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Abstract

In this paper we analyze the effects of internal heat generation, thermal radiation, and buoyancy 

force on the laminar boundary layer about a vertical plate in a uniform stream of fluid under a 

convective surface boundary condition. In the analysis, we assumed that left surface of the plate 

is in contact with a hot fluid while a stream of cold fluid flows steadily over the right surface 

with a heat source that decays exponentially. Similarity variable method is applied to the 

governing non-linear partial differential equations. The transformed into a set of coupled non-

linear ordinary differential equations are solved numerically by applying shooting iteration 

technique together with fourth order Runge-Kutta integration scheme. The effects of Prandtl 

number, local Biot number, the internal heat generation parameter, thermal radiation, and the 

local Grashof number on the velocity and temperature profiles are illustrated and interpreted in 

physical terms. A comparison with previously published results in special case of the problem 

shows an excellent agreement.

Keywords: thermal radiation; buoyancy force; internal heat generation; vertical plate; Biot 

number; boundary layer.

1. Introduction

Boundary-layer flows over a moving or stretching plate are of great importance in view of their 

relevance to a wide variety of technical applications, particularly in the manufacture of fibers in 

glass and polymer industries. The first and foremost work regarding the boundary-layer behavior 

in moving surfaces in quiescent fluid was considered by Sakiadis [1]. Subsequently, many 
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researchers [2-9] worked on the problem of moving or stretching plates under different 

situations. In the boundary-layer theory, similarity solutions are found to be useful in the 

interpretation of certain fluid motions at large Reynolds numbers. Similarity solutions often exist 

for the flow over semi-infinite plates and stagnation point flow for two dimensional, axi-

symmetric and three dimensional situations. In some special cases when there is no similarity

solution, one has to solve a system of non-linear partial differential equations (PDEs). For the 

boundary-layer flows, the velocity profiles are similar. But this kind of similarity is lost for non-

similarity flows [10-14]. Obviously, the non-similarity boundary-layer flows are more general in 

nature and more important not only in theory but also in applications. The heat transfer analysis 

of boundary layer flow with radiation is further important in electrical power generation,

astrophysical flows, solar power technology, space vehicle re-entry and other industrial areas. 

Extensive literature that deals with flows in the presence of radiation effects is now available.

Raptis et al. [15] studied the effect of thermal radiation on the MHD flow of  viscous fluid past a 

semi-infinite stationary plate. Hayat et al. [16] extended the analysis of reference [15] for a 

second grade fluid.

Convective heat transfer studies are very important in processes involving high temperatures 

such as gas turbines, nuclear plants, thermal energy storage, etc. Recently, Ishak [17] examined 

the similarity solutions for flow and heat transfer over a permeable surface with convective 

boundary condition. Moreover, Aziz [18] studied a similarity solution for laminar thermal 

boundary layer over a flat plate with a convective surface boundary condition and also studied 

hydrodynamic and thermal slip flow boundary layers over a flat plate with constant heat flux 

boundary condition (see [19]). Very recently, Makinde and Olanrewaju [20] investigated the 

buoyancy effects on thermal boundary layer over a vertical plate with a convective surface 

boundary condition.

In this study, the recent work of Ishak [17], Aziz [18], and Makinde and Olanrewaju [20] is 

extended to include the effect of thermal radiation and internal heat generation. The numerical 

solutions of the resulting momentum and the thermal similarity equations are reported for 

representative values of the thermophysical parameters embedded in the fluid convection 

process. The objective of this paper is to explore the effects of the thermal radiation and the 

internal heat generation on the fluid under a convective surface boundary condition. The non-

linear equations governing the flow are solved numerically using shooting technique with 
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Runge-Kutta of order six. Graphical results are reported first for emerging parameters and then 

discussed.

2. Mathematical formulation

We consider a two-dimensional steady incompressible fluid flow coupled with heat transfer by 

convection over a vertical plate. A stream of cold fluid at temperature T moving over the right 

surface of the plate with a uniform velocity U while the left surface of the plate is heated by 

convection from a hot fluid at temperature Tf  which provides a heat transfer coefficient hf. The 

density variation due to buoyancy force effects is taken into account in the momentum equation 

and the thermal radiation and the internal heat generation effects are taking into account in the 

energy equation (Boussinesq approximation). The continuity, momentum, and energy equations 

describing the flow can be written as  

,0







y

v

x

u
(1)

),(
2

2













TTg
y

u

y

u
v

x

u
u  (2)

