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ABSTRACT: One of the open problems known to researchers on the application of 

nonlinear conjugate gradient methods for addressing unconstrained optimization problems is 

the influence of accuracy of linear search procedure on the performance of the conjugate 

gradient algorithm. Key to any CG algorithm is the computation of an optimalstep size for 

which many procedures have been postulated. In this paper, we assess and compare the 

performance of a modified Armijo and Wolfe line search procedures on three variants of 

nonlinear CGM by carrying out a numerical test. Experiments reveal that our modified 

procedure and the strong Wolfe procedures guaranteed fast convergence. 
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INTRODUCTION 

 

First introduced by Hestenes and Stiefel [19] in 1952, and later extended to the nonlinear 

form, extensive works have been carried out on nonlinear conjugate gradient methods by 

Daniel [10], Dixon et al [12], Hager and Zhang [17], Beale [7], Andrei [2], Yabe and Takano 

[28], Yuan and Lu [29], just to mention a few. 

The nonlinear CGM for addressing optimization problems considers an unconstrained 

minimization problem of the form 

 

    ( )               (1) 

 

where   is a  dimensional Euclidean space and        is a continuously 

differentiable function. When   is large (say       ) the related problem results in large 

scale minimization problem. The CGM is a very suitable approach for solving large scale 
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minimization problems [5, 8, 25]. In order to solve such problems, there is always a need to 

design an algorithm that avoids high storage of arrays and reduces the cost of computation. 

A nonlinear CGM generates a sequence of point   , with    , by guessing an initial point 

     , and making use of the recurrence relation             .   is called the search 

direction and can be generated by using the relation 

 

               ,               (2) 

 

where       (  ), that is, the gradient of   at   , and    is the CG update parameter. 

Different conjugate gradient methods correspond to different choice of    [17]. 

One notable feature of the nonlinear CGM is the involvement of the line search procedure in 

its algorithm. For a strictly quadratic objective function, the CG algorithm with exact line 

search converges finitely [26]. In case of nonlinear (non-quadratic) function, it is more 

appropriate and cost efficient to adopt the inexact line search procedure although in most 

cases, accuracy is sacrificed for global convergence. The table below where          , 

is presented chronologically for some choices of   . 

 

Table 1: Different update parameters for CGM 

S/N Author(s) Year CG Parameter 

1 Hestenes and Stiefel [17] 1952 
  

   
    

   

  
   

 

2 Fletcher and Reeves [13] 1964 
  

   
‖    ‖

 

‖  ‖ 
 

3 Daniel [10] 1967 
  

  
    

    (  )  

  
    (  )  

 

4 Polak, Ribiere and Polyak [21,22] 1969 
  

    
    

   

‖  ‖ 
 

5 Fletcher [14] 1987 
  

   
‖    ‖

 

   
   

 

6 Liu and Storey [20] 1991 
  

   
    

   

   
   

 

7 Dai and Yuan [9] 2000 
  

   
‖    ‖

 

  
   

 

8 Hager and Zhang [16] 2005 
  

  (      

‖  ‖
 

  
   

)

 
    

  
   

 

9 Bamigbola, Ali and Nwaeze [6] 2010 
  

     
    

   

  
   

 

 

It is more preferable in large scale problems to make use of    that do not require the 

evaluation of Hessian matrix that often require high computer storage capacity. In case of 

exact line search, equivalence in the methods can be established for strongly convex 

quadratic functions. For a different class of functions, this important feature is lost. In such 

instances, the inexact line search approaches are employed. Among these are the Armijo and 

Wolfe line search procedures. Our aim in this work is to verify the suitability of these two 

procedures on the nonlinear conjugate gradient algorithm. 
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The remainder of this article is structured as follows. In section 2, an overview of line search 

technique as applied to CGM is presented. Focus is given to inexact line search in section 3, 

while in section 4, the two line search procedures adopted in this paper are considered by 

establishing their theoretical frameworks and outlining the essential algorithms. In section 5, 

experiments were carried out by incorporating the search procedures in the nonlinear CG 

algorithm. The work is concluded by stating few remarks on the results generated and 

possible future work. 

