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Abstract 

An A(α)-stable implicit one step hybrid method for the numerical 
approximation of solutions of initial value problems of general second 
order ordinary differential equations is proposed. The method is 
developed by interpolation and collocation of a power series 
approximate solution and implemented as simultaneous integrators via 
block method. The stability and convergence of the methods are 
determined. Numerical experiments are conducted on sample problems 
and the absolute error estimates of the results are presented. 
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1. Introduction 

Due to sophistication in computing, mathematical modeling of real life 
systems throw up complex mathematical equations which pose the challenge 
of obtaining close form solutions. Mostly, these complex mathematical 
equations are either in the form of partial differential equations (PDE) or 
ordinary differential equations (ODE). Of interest to us however, is the latter, 
where the models pose initial value problems (IVP). 

For these kinds of problems, developing efficient and accurate numerical 
methods has increasingly been of much interest to researchers in the area of 
numerical methods and analysis over the years. Indeed, through a variety of 
approaches, several numerical methods have been proposed; ranging from 
the single step Runge-Kutta type methods [11, 17], through Adam type 
multistep methods [4, 5, 9, 18, 20] to the now very popular block methods [1, 
2, 3, 8, 13, 19]. Besides these methods, are their hybrid variants [6, 7, 10, 12, 
14, 16]. These methods respectively, have their setbacks which impacts on 
their efficiency and accuracy. Therefore, the overriding objective in 
developing new methods has always been to improve on the efficiency and 
convergence with the ultimate aim of reducing the error of approximation. 

Thus, it is our intention in this paper to develop a more efficient and 
accurate implicit one step hybrid method for the direct solution of general 
second order IVP of ODE of the form: 
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This class of problems often arises in areas such as control theory, 
chemical kinetics, circuit theory, mechanics and biology. Unique solutions 
have been shown to exist for problems of this class in [21]. 

The layout of this paper is as follows: the next section describes the 
derivation of the proposed numerical method, this is followed by the analysis 
of the method for stability and convergence in section three. In section four, 
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the associated block formulation for the implementation of the method is 
presented, this is followed by numerical experiments on some selected 
problems in section five. Finally, conclusion is given in section six and 
references thereafter. 

2. Derivation of the Method 

In this section, a continuous representation of an implicit one-step hybrid 
method is derived. 

Let nxxxxa NNN =<<<<=π −110:  be a partition of the 

integration interval [ ],, ba  into N subintervals, [ ],, 1+jj xx  with constant 

step size given by .1...,,1,0;1 −=−= + Njxxh jj  Also, let the basis 

polynomial be a power series polynomial of the form 
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completely determined by 1+m  unknown parameters ....,,2,1,0, miai =  

Introducing n offstep points, ,,1...,,2,1,1 nnun
u

u −=
+

=μ  in the 

one step structure, (see [6]), a continuous implicit one step hybrid method is 
obtained. This is accomplished, by interpolating (2) at the points ( )1−μ+ njx  

and njx μ+  in a Stormer-Cowell fashion, (see [13]), and collocating (1) at the 

points ( ) .10, uij ix μ=+  A combination of these procedures give rise to a 

system of 1+m  equations of degree at most m in the form: 
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where s and r represent the interpolation and collocation points respectively. 
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The system of equations (3) is solved for the values of the unknown 
parameters miai ...,,1,0, =  which are then substituted into (2). By using 

the transformation, h
xx

t nj μ+−
=  in the resulting algebraic system, we 

obtained the proposed continuous implicit one-step hybrid method and its 
first derivative in the form: 
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where for arbitrary ( )td dα∈ ,R  and ( )tdβ  are continuous coefficients in t, 

( )ijij xyy ++ =  is the numerical approximation of the analytical solution at 

the point ihxx jij +=+  and ( ).,, ijijijij yyxff ++++ ′=  

Obtaining values of t by evaluating (4a) ,ijxx +=  ,,0 ui μ=  1; =u  

2...,,2,1 −n  and (4b) at ,...,,2,1;1,,0, nuixx uij =μ== +  respectively, 

the desired discrete numerical methods and their first derivatives are 
obtained. 