  ,
2

2

y

q

k
TTQ

y

T

y

T
v

x

T
u r

















 (3)

where u and v are the x (along the plate) and the y (normal to the plate) components of the 

velocities, respectively, T is the temperature,  is the kinematics viscosity of the fluid, and α is 

the thermal diffusivity of the fluid and β is the thermal expansion coefficient, Q is the heat 

release per unit mass, g is the gravitational acceleration and qr is the radiative heat flux, 

respectively. The velocity boundary conditions can be expressed as 

    ,00,0,  xvxu (4)

  .,  Uxu (5)

The boundary conditions at the plate surface and far into the cold fluid may be written as 
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The radiative heat flux qr is described by Roseland approximation such that 

,
3

4 4*

y

T

K
qr 





(8)

where Kand* are the Stefan-Boltzmann constant and the mean absorption coefficient, 

respectively. Following Chamkha [22], we assume that the temperature differences within the 

flow are sufficiently small so that the T4 can be expressed as a linear function after using Taylor 

series to expand T4 about the free stream temperature T and neglecting higher-order terms. This 

result is the following approximation:

.34 434
  TTTT (9)

Using (8) and (9) in (3), we obtain
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Introducing a similarity variable η and a dimensionless stream function f(η) and temperature ()

as 

,Re xx

y

x

U
y  


    ,

2

1
, ff

x

U
vf

U

u
 






,








TT

TT

f

 (11)

where prime symbol denotes differentiation with respect to η and Rex =Ux/ is the local 

Reynolds number.  Eqs. (1) – (7) reduce to 
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For the momentum and energy equations to have a similarity solution, the parameters Grx , λx, 

and Bix must be constants and not functions of x as in Eq. (16). This condition can be met if the 

heat transfer coefficient hf is proportional to 2
1x , the thermal expansion coefficient  is 

proportional to x-1 and the heat release coefficient Q is proportional to x-1 . We therefore assume

2

1


cxhf , 1mx , ,1dxQ (17)

where c, d, and m are constants. Substituting Eq. (17) into Eq. (16), we have 
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With Bi, λ, and Gr defined by Eq. (18), the solutions of Eqs. (12)- (15) yield the similarity 

solutions, however, the solutions generated are the local similarity solutions whenever Bix , λx

and Grx are defined as in Eq. (13).
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Table 1: Computations showing comparison with Aziz [7] results for Grx = 0, Ra = 0, λx=0, 
and Pr =0.72

Bix -  0 
Aziz[7]

 0
Aziz[7]

-  0 
Present

 0
Present

-  0 
Ishak[17]

-  0 
Makinde 
and 
Olanrewaju
     [20]           

0.05 0.0428 0.1447 0.042767 0.14466 0.042767 0.0428
0.10 0.0747 0.2528 0.074724 0.25275 0.074724 0.0747
0.20 0.1193 0.4035 0.119295 0.40352 0.119295 0.1193
0.40 0.1700 0.5750 0.169994 0.57501 0.169994 0.1700
0.60 0.1981 0.6699 0.198051 0.66991 0.198051 0.1981
0.80 0.2159 0.7302 0.215864 0.73016 0.215864 0.2159
1.00 0.2282 0.7718 0.228178 0.33205 0.228178 0.2282
5.00 0.2791 0.9441 0.279131 0.94417 0.279131 0.2791
10.00 0.2871 0.9713 0.287146 0.97128 0.287146 0.2871
20.00 0.2913 0.9854 0.291329 0.98543 0.291329 0.2913
30.00      -    - 0.292754 0.99024      - 0.2928

Table 2: Computations showing )0(),0(),0(   andf for different parameter values 

embedded in the flow model

Bix Grx Pr
x Ra  0f   0   0

0.1 0.1 0.72 0.1 0.1 0.386316 0.06681 0.33181
1.0 0.1 0.72 0.1 0.1 0.460825 0.17679 0.82320
10.0 0.1 0.72 0.1 0.1 0.483261 0.21388 0.97861
0.1 0.5 0.72 0.1 0.1 0.557241 0.069730 0.30269
0.1 1.0 0.72 0.1 0.1 0.723310 0.071736 0.28263
0.1 0.1 3.00 0.1 0.1 -0.07454 0.231312 -1.31312
0.1 0.1 7.10 0.1 0.1 -0.01586 0.261733 -1.61733
0.1 0.1 0.72 0.5 0.1 0.280070 0.110631 -0.10631
0.1 0.1 0.72 0.6 0.1 0.298365 0.102052 -0.02052
0.1 0.1 0.72 0.1 0.5 0.392337 0.065305 0.346940
0.1 0.1 0.72 0.1 1 0.398724 0.063698 0.363019
0.1 0.1 0.72 0.1 2 0.408879 0.061177 0.388227
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3. Results and discussion