 

LINE SEARCH IN CONJUGATE GRADIENT METHODS 

 

In its quest to obtain an optimal value to an objective function, what a line search procedure 

in a CG algorithm does is to compute a search direction    and then makes a decision on how 

far to move along such direction. The line search iteration followed to attain this end is given 

by where    is the step size. The challenges of finding a good    are both in avoiding that the 

step size is too long or too short [18]. On common and earliest approach of finding   , known  

as exact line search, was to find a    such that      

            (      )   ,   .        (3) 

 

This approach is easily implemented for quadratic objective functions and can be amendable 

to non-polynomial functions upon expansion in Taylor’s series. This method, though usable 

for nonlinear functions, is considered to be very costly. Researchers are therefore forced to 

resort to an approximate method called the inexact line search. For this approach, the basic 

idea is to (i) formulate a criterion that ensures the steps are neither too long or too short (ii) 

guess a good initial step size and (iii) construct a sequence of updates that satisfy the criterion 

in (i) after every few steps. A lot of have been done on the formulation of different criteria. 

Among these as highlighted by Andrei [3] are Wolfe [27], Goldstein [15], Armijo [4], Powell 

[24], Potra and Shi [23], Dennis and Schnabel [11]. The most widely used is based on the 

Wolfe line search rule [3]. In what follows, we give more attention to the inexact line search. 

 

THE ARMIJO AND WOLFE LINE SEARCH RULES 

 

Armijo line search rule: of the several inexact line search methods, the Armijo rule among 

others guarantees a sufficient degree of accuracy, hence ensuring the convergence of a 

conjugate gradient algorithm. Two parameters are key to this rule:      and    . 

Assume a minimization of  ( ) such that   ( )    (this indeed is true of every line search 

problems arising in descent algorithm). A first order approximation of  ( ) at    is 

 ( )     ( ). We give the following consequential definition 

 ̂( )   ( )      ( ),      .     (4) 

A step size   is considered by the Armijo rule to be acceptable provided the following 

conditions (criteria) are fulfilled: 

•  (  )   ̂(  ) 

•  (   )   ̂(   )         

The two conditions above are generally referred to as the Armijo line search criteria. While 

the first of the conditions assures sufficient decrease in the objective function, the other 

prevents the step size from becoming unbearably too small. These two can be put together as 

    (      )   (  )      (  )
   .    (5) 
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With the use of this rule, a range of acceptable step sizes is produced. To implement the 

Armijo rule to find such an acceptable step size usually involves an iterative procedure where 

fixed values of   and an initial      are assumed. The first of the following algorithms 

describes the Armijo line search rule while the other gives a simple modified form. The 

modification only involves the parameter   as can be seen. 

 

Algorithm 1: Armijo Line Search Procedure 

Step 1:  Choose   (  
 

 
),   (   ) and set     

                        Step 2: While  (      )   (  )      (  )
   , set      for some   (      )  

(       ), i.e.,   is chosen randomly from the open set (       ) 

                        Step 3: Terminate loop with      and set             .   

                        

                     Algorithm 2:Modified Armijo Line Search Procedure 

Step 1: choose   (  
 

 
),   (   ) and set     

                        Step 2: while  (      )   (  )      (  )
   , set     for some   (      )  

(       ), i.e.,   is chosen randomly from the open set (       ) 

                        Step 3: Terminate loop with      and set             .   

 

Wolfe Line Search Rule: As stated earlier, the Armijo rule  (      )   (  )  

    (  )
    for some   (  

 

 
), ensures a sufficient decrease in the objective function. If 

we denote the right hand side of the above inequality, being linear, as  ( ), the function  ( ) 

has a negative slope given by    (  )
   , which lies above the graph of a univariate 

function  ( )   (      ),    , because   (  
 

 
). A condition for sufficient 

decrease is that   is acceptable only if  ( )   ( ). This condition alone is not sufficient in 

itself to ensure that a CG algorithm makes remarkable progress towards an optimal solution. 

Thus, a second requirement is usually desirable which requires   to satisfy  

    (       )
       (  )

         (6) 

 

with   (   ). Observe that the left hand side of () is simply the derivative of  (  ). 

