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ABSTRACT 
 
                 We present a block algorithm for the general solution of ݕᇱᇱᇱ = ,ݔ)݂ ,ᇱݕ,ݕ  The numerical algorithm .("ݕ
is developed by the methods of interpolation of the power series approximate solution and collocation of the 
differential system of the approximant at selected grid points to generate a continuous method. Block method is 
adopted to simultaneously generate all the parameters needed to implement the method. The method was tested on 
numerical examples and to investigate the efficiency of the method   
 
KEYWORDS: parallel block method, Collocation, Interpolation, approximant, continuous 
                          method. 
   
M.S.C. 2010 Classification: 65CL05  
 
 

INTRODUCTION 
 

            The general third order ordinary differential equation which is of the form 
 

       1 2 3, , , , , ,y f x y y y y a y a y a                       (1) 
 

                Recent researches in the direct solution of higher order ordinary differential 
equation include Awoyemi {[2], [3], [4]}, Adesanya et al [1], Kayode {[10], [12]}. These 
methods mentioned, there implementation are predictor- corrector mode, like other linear 
multistep methods and other standard methods, are usually applied to initial value problems  
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as a single formula but the drawback of this method are (i) they are not self starting (ii) they 
advance the numerical integration of the ordinary differential equation in one step at a time, 
which leads to overlapping of the piecewise polynomial solution model. See Olabode [7] for 
details. The advantages of the continuous method are widely reported by Awoyemi [5]. 
 

                 In order to correct the setback of the method of predictor – corrector method, 
Fatunla [10],  Olabode et al [8], Yahaya [6] and Badmus et al [9] proposed block method for 
the solution of higher order ordinary differential equations with limitation to special type of 
the form ݕ(௡) = ,ݔ)݂  Thus these methods are self starting and eliminate the use of .(ݕ
predictors.  
 

                 Jator [17], Yahaya et al [18], proposed block method for solving second order 
initial value problems. This method sequentially generates the parameter to implement the 
method. In this paper, we present a method for solving third order ordinary differential 
equation using parallel block method. The method was found to be efficient and give better 
accuracy. 
 
1.    Method of Solution 
 

             We consider an approximate solution to Equation (1) in power series     

(ݔ)ݕ = ∑ ௝ܽ
௞
௝ୀ଴  (2)                                                      (ݔ)௝ߖ

 

The third derivative of Equation  (2) is given as  
 

∑ᇱᇱᇱୀݕ ݆(݆ − 1)(݆ − 2) ௝ܽ
௞
௝ୀ଴  (3)                                            (ݔ)௝ିଷߖ

 

Considering Equations (2) and (3) generates the differential system 
 

∑ ݆(݆ − 1)௞
௝ୀ଴ (݆ − 2) ௝ܽߖ௝ିଷ(ݔ) = ,ݔ)݂  (4)                                  ("ݕ,ᇱݕ,ݕ

 

Collocating Equation (4) at ݔ = ௡ା௝ݔ , ݆ = 1(1)݇ and interpolating Equation (2) at ݔ =
௡ା௝ݔ , ݆ = 0(1)݇ − 1 yield a system which can be expressed in matrix form as 
 

ܺ޿ =  (5)                                                                     ܤ
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                 Solving Equation (6) for , 0(1)ja j k  , substituting back into Equation (2) and 
simplifying gives an equation of the form 
 

     
4 5

0 1
r n r r n r

r r
y x y x f x 

 

   
                                       (7) 

Where the coefficient of  n ry x  and ( )n rf x are found to be
 

 

 2
0

1( ) 2
8

t t t  
 

 2
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1( ) 4
4

t t t   
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1( ) 6 8
8

t t t   
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5 3 2

1( ) ( 10 60 144 )
480
ht t t t t    

 
3

5 4 3 2
3 ( ) ( 5 30 t 200 256 )

240
ht t t t t      

 
3

5 4 3 2
5 ( ) ( 10 30 20 16 )

480
ht t t t t t     

                        (8) 