The ordinary differential equations (9)-(10) subject to the boundary conditions (11)-(12) are 

solved numerically using the symbolic algebra software Maple [21]. Table 1 presents the 

comparison for the values of    00  and with those reported by Aziz [18], Ishak [17] and 

Makinde and Olanrewaju [20], which shows an excellent agreement for Pr = 0.72. Table 2 

illustrates the values of the skin-friction coefficient and the local Nusselt number in terms of

)0(f  and )0(  , respectively for various values of embedded parameters. From table 2, it is 

understood that the skin-friction and the rate of heat transfer at the plate surface increases with an 

increase in local Grashof number, convective surface heat transfer parameter, internal heat 

generation parameter and the radiation absorption parameter. However, an increase in the fluid 

Prandtl number decreases the skin-friction but increases the rate of heat transfer at the plate 

surface. Figures (1)- (6) depict the fluid velocity profiles. Generally, the fluid velocity is zero at 

the plate surface and increases gradually away from the plate towards the free stream value 

satisfying the boundary conditions. It is clearly seen from figure 1 that Grashof number has 

profuse effects on the velocity boundary layer thickness. It is interesting to note that an increase 

in the intensity of convective surface heat transfer (Bix) produces a slight increase in the fluid 

velocity within the boundary layer (see figure 2). Figures (3)-(4) and (6) has no effect on the 

velocity profiles.  When Ra = 0.1, then Prandtl number has effects on the velocity profile (see 

figure 5). Figures (7)-(12) illustrate the fluid temperature profiles within the boundary layer. The 

fluid temperature is maximum at the plate surface and decreases exponentially to zero value far 

away from the plate satisfying the boundary conditions. From these figures, it is noteworthy that 

the thermal boundary layer thickness increases with an increase in Bix, λx, Ra and decreases with 

increasing values of Grx and Pr. Hence, convective surface heat transfer, internal heat generation 

parameter and radiation parameter enhances thermal diffusion while an increase in the Prandtl 

number and the intensity of buoyancy force slows down the rate of thermal diffusion within the 

boundary layer.
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Figure 1: Velocity profiles for Pr = 0.72, λx = 0.1, Bix = 0.1, Ra = 0.1

Figure 2: Velocity profiles for Pr = 0.72, Grx = 0.1, λx = 0.1, Ra = 0.1
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Figure 3: Velocity profiles for Pr = 0.72, Grx = 0.1, Bix = 0.1, Ra = 0.1

Figure 4: Velocity profiles for λx = 0.1, Grx = 0.1, Bix = 0.1, Ra = 0.5
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Figure 5:  Velocity profiles for λx = 0.1, Grx = 0.1, Bix = 0.1, Ra = 0.1

Figure 6: Velocity profiles for λx = 0.1, Grx = 0.1, Bix = 0.1, Pr = 0.72
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Figure 7: Temperature profile for Pr = 0.72, λx = 0.1, Bix = 0.1, Ra = 0.1

Figure 8: Temperature profiles for Pr = 0.72, λx = 0.1, Bix = 0.1, Ra = 0.1
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Figure 9: Temperature profiles for Pr = 0.72, Grx = 0.1, Bix = 0.1, Ra = 0.1

Figure 10: Temperature profiles for λx = 0.1, Grx = 0.1, Bix = 0.1, Ra = 0.5
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Figure 11: Temperature profiles for λx = 0.1, Grx = 0.1, Bix = 0.1, Ra = 0.1

Figure 12: Temperature profiles for λx = 0.1, Grx = 0.1, Bix = 0.1, Pr = 0.72
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Figure 13: Temperature profiles for Aziz [7] result for λx = 0, Grx = 0, Bix = 0.1, Ra = 0