Condition () is known as the curvature condition and it ensures that   (  )     ( ). This 

assumption is ideal since if   ( ) is strongly negative, it is an indication that   can be 

reduced significantly by a movement along the chosen   . The converse is true. Conditions 

(5) and (6) are collectively known as the Wolfe condition. We restate it as follows: 

•  (       )   (  )      (  )
    

•   (       )
       (  )

    

with        

There are however cases where a step size may satisfy the conditions (5) and (6) above 

without necessarily being close to a minimizer of  . In order to close this gap, a more 

stringent two-sided test on the slope of   which forces    to lie in atleast a neighbourhood of 

a local minimizer of   is usually resorted to. This test is referred to as the strong Wolfe 

condition and is stated as follows: 

•  (       )   (  )       (  )
    

• |  (       )
   |   |  (  )

   | 
With         
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This stronger condition restrains the derivative   (  ) from becoming excessively positive. 

On the convergence properties of these conditions, [30] and [27] are very good works to 

consider. 

 

Algorithm 3: Strong Wolfe Line Search Procedure 

Step 1: Choose   (   )and       ,      . Set     

Step 2: If  (       )   (  )       (  )
         

 and |  (       )
   |   |  (  )

   |     

 Take      

Step 3: Terminate loop with      and set             

Algorithm 4: Nonlinear Conjugate Gradient Method 

Step 1:  Given      , set       . If     , stop 

Step 2:  Find            (      ), with    . 

                        Step 3: Update the variables    and    according to the iterative scheme              

and Table 1 respectively.   

                        Step 4: Determine    and update   . 

                        Step 5: Set      , and go repeat the process from step 2. 

 

Numerical Experiments 

 

The numerical results of our work are reported in Table to. Comparison was made for three 

well established variants of the nonlinear conjugate gradient methods. These are FR, PRP, 

and HS. This we achieved by incorporating each of algorithms (1) – (3) into the conjugate 

gradient algorithm (4). The test functions are drawn from [1]. The problems were tested for 

different values of   ranging from      to        . This is in conformity to the idea of 

large scale problems. The following symbols have been adopted. FN – function name,   – 

dimension,   – number of iteration, Ext – computer execution time,   - optimal value of the 

objective function  , ‖  ‖ - norm of the gradient of   . The stopping criterion was taken as 

‖  ‖      . This is very suitable for large scale problems. 

  

The tested functions are:1 – Extended Rosenbrook Function, 2 – Diagonal 4 Function, 3 – 

Extended Himmelblau Function, 4 – Extended Beale Function, 5 – Modified Extended Beale 

Function, 6 – Extended Block Diagonal BD1 Function, 7 – Generalized Tridiagonal-1 

Function, 8 – Generalized White and Holst Function (     ), 9 – Extended Tridiagonal-1 

Function, 10 – Extended Three Exponential Terms Function. 
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Table 2: Numerical Results for Armijo Line Search Procedure. 

               