In particular, if we set ,6=n  that is, if six offstep points are introduced 

between jx  and .1+jx  Then, a power series approximate solution (2) of 

degree 9=m  yields a system of equations, each completely determined by 
the coefficients .9...,,1,0, =ja j  Following the procedure described earlier 

we obtained the continuous implicit one step hybrid methods: 
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Obtaining values for t by evaluating (5a) at the points ,1+= jxx  

,1,7
4,7

3,7
2,7

1,0=i  yields specific discrete methods expressed in terms of 

their coefficients in Table 1. In a similar manner, when (5b) is evaluated at 

17
10, ⎟
⎠
⎞⎜

⎝
⎛== + ixx ij  for values of t, specific derivative methods expressed 

by their coefficients in Table 2 are obtained. 

Table 1. The coefficients of the method (5a) for ,7
6−=t  ,7
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Table 2. The coefficients for the method (5b) for ,7
6−=t  ,7
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In particular, the main method and its first derivative are obtained as follows: 
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3. Analysis of the Methods 

In this section, the order, local error constant, zero stability, consistency, 
convergence and absolute stability and A(α)-stability of the method (6) is 
determined. 
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3.1. Order and error constant 

To obtain the order and error constants for the new methods, rewrite (6) 
in the form of the linear difference operator 

( )[ ] ( ) ( ) ( )hxyhxyhxyhxy njnjj nn μ+α−μ+α−+= μ−μ − 11;L  
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where ( ) [ ]baCxy d ,∈  is an arbitrary test function. Then expand ( )ihxy j +  

and ( ) 1,,0, uj iihxy μ=+′′  for all i respectively in Taylor series about jx  

and collect terms in powers of y such that (8) becomes: 
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where the constant coefficients ...,2,1,0, =qCq  are defined as follows: 
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Definition 3.1. 1. The difference operator L  and the associated method 
is said to be of order p if 010 ==== pCCC  and .02 ≠+pC  

2. The term 2+pC  is called the error constant and it implies that the 
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local truncation error (l.t.e) is defined by: 

( )322
2... +++

+ += ppp
p hOyhCetl . (10) 

We have established from our computation that method (6) has order 8=p  

and error constants .105888.9 12
2

−
+ ×−=pC  

3.2. Zero stability, consistency and convergence 

Definition 3.2. The first and second characteristic polynomials of the 
algorithm (6) are defined respectively as 
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where z is the principal root, 0≠αk  and .02
0

2
0 ≠β+α  

Definition 3.3. The method (6) is said to be zero stable as 0→h  if no 
root of (11a), ( )zρ  has modulus greater than one, and if every root of 

modulus one has multiplicity not greater than one. 

For our method (6), we obtained (11a) as follows; 

( ) 7
5

7
6

2 zzzz +−=ρ . (12) 

Clearly, the conditions in Definition 3.3 are satisfied hence, the 
algorithm is zero stable. The consistency of the method is established by the 
fact that the order of the algorithm is greater than one, (see [17]). 

Following [15], convergence is established by the zero stability and 
consistency of method (6). 
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3.3. Stability 

Absolute stability for the algorithm is determined by means of the 
boundary locus method. Consider the stability polynomial 

( ) ( ) ( ) ,0, =σ−ρ=Π zhzhz  (13) 

where 22ω= hh  and dy
df=ω  are assumed constant. 

The stability polynomial (13) is obtained by applying the continuous 
implicit one step hybrid methods (6) to the scalar test problem; 

.2 yy ω−=′′  (14) 

The following definitions shall guide our conclusions. 

Definition 3.4 (Absolute stability). The algorithm, (6) is said to be 
absolutely stable if for a given h  all the roots φz  of (13) satisfy ,1<φz  

( ).1...,,2,1 −=φ r  

Definition 3.5 (Region of absolute stability). The region R  of the 

complex h -plane such that the roots of the polynomial ( )hz,Π  lie within 

the unit circle whenever h  lies in the interior of the region is called the 
region of absolute stability. 