4. Conclusions

Analysis has been carried out to study the effects of internal heat generation, thermal radiation, 

and buoyancy force on the laminar boundary layer about a vertical plate in a uniform stream of 

fluid under a convective surface boundary. A similarity solution for the momentum and the 

thermal boundary layer equations is possible if the convective heat transfer of the fluid heating 

the plate on its left surface is proportional to 2
1x , the thermal expansion coefficient  and Q is 

proportional to x-1. Numerical solutions of the similarity equations were reported for the various 

parameters embedded in the problem. The combined effects of increasing the Prandtl number 

and the Grashof number tends to reduce the thermal boundary layer thickness along the plate

while the effects of increasing the Biot number, internal heat generation parameter and the 

radiation absorption parameter enhances  thermal diffusion.
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Abstract

In this paper we analyze the effects of internal heat generation, thermal radiation, and buoyancy force on the laminar boundary layer about a vertical plate in a uniform stream of fluid under a convective surface boundary condition. In the analysis, we assumed that left surface of the plate is in contact with a hot fluid while a stream of cold fluid flows steadily over the right surface with a heat source that decays exponentially. Similarity variable method is applied to the governing non-linear partial differential equations. The transformed into a set of coupled non-linear ordinary differential equations are solved numerically by applying shooting iteration technique together with fourth order Runge-Kutta integration scheme. The effects of Prandtl number, local Biot number, the internal heat generation parameter, thermal radiation, and the local Grashof number on the velocity and temperature profiles are illustrated and interpreted in physical terms. A comparison with previously published results in special case of the problem shows an excellent agreement.
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1. Introduction

Boundary-layer flows over a moving or stretching plate are of great importance in view of their relevance to a wide variety of technical applications, particularly in the manufacture of fibers in glass and polymer industries. The first and foremost work regarding the boundary-layer behavior in moving surfaces in quiescent fluid was considered by Sakiadis [1]. Subsequently, many researchers [2-9] worked on the problem of moving or stretching plates under different situations. In the boundary-layer theory, similarity solutions are found to be useful in the interpretation of certain fluid motions at large Reynolds numbers. Similarity solutions often exist for the flow over semi-infinite plates and stagnation point flow for two dimensional, axi-symmetric and three dimensional situations. In some special cases when there is no similarity

solution, one has to solve a system of non-linear partial differential equations (PDEs). For the  boundary-layer flows, the velocity profiles are similar. But this kind of similarity is lost for non-similarity flows [10-14]. Obviously, the non-similarity boundary-layer flows are more general in nature and more important not only in theory but also in applications. The heat transfer analysis of boundary layer flow with radiation is further important in electrical power generation, astrophysical flows, solar power technology, space vehicle re-entry and other industrial areas. Extensive literature that deals with flows in the presence of radiation effects is now available. Raptis et al. [15] studied the effect of thermal radiation on the MHD flow of  viscous fluid past a semi-infinite stationary plate. Hayat et al. [16] extended the analysis of reference [15] for a second grade fluid.

Convective heat transfer studies are very important in processes involving high temperatures such as gas turbines, nuclear plants, thermal energy storage, etc. Recently, Ishak [17] examined the similarity solutions for flow and heat transfer over a permeable surface with convective boundary condition. Moreover, Aziz [18] studied a similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition and also studied hydrodynamic and thermal slip flow boundary layers over a flat plate with constant heat flux boundary condition (see [19]). Very recently, Makinde and Olanrewaju [20] investigated the buoyancy effects on thermal boundary layer over a vertical plate with a convective surface boundary condition.

In this study, the recent work of Ishak [17], Aziz [18], and Makinde and Olanrewaju [20] is extended to include the effect of thermal radiation and internal heat generation. The numerical solutions of the resulting momentum and the thermal similarity equations are reported for representative values of the thermophysical parameters embedded in the fluid convection process. The objective of this paper is to explore the effects of the thermal radiation and the internal heat generation on the fluid under a convective surface boundary condition. The non-linear equations governing the flow are solved numerically using shooting technique with Runge-Kutta of order six. Graphical results are reported first for emerging parameters and then discussed.