         ‖  ‖          ‖  ‖          ‖  ‖ 

1 5000 

10000 

107/1.19 

520/11.58 

8.7e –

15/3.5e – 0.7 

3.1e– 13/ 

7.9e – 07 

174/3.37 

178/6.48 

1.79e –

13/9.0e – 07  

4.14e– 

15/5.9e – 07 

85/0.95               

87/1.44 

7.2e –

16/7.6e – 07  

4.6e– 

16/6.1e – 07 

2 5000 

10000 

30/0.46 

27/0.72 

1.4e – 16/ 

3.5e – 07 

4.00e – 

16/5.6e – 07   

37/0.92 

37/1.43 

2.35e – 

16/4.0e – 07  

4.71e – 

16/5.6e – 07  

Test Failed 

Test Failed 

Test Failed 

Test Failed 

3 5000 

10000 

34/0.86 

36/1.38 

3.9e– 

15/7.2e – 07   

1.3e – 

15/3.4e – 07 

34/0.73 

34/1.28 

3.5e– 

15/6.2e – 07  

7.0e  – 

15/8.8e – 07  

61/0.95 

Test Failed 

7.4e –

15/6.2e – 07  

Test Failed 

4 5000 

10000 

102/3.30 

178/12.09 

1.8e  – 

13/5.5e – 07 

3.5e  – 

14/5.8e – 07  

221/16.37 

220/33.40 

8.5e  – 

15/9.0e – 07  

3.7e  – 

13/7.6e – 07 

Test Failed 

Test Failed 

Test Failed 

Test Failed 

5 5000 

10000 

195/8.76 

806/79.81 

1.5e02/8.0e 

– 07 

3.1e02/1.4e 

– 06 

234/13.52 

240/26.53 

1.5e02/1.2e 

– 06  

3.1e02/1.4e 

– 06  

153/2.88 

71/6.13 

1.5e02/4.4e– 

08 

3.1e02/2.8e 

– 06 

6 5000 

10000 

93/1.64 

71/2.78 

2.8e – 

09/4.6e – 07  

1.2e – 

12/8.4e – 08  

3/0.29 

3/0.55 

6.1e – 

60/3.1e – 45  

1.2e – 

59/4.4e – 45  

9/0.28 

Test Failed 

4.7e – 

01/8.0e – 01 

Test Failed 

7 5000 

10000 

189/3.52 

97/2.64 

6.4e –

02/3.8e – 01 

5.2e– 

14/6.8e – 07 

36/1.21 

36/2.37 

6.1e –

15/2.2e – 07  

9.7e– 

17/2.8e – 08 

233/2.70 

1188/33.62 

3.3e –

14/9.3e – 07 

3.0e– 

07/3.1e – 03 

8 5000 

10000 

82/1.78 

82/3.49 

4.0e00/5.5e 

– 07  

4.0e00/5.5e 

– 07  

113/3.63 

113/7.98 

4.0e00/6.2e 

– 07  

4.0e00/6.2e 

– 07  

77/1.64 

77/3.20 

4.0e00/2.5e 

– 07  

4.0e00/2.5e 

– 07  

9 5000 

10000 

481/10.37 

162/6.76 

5.0e03/3.4e 

– 05 

1.0e04/1.3e 

– 05 

563/11.29 

626/33.44 

5.0e03/7.9e 

– 07 

1.0e04/1.2e 

– 06  

788/30.25 

372/10.93 

5.0e03/4.4e 

– 07 

1.0e04/3.8e 

– 06 

10 5000 

10000 

131/2.27 

1424/25.82 

6.4e03/2.7e 

– 06  

6.4e03/2.1e 

– 07  

348/6.42 

129/5.62 

6.4e03/1.1e 

– 06  

1.3e04/4.0e 

– 06  

673/9.59 

137/3.93 

6.4e03/5.5e 

– 06  

1.3e04/7.7e 

– 06 
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Table 3: Numerical Results for Modified Armijo Line Search Procedure. 

               

