646 0.19398242 
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Temperature profiles 

The influences of various embedded parameters on the fluid temperature are illustrated in Figs. 1 to 8.  

Fig. 1 depicts the effect of Eckert number on the temperature profile for Blasius flow and it is seen that 

increase in the Eckert number increases the thermal boundary layer thickness across the plate. We can 

see also that the same effect was seen for Sakiadis flow (see fig. 5). Fig. 2 depicts the curve of 

temperature against spanwise coordinate η for various values of convective parameter a. It is clearly 

seen that increases in the convective parameter decreases the temperature profile and thereby reduce 

the thermal boundary layer thickness. Similar effect was seen also in fig. 6 for Sakiadis flow. It is 

interesting to note that at a≥ 10 the temperature remain the same meaning that it has reach a steady 

state. Fig. 3 also represents the curve of temperature against Spanwise coordinate η for various values 

of Prandtl number. Increase in Prandtl number leads to an increase in the temperature profile until η = 

2.3 and θ = 0.8 before obeying literature. It is also interesting to note that the same effect was 

experienced in fig. 7. This could be caused by the flow governing parameters. At high Prandtl fluid has 

low velocity, which in turn also implies that at lower fluid velocity the specie diffusion is 

comparatively lower and hence higher specie concentration is observed at high Prandtl number.  

Fig. 4 depicts the effect of radiation parameter on the temperature profile for Sakiadis flow and it is 

seen that increase in the radiation parameter decreases the thermal boundary layer thickness across the 

plate confirming the existing literature. The same effect was observed for in fig. 8. We can see also that 

the same effect was seen for Sakiadis flow. 

 

Figure 1: Temperature profiles of                    Ec = 1, ooooo Ec = 2, ****** Ec = 3, ++++++ Ec = 4 for 

embedded parameter Pr = 0.72, a = 0.1, NR = 0.7 (Blasius flow) 
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Figure 2: Temperature profiles of                     a = 0.1, ooooo a = 1, ****** a = 10, ++++++ a = 20 for 

embedded parameter Pr = 0.72, a = 0.1, NR = 0.7 ( Blasius flow) 

 

Figure 3: Temperature profiles of                    Pr = 0.72, ooooo Pr = 1, ****** Pr = 3, ++++++ Pr = 7.1 

for embedded parameter Pr = 0.72, a = 0.1, NR = 0.7 ( Blasius flow) 
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Figure 4: Temperature profiles of                    NR = 0.7, ooooo NR = 2, ****** NR = 10, ++++++ NR 

= 30 for embedded parameter Pr = 0.72, a = 0.1, NR = 0.7 ( Blasius flow) 

 

 

Figure 5: Temperature profiles of                    Ec = 1, ooooo Ec = 2, ****** Ec = 3, ++++++ Ec = 4 for 

embedded parameter Pr = 0.72, a = 0.1, NR = 0.7 (Sakiadis flow) 
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Figure 6: Temperature profiles of                    a = 0.1, ooooo a = 1, ****** a = 10, ++++++ a = 20 for 

embedded parameter Pr = 0.72, a = 0.1, NR = 0.7 (Sakiadis flow) 

 

Figure 7: Temperature profiles of                    Pr = 0.72, ooooo Pr = 1, ****** Pr = 3, ++++++ Pr = 7.1 

for embedded parameter Pr = 0.72, a = 0.1, NR = 0.7 (Sakiadis flow) 
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Figure 8: Temperature profiles of                    NR = 0.7, ooooo NR = 2, ****** NR = 10, ++++++ NR 

= 30 for embedded parameter Pr = 0.72, a = 0.1, NR = 0.7 (Sakiadis flow) 

 

5. Conclusions 

In this article an IVP procedure is employed to give numerical solutions of the Blasius and Sakiadis 

momentum, thermal boundary layer over a horizontal flat plate and heat transfer in the presence of 

thermal radiation and the viscous dissipation parameters under a convective surface boundary 

condition. The lower boundary of the plate is at a constant temperature Tf whereas the upper boundary 

of the surface is maintained at a constant temperature Tw. It is also noted that the temperature of the 

free stream is assumed as T and also we have Tf > Tw > T . Where Tw is the temperature at the wall 

surface. The transformed partial differential equations together with the boundary conditions are solved 

numerically by a shooting integration technique alongside with 6th order Runge-Kutta method for better 

accuracy. Comparisons have been analyzed and the numerical results are listed and graphed. The 

combined effects of increasing the Eckert number, the Prandtl number and the radiation parameter tend 

to reduce the thermal boundary layer thickness along the plate which as a result yields a reduction in 

the fluid temperature. On the contrary, the values of θ(0)Blasius and θ(0)Sakiadis increase with increasing a 

and decreases with increasing Ec. In general, the Blasius flow gives a thicker thermal boundary layer 

compared with the Sakiadis flow, but this trend can be reversed at low values of embedded parameters 

controlling the flow model. Finally, in the limiting cases, )1.,.( 0  keiNR the thermal radiation 

influence can be neglected. 
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