Where 
4nx x

t
h




 
Evaluating Equation (8) at 3, -1, and 1t     respectively gives 
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௡ାହݕ32 − ௡ାସݕ60 + ௡ାଶݕ40 − ௡ݕ12 = ℎଷ(3 ௡݂ାହ + 64 ௡݂ାଷ + 13 ௡݂ାଵ)                (9) 
 

௡ାସݕ12 − ௡ାଷݕ32 + ௡ାଶݕ24 − ௡ݕ4 = ℎଷ(− ௡݂ାହ + 12 ௡݂ାଷ + 5 ௡݂ାଵ)               (10) 
 

௡ାସݕ4 − ௡ାଶݕ24 + ௡ାଵݕ32 − ௡ݕ12 = ℎଷ(− ௡݂ାହ + 8 ௡݂ାଷ + 9 ௡݂ାଵ)               (11) 
                  

            Evaluating the first derivative and second derivative of Equation (8) at 3(1)1t    

gives the values of , i 0(1)5,  0(1)2j
n iy j    

 
2.    Block method 
 

We propose a block method in the form 
 

଴ℎఊܣ ௠ܻ
(௡) = ℎఊ ∑ ௞(௜)ܣ

௜ୀ଴ ௠ܻି௜
(௡) + ℎఓ ∑ ௞(௜)ܤ

௜ୀ଴ ௠ି௜ܨ ,                              (12) 
 

       where the power of the derivative is ݊,  is ߛ  ,is the order of the differential equation ߤ

the power relative to the derivative of the differential equation.
 iA and 

0A  are ব×
ব matrices. The modification in is Equation (12) such that   
 

ℎఊ ௠ܻ
(௡) = ,௡ାଵݕ] ,௡ାଶݕ … ,ℎݕ′௡ାଵ,ℎݕ′௡ାଶ, … ,ℎଶݕ′௡ାଵ,ℎଶݕ′௡ାଶ, …ℎ௡ݕ௡ା௠]்           (13) 

 

ℎఊ ௠ܻି௜
௡ = ௡ିଵݕൣ ,௡ିଶݕ, … , ,௡ݕ ℎݕ′௡ିଵ,ℎݕ′௡ିଶ, … ,ℎݕ′௡,ℎଶݕᇱᇱ௡ିଵ ,ℎଶݕᇱᇱ௡ିଶ, …ℎଶݕ௡ᇱᇱ ,… ,ℎ௡ݕ௠௡ ൧

்    (14) 
 

]௠ିଵܨ ௡݂ିଵ, ௡݂ିଶ, … ௡݂ , ௡݂ାଵ, ௡݂ାଶ, … ௡݂ା௠]்                                      (15) 
 

Hence, solving for ݕ௡ା௜
௝ , ݅ = 0(1)5, ݆ = 1,2  gives 

 

                              (16) 
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                               (17) 
 

             (18) 
 
3.    Analysis of the Method 
 

             According to Lambert [13], the necessary and sufficient condition for a linear 
multistep method to be convergent is for it to be consistent and zero stable. 
 

3.1    Order of the method 
 

            We have used the method proposed in Lambert[13] and Fatunla [14] to obtain the 
order of our methods as follows; expanding Equation (9) in Taylor series yields ܿ଴ = ܿଵ =
ܿଶ = ܿଷ = ܿସ = ܿହ = 0 And ܿ଺ = 4  it was found that all the derived equation give same 
order with variable error constant. 
 
3.2    Zero Stability of the modified block method 
 

           We propose a theorem below for the zero stability of our method. 
 

Theorem 1 
 

           Let the order of the differential Equation (1) be ߤ and the order of the matrices 
  If .ݎ ௜  beܣ ݀݊ܽ ଴ܣ
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    (1)  As  00, 1i rh A A        , and 

     (2) Those roots satisfying |ߣ| = 1 have multiplicity not exceeding ߤ, (the  
           order of the differential equation).  
 

