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ABSTRACT 

We prove some new results on existence of solutions to first-order non classical ordinary differential equations 

associated with Kurzweil equations. Our existence results lean on new definitions of lower and upper solutions introduced 

in this article. The existence of a maximal solution is guaranteed when the local uniqueness property in the future is 

established. These results could be of great value in applications to the theory of non classical differential equations in 

locally convex spaces. 
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1.0 INTRODUCTION 

It is well known that, an important technique in the theory of differential equations is concerned with estimating a 

function satisfying a differential inequality by means of the extremal solutions of the corresponding differential equation. 

This comparison principle has been widely employed by many authors in studying the qualitative theory of differential 

equations [8-10]. Problems of extremal solutions of ordinary differential equations have attracted considerable attention in 

the literature. Some extremal results at the classical setting can be found in the works of [2, 9-11].  

If we desire to develop a similar comparison result in the present noncommutative quantum setting in certain 

locally convex spaces we must first establish existence of maximal and minimal solutions which can then be used to prove 

comparison results. These results could be of great value in applications to the theory of non classical differential equations 

in locally convex spaces. In this paper, employing the properties of the Kurzweil equations we prove existence of maximal 

solutions.  

We strongly rely on the formulations of [1]. The results obtained here are generalizations of similar results in [12] 

concerning classical ordinary differential equations to this present non commutative quantum setting involving unbounded 

linear operators on a Hilbert space. 

The rest of this paper is organized as follows. In section 2 we present some definitions, preliminary results and 

establish results concerning the local existence and uniqueness of solution of the non classical ordinary differential 

equation (ODE). In section 3, we present the major results concerning maximal (minimal) solution of QSDE.  

2.0 PRELIMINARY RESULTS AND NOTATIONS  

In what follows, as in [1, 6-8], we employ the locally convex topological state space Ã of noncommutative 

stochastic processes and adopt the definitions and notations of the spaces Ad(Ã), Ad(Ã)wac ,     
 

    ,     
      , BV(Ã ) 

and the integrator processes      
     for f , g ∈ L 

∞
γ, loc( +),   ∈ L 

∞
B(γ) , loc( +), and E, F, G, H lying in       

        . 

For the definitions of the classes of Kurzweil integrable sesquilinear form-valued maps that belong to the following classes 

C (Ã × [a, b], W) and  (Ã × [a, b], h   , W) we refer the reader to the references [4, 6]. 
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We consider the following equivalent form of quantum stochastic differential equation (1.1) introduced in [1] 

given by 

 
 

  
                          

                                   (2.1) 

Where     lie in some dense subspaces of some Hilbert spaces which has been defined in [4-6]. For the explicit 

form of the map                     appearing in equation (2.1), see [4-6]. Equation (1.3) is a first order non-classical 

ordinary differential equation with a sesquilinear form valued map P as the right hand side. 

In [1], the equivalence of the non-classical ordinary differential equation (2.1) with the associated Kurzweil 

equation 

 

   
                          ,                     (2.2) 

was established along with some numerical approximations. The map F in (1.2) is given by 

               
 

 
                        (2.3) 

Definition 1 

 Let               be a non decreasing function defined and continuous from the left on        , and let 

           be a continuous, increasing function with       .  

 Let                     denote the space of stochastic process that are weakly absolutely continuous and 

of bounded variation. 

 Denote by   the class                    

The following result has been established in [6]. 

2.1 Lemma: If            is a solution of (2.2) and the map                       satisfies the                   

condition (1.1) in [3] then  

                                                            

for  ∈       and  

                                                           for  ∈       where 

                                for  ∈       and                                 for  ∈

        

Next we consider the case when the solution has to be a function of bounded variation which in this case is 

continuous from the left and has discontinuity of the first kind given by Lemma 2.1. That is if for some   ∈       the 

value of the solution x of (2.2) is          then the right limit at the point    fulfils  

                                        

                                   (2.4) 

Because of the possible discontinuities of a solution it can happen that for some   ∈    that is for some                
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       ∈        , the value (2.4) does not belong to         and this means that the corresponding solution x with 

         jumps off the open set         at the moment    and cannot be continued for       

Therefore, to prove a local existence theorem for a solution of (1.2) satisfying the initial condition  

                                         ∈                (2.5) 

The next theorem establishes the local existence of solution for equation (2.2). 

Theorem 2.2: Assume that the following hold;  

 The map                   is of class                    

        ∈          is such that (2.4) is satisfied.  

Then there exist         such that on the interval               there exists a solution                      

                   of the equation (2.2) for which           

Proof: The proof is a simple adaptation of arguments employed in Theorem 3.1 in [3] to the present non commutative 

quantum setting. 