Definition 3.6 (A(α)-stability). A linear multistep method is A(α)-stable, 

⎟
⎠
⎞⎜

⎝
⎛ π∈α 2,0  if the region of absolute stability includes the infinite wedge 

{ ( ) }.arg: α<−π=α hhS  (15) 

We established from our computation that method (6), is absolutely stable 
and indeed A(α)-stable. The A(α)-stability property is shown in Figure 1. 
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Figure 1. A(α)-stability of method (6). 

4. Implementation 

The methods obtained from Tables 1 and 2 are combined to form a block 
method given in vector notation by 

[ ( ) ( )],mmmm yFByFDhyEYA ++= λ−γ  (16) 

where A  is a square identity matrix of order 14; BDE ,,  are constant 

coefficient matrices, ( ) ,, 1,1,
T

jjjjm yyyyY uu +μ++μ+ ′′=  ( ) ,, T
jj yyy ′  

( ) ( ) ( ) ( ),,, jm
T

ijjm fyFffYF u == +μ+  λ is the power of derivative in (4) 

and γ is the order of the problem. 

The constant coefficient matrices are obtained as follows: 
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The block formulation for the implementation of these schemes is according 
to [8]. A single application of the revised block formula generates 
simultaneously, approximate solutions and first derivative solutions at the 
step points 1, +jj xx  and all the offstep points: ....,,1, nux uj =μ+  The 

procedure is a block by block procedure where initial conditions are obtained 
explicitly at 1...,,1,0,1 −=+ Njx j  using the computed values .1+jy  The 

starting values for subsequent block is then computed from the previous 
block for the implementation of the method over the subintervals: 
[ ] [ ] [ ].,...,,,,, 12110 NN xxxxxx −  

5. Numerical Experiments 

In this section, numerical experiments are performed using some sample 
problems to test the efficiency and accuracy of the hybrid methods. The 
results are compared with results obtained from existing methods in Tables 3, 
4 and 5 respectively, using in each case a fixed step size .01.0=h  

Problem 5.1. 

( ) ( ) ( ) 2
10,10,02 =′==′−′′ yyyxy  

Theoretical solution: 

.
2
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+=
x
xy  
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Table 3. Comparison of absolute errors and CPU time between method (6), 
[3] and [8] for Problem 5.1 

 

Problem 5.2. 

( )
2
3

6,4
1

6,022

2
=⎟

⎠
⎞⎜

⎝
⎛ π′=⎟

⎠
⎞⎜

⎝
⎛ π=+

′
−′′ yyyy

yy  

Theoretical solution:  

.sin2 xy =  

Table 4. Comparison of absolute errors and CPU time between method (6) 
and [1] for Problem 5.2 

 

Problem 5.3. 

( ) ( ) 2,20,10,0 =ψ=′==ψ+′′ yyyy  

Theoretical solution:  

( ) .2sin2cos xxxy +=  
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Table 5. Comparison of absolute errors and CPU time between method (6) 
and [2] for Problem 5.3 

 

6. Conclusion 

An A(α)-stable continuous implicit one step hybrid method which is 
both efficient, accurate and economical has been developed in this paper. It 
has been established that the order .8=p  method obtained converges very 

fast for fixed step sizes as shown in the time it takes to obtain solutions at the 
respective grid points. It is worth noting that apart from serving as starting 
values, the simultaneous block solutions can themselves be used as 
integrators. It is also evident that derivative solutions can be obtained at 
individual grid points as well. Numerical experiments performed on sample 
problems yielded the results reported in Tables 3, 4 and 5 respectively. In 
view of the comparison made with solutions obtained from block method [8], 
block predictor-corrector method [2] and block hybrid predictor-corrector 
method [3], we observed that method (6) gave better result; yielding very low 
error of approximation and used lesser CPU time (in seconds) than these 
methods. The method developed is recommended for the direct solution of 
higher order initial value problems of ordinary differential equations, even 
for stiff problems. 
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