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ABSTRACT 

This study is devoted to investigate the analysis of thermal explosion of a strong exothermic 
chemical reaction with variable pre-exponential factor in a spherical vessel. The steady state 
solutions for strong exothermic decomposition of a combustible material uniformly distributed in a 
heated spherical vessel under Bimolecular, Arrhenius and Sensitised reaction rates. Analytical 
solutions are constructed for the governing nonlinear boundary-value problem using perturbation 
technique together with a special type of Hermite-Padé approximants and important properties of 
the temperature field including bifurcations and thermal criticality are discussed. 
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INTRODUCTION 

The thermal explosion theory is the spontaneous 
explosion due to internal heating in combustible 
materials such as industrial waste fuel, coal, hay, 
wool wastes and so on. Infact, the problem of 
evaluation of critical regimes thought of as regimes 
separating the regions of explosive and non 
explosive ways of chemical reactions are the main 
mathematical problem of the thermal explosion 
theory (see [1-3]). The analyses of these problems 
have been performed based on close-form, 
approximation and phase-plane methods and 
numerical techniques using computational fluid 
dynamics packages. Okoya [4] investigated reactive-
diffusive equation with variable pre-exponential 
factor, taking the diffusion of the reactant in a slab 
into account. He presented a new analytical solution 
for the Frank Kamenetskii parameter δ in the special 
case corresponding to the Sensitised reaction. 
Makinde [5], examined steady state solutions for the 
strongly exothermic decomposition of a combustible 
material uniformly distributed in a heated cylindrical 
pipe under Bimolecular, Arrhenius and Sensitised 
reaction rates, neglecting the consumption of the 
material. Recently, Adegbie and Alao [6], studied 
thermal explosion of sensitised reaction with variable 
heat loss in a slab. To the best of authors’ 
knowledge, the temperature field effect of the thermal 
stability of combustible material in a spherical vessel 
has not been investigated theoretically. This 
particular problem is extremely useful in handling and 
transporting explosive materials in engineering and 
petrochemical industries.  

This present work extends the theoretical study of 
Makinde [5] to thermal explosion of a strong 
exothermic chemical reaction in a spherical vessel 
which makes Makinde [5] a special type of ours. In 
the following section, the problem is formulated, 
analysed and discussed.  

Mathematical Analysis:  It is assumed that the 
combustible material inside the cylindrical vessel is 
subject to a steady state one step exothermic 
chemical reaction with possibility of variable heat loss 
to the surrounding. The equation of the heat balance 
in the original variables in which heat exchange 
between the reacting material and the spherical vesel 
walls together with the boundary conditions can be 
written as [3] 
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where T is the absolute temperature, T0 the wall 
temperature, k the thermal conductivity of the 
material, Q the heat of reaction, A the rate constant, 
E the activation energy, R the universal gas constant, 
C0 the initial concentration of the reactant species, h 
the Planck’s number, K the Boltzmann’s constant, v 
vibration frequency, a the pipe radius, r  the radial 
distance measured normal direction, z the pipe axial 
distance, α the convection coefficient, A and V the 
surface area and volume of the cylindrical pipe and m 
is the numerical exponent such that m ={-2, 0, ½}  
represent numerical exponent for Sensitised, 
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Arrhenius and Bimolecular kinetics respectively (see 
[7]). We introduce the following dimensionless 
variables into Eqs. (2.1)- (2.2)  
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and obtaining the dimensionless governing equation 
together with the corresponding boundary conditions 
as 
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where λ, ε, δ represents the Frank Kamenetskii, 
activation energy and heat loss parameters 
respectively.  In the following section, Eqs. (2.4) and 
(2.5) are solved using both perturbation and 
multivariate series summation techniques (see [8-
10]). 

Method of Solution: To solve Eqs. (2.4) and (2.5), it 
is convenience to take a power series expansion in 
the Frank Kamenetskii parameter λ, i.e. 

∑
∞

=

=
0i

i
iλθθ .   (3.1) 

Substitute the solution series into Eqs. (2.4)- (2.5) 
and collecting the coefficients of like power of λ, we 
obtained and solved the equations governing the 
coefficients of solution series. The solution for the 
temperature field for Sensitised, Arrhenius and 
Bimolecular reaction rates are given as 
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We use computer symbolic algebra package 
(MAPLE), we obtained the first twenty terms of the 
above solution series as well as the series for 
maximum cylindrical pipe temperature θmax = θ(0).  
We know that power series solution is valid for very 
small parameter values, however, using Hermite-
Padé approximation technique [12, 13], we have 

extended the usability of the solution series beyond 
small parameter values as illustrated in the following 
section.  