2. Mathematical formulation





We consider a two-dimensional steady incompressible fluid flow coupled with heat transfer by convection over a vertical plate. A stream of cold fluid at temperature  moving over the right surface of the plate with a uniform velocitywhile the left surface of the plate is heated by convection from a hot fluid at temperature Tf  which provides a heat transfer coefficient hf. The density variation due to buoyancy force effects is taken into account in the momentum equation and the thermal radiation and the internal heat generation effects are taking into account in the energy equation (Boussinesq approximation). The continuity, momentum, and energy equations describing the flow can be written as  
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where u and v are the x (along the plate) and the y (normal to the plate) components of the velocities, respectively, T is the temperature,   is the kinematics viscosity of the fluid, and α is the thermal diffusivity of the fluid and β is the thermal expansion coefficient, Q is the heat release per unit mass, g is the gravitational acceleration and qr is the radiative heat flux, respectively. The velocity boundary conditions can be expressed as 
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The boundary conditions at the plate surface and far into the cold fluid may be written as 
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The radiative heat flux qr is described by Roseland approximation such that 
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where  are the Stefan-Boltzmann constant and the mean absorption coefficient, respectively. Following Chamkha [22], we assume that the temperature differences within the flow are sufficiently small so that the T4 can be expressed as a linear function after using Taylor series to expand T4 about the free stream temperature and neglecting higher-order terms. This result is the following approximation:
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Using (8) and (9) in (3), we obtain
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Introducing a similarity variable η and a dimensionless stream function f(η) and temperature () as 
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where prime symbol denotes differentiation with respect to η and Rex =Ux/ is the local Reynolds number.  Eqs. (1) – (7) reduce to 
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For the momentum and energy equations to have a similarity solution, the parameters Grx , λx, and  Bix must be constants and not functions of x as in Eq. (16). This condition can be met if the heat transfer coefficient hf is proportional to  ,  the thermal expansion coefficient  is proportional to x-1  and the heat release coefficient Q is proportional to x-1  .  We therefore assume
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where c, d,  and m are constants. Substituting Eq. (17) into Eq. (16), we have 
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With Bi, λ, and Gr defined by Eq. (18), the solutions of Eqs. (12)- (15) yield the similarity solutions, however, the solutions generated are the local similarity solutions whenever Bix , λx and Grx are defined as in Eq. (13).

















Table 1: Computations showing comparison with Aziz [7] results for Grx = 0, Ra = 0, λx=0, and Pr =0.72

		Bix

		

-

Aziz[7]

		



Aziz[7]

		

-

Present

		



Present

		

-

Ishak[17]

		

-

Makinde and Olanrewaju

     [20]           



		0.05

		0.0428

		0.1447

		0.042767

		0.14466

		0.042767

		0.0428



		0.10

		0.0747

		0.2528

		0.074724

		0.25275

		0.074724

		0.0747



		0.20

		0.1193

		0.4035

		0.119295

		0.40352

		0.119295

		0.1193



		0.40

		0.1700

		0.5750

		0.169994

		0.57501

		0.169994

		0.1700



		0.60

		0.1981

		0.6699

		0.198051

		0.66991

		0.198051

		0.1981



		0.80

		0.2159

		0.7302

		0.215864

		0.73016

		0.215864

		0.2159



		1.00

		0.2282

		0.7718

		0.228178

		0.33205

		0.228178

		0.2282



		5.00

		0.2791

		0.9441

		0.279131

		0.94417

		0.279131

		0.2791



		10.00

		0.2871

		0.9713

		0.287146

		0.97128

		0.287146

		0.2871



		20.00

		0.2913

		0.9854

		0.291329

		0.98543

		0.291329

		0.2913



		30.00

		     -

		   -

		0.292754

		0.99024

		     -

		0.2928











Table 2: Computations showing  for different parameter values embedded in the flow model

		Bix

		Grx

		Pr

		



		Ra

		



		



		