         ‖  ‖          ‖  ‖          ‖  ‖ 

1 5000 

10000 

107/1.25 

520/11.59 

8.7e –

15/3.5e – 0.7 

3.1e– 13/ 

7.9e – 07 

174/3.74 

178/6.94 

1.79e –

13/9.0e – 07  

4.14e– 

15/5.9e – 07 

85/0.90 

87/1.59 

7.2e –

16/7.6e – 07  

4.6e– 

16/6.1e – 07 

2 5000 

10000 

25/0.56 

27/0.88 

1.2e – 15/ 

9.7e – 07 

4.00e – 

16/5.6e – 07   

37/0.90 

37/1.59 

2.3e – 

16/4.0e – 07  

4.7e – 

16/5.6e – 07  

Test Failed 

Test Failed 

Test Failed 

Test Failed 

3 5000 

10000 

53/0.83 

53/1.48 

6.0e– 

15/5.7e – 07   

1.2e – 

14/8.2e – 07 

34/0.73 

34/1.28 

3.5e– 

15/6.2e – 07  

7.0e  – 

15/8.8e – 07  

61/1.06 

Test Failed 

7.4e –

15/6.2e – 07  

Test Failed 

4 5000 

10000 

102/3.37 

178/11.98 

1.8e  – 

13/5.5e – 07 

3.5e  – 

14/5.8e – 07  

221/16.38 

220/33.86 

8.4e  – 

15/9.0e – 07  

3.7e  – 

13/7.6e – 07 

Test Failed 

Test Failed 

Test Failed 

Test Failed 

5 5000 

10000 

195/4.80 

909/50.88 

1.5e02/8.0e 

– 07 

3.1e02/2.8e 

– 07 

234/13.52 

240/26.53 

1.5e02/1.2e 

– 06  

3.1e02/1.4e 

– 06  

53/1.68 

71/3.16 

1.5e02/4.4e– 

08 

3.1e02/2.8e 

– 06 

6 5000 

10000 

93/1.00 

71/1.48 

2.8e – 

09/4.6e – 07  

1.2e – 

12/8.4e – 08  

3/0.32 

3/0.42 

6.1e – 

60/3.1e – 45  

1.2e – 

59/4.4e – 45  

9/0.23 

Test Failed 

4.5e – 

01/8.0e – 01 

Test Failed 

7 5000 

10000 

189/1.85 

97/1.55 

6.4e –

02/3.8e – 01 

5.2e– 

14/6.8e – 07 

36/0.78 

36/1.25 

6.1e –

15/2.2e – 07  

9.7e– 

17/2.8e – 08 

233/1.53 

2896/39.18 

3.3e –

14/9.3e – 07 

5.2e– 

14/8.7e – 07 

8 5000 

10000 

82/1.40 

82/1.99 

4.0e00/5.5e 

– 07  

4.0e00/5.5e 

– 07  

113/2.00 

113/4.15 

4.0e00/6.2e 

– 07  

4.0e00/6.2e 

– 07  

77/0.78 

77/1.75 

4.0e00/2.5e 

– 07  

4.0e00/2.5e 

– 07  

9 5000 

10000 

481/5.35 

162/2.96 

5.0e03/3.4e 

– 05 

1.0e04/1.3e 

– 05 

563/5.65 

626/12.99 

5.0e03/7.9e 

– 07 

1.0e04/1.2e 

– 06  

788/14.87 

372/5.72 

5.0e03/4.4e 

– 07 

1.0e04/3.8e 

– 07 

10 5000 

10000 

301/3.31 

99/1.85 

6.4e03/3.7e 

– 06  

1.3e04/3.1e 

– 06 

2037/16.85 

3005/46.20 

6.4e03/9.7e 

– 07 

1.3e04/8.0e 

– 07 

701/4.99 

137/2.14 

6.4e03/5.0e 

– 06  

1.3e04/7.7e 

– 06 
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Table 4: Numerical Results for Strong Wolfe Line Search Procedure. 

               