Then the method (2) is zero stable 
 

Proof. 
             Let ܣ଴ ܽ݊݀ ܣ௜  be defined as above. Suppose ℎఓ → 0,  then for 
 

     
 

                             

 
 

0 1 5 1 4 1 3 1 2

1 2 3 2

31 2 .

3 3

3 3 1

1

iA A    

   

 

    

   

 

 

                Clearly, those roots satisfying |ߣ| = 1 have multiplicity equals 3 and this does not 
exceed the order of Equation (1).  
 
4.    Numerical examples    

       Problem 1  
 

y"' + 4y' = x, ' ''(0) (0) 0, (0) 1, 0.1y y y h    , 0 ≤ x ≤ 1 
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Theoretical solution: 23 1( ) (1 cos 2 )
16 8

y x x x  
 

        Problem 2 

y"' + y' = 0, ' ''(0) 0, (0) 1, (0) 2, 0.1y y y h     

Theoretical solution: xxxy sin)cos1(2)(   

x Exact result New  result 
Order 6 

Error in 
[14] 

Order 6 

Error in 
[20] 

Order 8 

Error in 
New result 

0.1 0.0049875166547 0.00498751875 - 1.6654D
-08 

2.0952D-09 

0.2 0.0198010636244 0.01980108 4.4881D-06 3.8095D
-07 

1.6375D-08 

0.3 0.0439995722044 0.04399968375 - 1.5664D
-06 

1.1154D-07 

0.4 0.0768674919974 0.07686848 4.0676D-06 3.9865D
-06 

9.8800D-07 

0.5 0.1174433176497 0.1174402769 - 7.9597D
-06 

3.0406D-06 

0.6 0.1645579210356 0.1645489084 1.3761D-05 1.3680D
-05 

9.0126D-06 

0.7 0.2168811070620 0.21686419474 - 2.1195D
-05 

1.6965D-05 

0.8 0.2729749143149 0.2729481379 3.0465D-05 3.0396D
-05 

2.6772D-05 

0.9 0.3313503927549 0.331312257 - 4.1008D
-05 

3.8135D-05 

1.0 0.3905275318525 0.3904769353 5.2651D-05 5.2605D
-05 

5.0596D-05 

 

Table 1 for Problem 1 

 

 



.ࡻ.࡭,ࢋ࢑ࢇ࢔࡭.࡭.ࢀ .ࡳ,ࢇ࢟࢔ࢇ࢙ࢋࢊ࡭ .ܯ & ࢔࢕࢟࢔࢕ࢎࢍࡻ.ࡶ  ࢇ݊ܽݎܽ݃ܣ.ܥ
 

 

134 
 

x  
Exact result 

 
New result 

 

Error in 
Awoyemi 

[15] 

Error in  
Olabode [16] Error in  

New result 

0.1 0.1098250860907 0.109825087699 - 1.6654D-08 1.6088D-09 

0.2 0.2385361751125 0.2385361885 8.8507D-07 3.8095D-07 10387D-08 

0.3 0.3847228410128 0.38484725778 - 1.5664D-07 2.9572D-08 

0.4 0.5472963543028 0.54729658572 6.6921D-06 3.9865D-06 2.3147D-07 

0.5 0.7242604148234 0.724259960 - 7.9597D-06 4.5420D-07 

0.6 0.9139712435767 0.9139697789 2.3718D-05 1.3680D-05 1.4746D-06 

0.7 1.1145333126687 1.114530439 - 2.1195D-05 2.8734D-06 

0.8 1.3239426722051 1.323937959 5.5181D-05 3.0396D-05 4.6826D-06 

0.9 1.5401069730861 1.540100051 - 4.1008D-05 6.9217D-06 

1.0 1.7608663707162 1.760856775 1.0338D-05 5.2605D-05 9.5974D-06 

 

Table II for problem II 

 

Conclusion 
 

                 We have proposed a direct method for the solution of general third order ordinary 
differential equation. This method is self starting and does not need developing separate 
predictors as proposed in predictor and corrector method. It was found to be more efficient 
and cost effective than existing method 
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