		0.1

		0.1

		0.72

		0.1

		0.1

		0.386316

		0.06681

		0.33181



		1.0

		0.1

		0.72

		0.1

		0.1

		0.460825

		0.17679

		0.82320



		10.0

		0.1

		0.72

		0.1

		0.1

		0.483261

		0.21388

		0.97861



		0.1

		0.5

		0.72

		0.1

		0.1

		0.557241

		0.069730

		0.30269



		0.1

		1.0

		0.72

		0.1

		0.1

		0.723310

		0.071736

		0.28263



		0.1

		0.1

		3.00

		0.1

		0.1

		-0.07454

		0.231312

		-1.31312



		0.1

		0.1

		7.10

		0.1

		0.1

		-0.01586

		0.261733

		-1.61733



		0.1

		0.1

		0.72

		0.5

		0.1

		0.280070

		0.110631

		-0.10631



		0.1

		0.1

		0.72

		0.6

		0.1

		0.298365

		0.102052

		-0.02052



		0.1

		0.1

		0.72

		0.1

		0.5

		0.392337

		0.065305

		0.346940



		0.1

		0.1

		0.72

		0.1

		1

		0.398724

		0.063698

		0.363019



		0.1

		0.1

		0.72

		0.1

		2

		0.408879

		0.061177

		0.388227







3. Results and discussion







The ordinary differential equations (9)-(10) subject to the boundary conditions (11)-(12) are solved numerically using the symbolic algebra software Maple [21]. Table 1 presents the comparison for the values of  with those reported by Aziz [18], Ishak [17] and Makinde and Olanrewaju [20], which shows an excellent agreement for Pr = 0.72. Table 2 illustrates the values of the skin-friction coefficient and the local Nusselt number in terms ofand, respectively for various values of embedded parameters. From table 2, it is understood that the skin-friction and the rate of heat transfer at the plate surface increases with an increase in local Grashof number, convective surface heat transfer parameter, internal heat generation parameter and the radiation absorption parameter. However, an increase in the fluid Prandtl number decreases the skin-friction but increases the rate of heat transfer at the plate surface. Figures (1)- (6) depict the fluid velocity profiles. Generally, the fluid velocity is zero at the plate surface and increases gradually away from the plate towards the free stream value satisfying the boundary conditions. It is clearly seen from figure 1 that Grashof number has profuse effects on the velocity boundary layer thickness. It is interesting to note that an increase in the intensity of convective surface heat transfer (Bix) produces a slight increase in the fluid velocity within the boundary layer (see figure 2). Figures (3)-(4) and (6) has no effect on the velocity profiles.  When Ra = 0.1, then Prandtl number has effects on the velocity profile (see figure 5). Figures (7)-(12) illustrate the fluid temperature profiles within the boundary layer. The fluid temperature is maximum at the plate surface and decreases exponentially to zero value far away from the plate satisfying the boundary conditions. From these figures, it is noteworthy that the thermal boundary layer thickness increases with an increase in Bix, λx, Ra and decreases with increasing values of Grx and Pr. Hence, convective surface heat transfer, internal heat generation parameter and radiation parameter enhances thermal diffusion while an increase in the Prandtl number and the intensity of buoyancy force slows down the rate of thermal diffusion within the boundary layer. 



[image: ]

Figure 1: Velocity profiles for Pr = 0.72, λx = 0.1, Bix = 0.1, Ra = 0.1

[image: ]

Figure 2: Velocity profiles for Pr = 0.72, Grx = 0.1, λx = 0.1, Ra = 0.1
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Figure 3: Velocity profiles for Pr = 0.72, Grx = 0.1, Bix = 0.1, Ra = 0.1
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Figure 4: Velocity profiles for λx = 0.1, Grx = 0.1, Bix = 0.1, Ra = 0.5
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Figure 5:  Velocity profiles for λx = 0.1, Grx = 0.1, Bix = 0.1, Ra = 0.1
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Figure 6: Velocity profiles for λx = 0.1, Grx = 0.1, Bix = 0.1, Pr = 0.72
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Figure 7: Temperature profile for Pr = 0.72, λx = 0.1, Bix = 0.1, Ra = 0.1
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Figure 8: Temperature profiles for Pr = 0.72, λx = 0.1, Bix = 0.1, Ra = 0.1
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Figure 9: Temperature profiles for Pr = 0.72, Grx = 0.1, Bix = 0.1, Ra = 0.1
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Figure 10: Temperature profiles for λx = 0.1, Grx = 0.1, Bix = 0.1, Ra = 0.5
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Figure 11: Temperature profiles for λx = 0.1, Grx = 0.1, Bix = 0.1, Ra = 0.1
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Figure 12: Temperature profiles for λx = 0.1, Grx = 0.1, Bix = 0.1, Pr = 0.72
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Figure 13: Temperature profiles for Aziz [7] result for λx = 0, Grx = 0, Bix = 0.1, Ra = 0







4. Conclusions





Analysis has been carried out to study the effects of internal heat generation, thermal radiation, and buoyancy force on the laminar boundary layer about a vertical plate in a uniform stream of fluid under a convective surface boundary. A similarity solution for the momentum and the thermal boundary layer equations is possible if the convective heat transfer of the fluid heating the plate on its left surface is proportional to, the thermal expansion coefficient  and Q is proportional to x-1. Numerical solutions of the similarity equations were reported for the various parameters embedded in the problem. The combined effects of increasing the Prandtl number and the Grashof number tends to reduce the thermal boundary layer thickness along the plate while the effects of increasing the Biot number, internal heat generation parameter and the radiation absorption parameter enhances  thermal diffusion.
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