         ‖  ‖          ‖  ‖          ‖  ‖ 

1 5000 

10000 

107/2.49 

520/26.96 

8.7e –

15/8.9e – 

0.7 

3.1e– 13/ 

7.9e – 07 

174/8.74 

178/17.54 

1.8e –

13/9.0e – 07  

4.1e– 

15/5.9e – 07 

85/1.52               

87/2.75 

7.2e –

16/7.6e – 07  

4.6e– 

16/6.1e – 07 

2 5000 

10000 

17/0.50 

17/0.92 

1.0e – 16/ 

2.4e – 07 

2.0e – 

16/3.3e – 07   

37/1.31 

37/2.49 

2.3e – 

16/4.0e – 07  

4.7e – 

16/5.6e – 07  

Test 

Failed 

Test 

Failed 

Test Failed 

Test Failed 

3 5000 

10000 

53/0.93 

53/1.72 

6.0e– 

15/5.7e – 07   

1.2e – 

14/8.0e – 07 

97/4.12 

97/8.25 

2.1e– 

15/6.6e – 07  

4.1e  – 

15/9.3e – 07  

61/1.15 

Test 

Failed 

7.4e –

15/6.2e – 07  

Test Failed 

4 5000 

10000 

102/4.65 

178/17.00 

1.8e  – 

13/5.5e – 07 

3.5e  – 

14/5.8e – 07  

221/29.25 

220/61.34 

8.4e  – 

15/9.0e – 07  

3.7e  – 

13/7.6e – 07 

Test 

Failed 

115/15.14 

Test Failed 

2.4e –

14/7.7e – 07 

5 5000 

10000 

362/32.83 

882/147.48 

1.5e02/3.7e 

– 07 

3.1e02/3.6e 

– 06 

259/23.14 

298/51.09 

1.5e02/1.6e 

– 07 

3.1e02/8.7e 

– 07 

71/5.80 

Test 

Failed 

1.5e02/9.5e– 

07 

Test Failed 

6 5000 

10000 

93/1.54 

71/2.96 

2.8e – 

09/4.6e – 07  

1.2e – 

12/8.4e – 08  

3/0.49 

3/0.69 

6.1e – 

60/3.1e – 45  

1.2e – 

59/4.4e – 45  

Test 

Failed 

17/1.06 

Test Failed 

8.6e –01 

/6.0e –01 

7 5000 

10000 

182/4.50 

1246/54.32 

2.6e –

14/6.1e – 07 

2.2e– 

13/9.7e – 07 

95/3.84 

100/7.21 

1.2e –

15/1.0e – 07  

4.7e– 

14/9.3e – 07 

883/13.19 

Test 

Failed 

3.1e –

14/1.0e – 06 

Test Failed 

8 5000 

10000 

81/2.21 

81/4.39 

4.0e00/9.5e 

– 07  

4.0e00/9.5e 

– 07  

113/4.84 

113/10.22 

4.0e00/8.5e 

– 07  

4.0e00/8.5e 

– 07  

77/2.05 

77/4.00 

4.0e00/2.5e 

– 07  

4.0e00/2.5e 

– 07  

9 5000 

10000 

5596/189.19 

1700/92.35 

5.0e03/1.3e 

– 06 

1.0e04/1.3e 

– 06 

1044/13.38 

712/27.17 

5.0e03/3.9e 

– 07 

1.0e04/7.8e 

– 07 

556/6.16 

873/19.81 

5.0e03/7.1e 

– 07 

1.0e04/6.5e 

– 07 

10 5000 

10000 

2737/56.81 

99/3.47 

6.4e03/9.3e 

– 07 

1.3e04/3.1e 

– 06 

2037/31.36 

3005/88.79 

6.4e03/9.8e 

– 07 

1.3e04/8.0e 

– 07 

701/9.18 

123/3.34 

6.4e03/5.1e 

– 06  

1.3e04/8.0e 

– 06 
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REMARKS 

 

From the above tables, we have summarized our observations in order to simplify our 

inference. Wherever a decrease in the objective function fails to occur or the method fails for 

a particular function, the value “Test Failed” is assigned. 

 

Table 5: Inference on Armijo Line Search Rule (ALSR) 

Inferential Parameter           

Average of       242.35/9.06 168.95/8.84 286.50/7.75 

Solvability Ratio 20/20 20/20 14/20 

Acceptability Ratio 15/20 15/20 8/14 

 

Table 6: Inference on Modified Armijo Line Search Rule (MALSR) 

Inferential Parameter           

Average of       191.30/5.52 397.20/9.80 403.36/5.68 

Solvability Ratio 20/20 20/20 14/20 

Acceptability Ratio 15/20 17/20 10/14 

             

Table 7: Inference on Strong Wolfe Line Search Rule (SWLSR) 

Inferential Parameter           

Average of       708.85/32.36 442.15/19.76 286.31/6.55 

Solvability Ratio 20/20 20/20 13/20 

Acceptability Ratio 16/20 20/20 10/13 

 

Table 8: Comparing Rules 

Inferential Parameter                  

Average of       697.80/25.65 991.86/21.00 1437/58.67 

Solvability Ratio 54/60 54/60 53/60 

Acceptability Ratio 38/54 42/54 46/53 

 

It is clear from the above tables that the strong Wolfe line search rule performs better than the 

other two rules because more it generated the highest number of results that satisfy the 

stopping criterion‖  ‖      . It is evident that, though the average number of iterations 

generated with the Modified ALSR is higher than that of ALSR itself, the average execution 

time has however reduced.  

 

In the future we hope to focus more attention on the stopping criteria. Several of them are 

known in literature but the task still remains to find out which is more suitable or to formulate 

a more robust criteria that suits a wide range of problems. 
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