Thermal Stability Analysis: It is important to know 
that the evaluation of critical regimes thought of as a 
regime separating the regions of explosive and non-
explosive ways of chemical reactions is extremely 
important from the application point of view. This 
characterizes the thermal stability properties of the 
reacting materials under consideration and the onset 
of thermal explosion in the system. In order to 
achieve this goal, we employ a special type of 
Hermite-Padé approximation technique [5, 12, 13]. 
Suppose that the partial sum 
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is given. It is important to note here that Eq. (4.1) can 
be used to evaluate any output of the solution of the 
problem under investigation (e.g. the series for the 
maximum temperature θmax = θ(0)), since everything 
can be Taylor expanded in the given small 
parameter. Assume U(λ) is a  local representation of 
an algebraic function of λ in the context of nonlinear 
problems, we construct an expression of the form 
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of degree d ≥ 2, such that 
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λ → 0.   (4.3) 
The requirement (4.3) reduces the problem to a 
system of N linear equations for the unknown 
coefficients of Fd . The entries of the underlying 
matrix depend only on the N given coefficients an  

and we shall take N d d= + −( ) /2 3 2 2 , so that the 
number of equations equals the number of 
unknowns. The polynomial Fd  is a special type of 
Hermite-Padé approximant and is then investigated 
for bifurcation and criticality conditions using Newton 
diagram [14].  

RESULTS AND DISCUSSION 

The procedure in section 4 above is applied on the 
first 19 terms of the solution series and we obtained 
the results as shown in tables (1) and (2) below: 
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Table 1: Computations showing the procedure rapid convergence for ε = 0.0, m = -2, 0, 1/2 
  

D N θmax λc cNα  

1 9 1.58684089840758 3.0999999999999 0.4999999999999 
2 12 1.58649458367141 3.1000000000000 0.5000000000000 
3 15 1.58649459231122 3.1000000000000 0.5000000000000 
4 18 1.58649459231122 3.1000000000000 0.5000000000000 
5 21 1.58649459231122 3.1000000000000 0.5000000000000 
 
Table 2: Computation showing criticality for Sensitized, Arrhenius and Bimolecular reaction  
 
M ε  θmax λc cNα  
-2, 0, 1/2 0.0 1.58649459231122 3.100000000000 0.500000000000 
-2 0.1 3.74319645303452 4.201346310876 0.500000000000 
0.0 0.1 2.98420314510674 3.361275381367 0.500000000000 
0.5 0.1 2.64453843125073 3.213460813467 0.500000000000 
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Fig. 1. A slice of approximate bifurcation diagram in the (λ , θmax (, m = 0.5, ε = 0.1)) plane 
 
 
Table (1) shows the rapid convergence of the 
dominant singularity λc i.e. the value of thermal 
criticality in the system together with its 
corresponding maximum temperature θmax as the 
number of series coefficients utilized in the 
approximants increases. Table 2, illustrates the 
variation in the values of thermal criticality conditions 
(λc) for different combination of embedded 
parameters. At very large activation energy (ε=0), 
thermal explosion criticality is independent of the type 
of reaction as shown in Eq. (2.4). It is interesting to 
note from the table (2) that explosion in bimolecular 
reaction will occur faster than in Arrhenius and 
Sensitized reactions. This can be attributed to the 
lower thermal criticality value of bimolecular reaction. 

The magnitude of thermal criticality increases with a 
increase in the activation energies, thus preventing 
the early development of thermal runaway and 
enhancing thermal stability A slice of the bifurcation 
diagram for  (λ, θmax) plane is shown in Fig. (1). It 
represents the variation of spherical vessel maximum 
temperature (θmax) with the Frank-Kamenetskii 
parameter (λ). In particular, for every  
0 ≤ ε ≤ 0.1 there is a critical value λc (a turning point) 
such that, for 0≤ λ < λc there are two solutions 
(labelled I and II). The upper and lower solution 
branches occur due to chemical kinetics in the 
governing heat balance equation (Eq. 2.4). When λc 
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< λ the system has no real solution and displays a 
classical form indicating thermal runaway.  
CONCLUSION 

In this paper an analysis has been carried out to 
study the thermal development in a spherical vessel 
with one step exothermic chemical reaction, taking 
into account the temperature dependent variable pre-
exponential factor. The nonlinear governing equation 
is solved using perturbation technique coupled with a 
special type of Hermite- Padé approximants. We 
obtain accurately the thermal criticality conditions as 
well as the solution branches. Our results reveal 
among others that the thermal runaway in the system 
is delayed due to the vessel used compared with the 
results in the literatures. Hence, with the proper 
choice of thermophysical parameters, the thermal 
stability can be enhanced. 
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