Next we establish some conditions that guarantee the existence of a maximal solution. 

Since we assumed that the sesquilinear form valued map F is of class   and that the function     is continuous 

from the left, a solution of the Kurzweil equation associated with QSDE (2.1) can be in general continued to the right for 

increasing values of the independent variable. 

If the local uniqueness of a solution for increasing values of the independent variable is ensured with the condition 

that            is continuous, nondecreasing, W(r) > 0, for r > 0 and W(0) = 0, then a unique forward maximal 

solution of the equation (2.2) can be defined when an initial condition          is prescribed for some 

  ∈                    and   ∈    It is obvious that a maximal forward solution can be defined only if         ∈   

        i.e. if                  ∈   because otherwise for possible solution x it can happen that        for      

and this would contradict the definition of a solution. Assume therefore that (2.4) ∈ A for every  ∈     ∈        this 

implies that there are no points in          from which the solution of (2.2) can jump off the space A. 

Definition 

 Let                    be a solution of (2.2) on            The solution        of (2.2) where 

            or                 is called prolongation of   if             and           for 

 ∈          . If              i.e.     then I is called a proper prolongation of x to the right. 

 If         ∈          then a solution of (2.2) with          defined for      is maximal if there is a value 

                  such that x exists on                 and cannot be prolonged to a larger interval of the 

form        where                 or alternatively, there is no proper prolongation to the right of the solution 

                     of (2.2). 

3.0 MAJOR RESULTS 

3.1 Proposition: Assume that the map                   is of class   and         ∈           If equation (2.2) has 

the local uniqueness property in the future then there exists an interval   with the left end point    and a function        
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such that    ∈  ,          and        is a maximal solution of (2.2). The interval J and the function x are uniquely 

defined by the initial condition          and the maximality property of the solution. 

Proof: Assume that           ,           are two maximal solutions of (2.2) with                  . The local 

uniqueness property implies             for every  ∈                 Define            for  ∈                          

and              for  ∈     Then             is a solution of (2.2) on         Since we assumed that the solutions 

      are maximal, we have          and             for  ∈  . Hence the maximal solution x is unique. 

Next we show that a solution        exists. Denote by   the set of all solutions        of (2.2) with      

         and the interval of definition J for which    is the left endpoint of Jx. The set   is nonempty by the  local 

existence of a solution given in Theorem (2.2). Define      ∈    If  ∈        where     ∈   then z(t) = y(t) by the 

assumption of the uniqueness. Hence if we define        by the relation x(t) = y(t) where  ∈   and  ∈     we obtain a 

solution of (2.2) defined on   which satisfies the initial condition         . Hence from the definition of J we can see that 

       is a solution of (2.2). 

3.2 Proposition: Assume that the map                   is of class   and         ∈           Assume that (2.2) has 

the local uniqueness property in the future. Let        be a maximal solution of (2.2) with          where   ∈   is the 

left end point of the interval  . Then                        

Proof: It is clear that for the maximal interval   we have  ∈        Let   ∈    Take        ∈    Theorem 2.2 yields the 

existence of a     such that on           there is a solution                      of (2.2) such                                   

that            . The point        is a point of local uniqueness in the future and therefore x is a prolongation of v and 

           . This means that relatively to (a, b) the interval   is open at its right endpoint and the statement holds true.  

3.3 Proposition: Assume that the map                   is of class   and         ∈           Assume that                 

equation (2.2) has the local uniqueness property in the future. Let             be a maximal solution of (2.2) and let 

                            ∈    ∈         is compact in ℂ. Then there exists  ∈        such that          

  for  ∈         

Proof: Assume the contrary that the statement does not hold. Then there is a sequence   ∈         ∈    such that 

              and           ∈    ∈    Since M is assumed compact and       the sequence            ∈  

contains convergent subsequence which we denote again by            ∈   Then                   and        ∈

                 By Theorem 2.2 there exists a δ > 0 such that on         there is a solution v of (2.2) with 

      . Define               by  

            ∈                   ∈           

Now assume that   ∈        and   ∈        . Then for  ∈    sufficiently large we have   ∈        and  

                                                    
  

 

 

  

  

  
 

                                                    
 

  

  

  
  

                                                             
 

  
 

                                                          
 

  
       (3.1) 
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By Lemma 2.1 in [3] 

                  
 

  
                 

Since h is continuous from the left and                  we have  

                       
 

  
   

Using this and the               we take k→∞ in (3.1) and obtain  

                  
  

  
                       

For all other possible positions of      ∈           we obtain the same relation directly from the definition of 

u. In this way we obtain               is a solution of (2.2) on          which is a proper prolongation of the 

solution x which is assumed to be maximal. This is again a contradiction and hence the result is proved.  
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