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ABSTRACT  
 
 This paper deals with the dynamic behavior of a double-beam system traversed by a uniform partially 
distributed moving load. The system is composed of two identical parallel homogeneous simply-supported 
uniform Rayleigh beams of equal lengths which are continuously connected by a viscoelastic core. The forced 
vibration problem is solved by the application of the finite Fourier and Laplace integral transformations. Using a 
numerical example, various plots of the deflections of the beams are presented and discussed for different values 
of the speed, rotatory inertia and fixed length of the load. 
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Introduction 
 
 The response problem of a single elastic beam traversed by a moving load at a specified speed has attracted 
the attention of many researchers since 19th century (See References). Such problems have been extensively 
studied in connection with machining process, guide-way systems and design of railway bridges (Rao, 2000; 
Shadnam, et. al, 2001). Other practical applications include the modern high speed precision machinery 
processes (Katz, et. al, 1987). Various explicit solutions to different aspects of these problems involving the 
effect of moving load on a single beam can be found in Fryba (1972), which contains extensive pertinent 
references. However, and in spite of its practical importance in the fields of civil, mechanical and aerospace 
engineering, there exists few investigations (when compared to a single-system) involving the vibrations of two 
beam-models. 
 Few, notable applications of beam theory to the cases of the vibration of elastically connected two-beam 
systems include the works of the following scholars (Seelig and Hoppmann II, 1964.a & 1964.b; Kessel, 1966; 
Kessel and Raske, 1967 &1971; Chonan, 1975; Chonan, 1976; Hamada et al., 1983; Yamaguchi and Saito, 
1984; Kukla and Skalmierski, 1994; Kukla, 1994; Vu et al., 2000; Oniszczuk, 2000 & 2003; Gbolagade et al., 
2003; Erol and Gurgoze, 2004; Gbadeyan et al., 2005; Abu-Hilal, 2006 and Gbadeyan et al., 2011).  
 Specifically, Seelig and Hoppmann II’s studies appear to be the first on the vibration of elastically 
connected double beam systems (Seelig and Hoppmann II, 1964.a, 1964.b). They (1964.a) studied the problem 
of obtaining the normal mode of a double-beam system. The development and solution of the differential 
equations of motion of an elastically connected double-beam system subjected to an impulsive load were 
presented in Seelig and Hoppmann II (1964.b). Kessel (1966) derived resonance conditions for an elastically 
connected double‐beam system in which one of the members is subjected to a moving point load that oscillates 
longitudinally along the beam about a fixed point. The magnitude of the load is also considered to vary 
sinusoidally. The analysis indicates that, in addition to the usual case of resonance—which occurs when the 
frequency of load magnitude variation corresponds to a principal frequency of the system for the rth mode of 
vibration—resonances of the system may occur due to the load‐movement frequency. The damped response of 
an elastically connected double‐beam system due to a moving‐point load that oscillates longitudinally along one 
of the members about a fixed point was examined analytically by Kessel and Raske (1967). The deflection 
equations are determined for a damped double‐beam system for two cases. The first being the beams that have 
individual damping, where the second case deals with introduction of damping as a function of the relative 
velocity of the two beams. 
 Chonan (1976) studied the dynamical behaviours of two beams connected with a set of independent springs 
and subjected to an impulsive load taking the effect of the mass of springs into account. The solution is 
formulated by the method of the Laplace transformations with respect to both time and space variables, which 
allows one to analyze all the major performance characteristics in the system subjected to an arbitrarily 
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distributed impulsive load. It was found that the amplitudes of deflection and bending moment in the beams 
decrease as the mass of the springs increases. Vu et al. (2000) presented an exact method for solving the forced 
transverse vibrations of a double-beam system subjected to harmonic excitation. Gbolagade et al. (2003) carried 
out a study on the response of two Euler-Bernoulli beams elastically connected together by a flexible core with 
an attached dash-pot and traversed by a concentrated force moving with a constant velocity. Oniszczuk (2003) 
analyzed undamped forced transverse vibrations of an elastically connected double-beam system. The problem 
was formulated and solved in the case of simply supported beams and the classical modal expansion method 
was applied. Abu-Hilal (2006) analyzed the dynamic response of a double-beam system traversed by a constant 
moving load. The system studied consists of two simply supported Euler-Bernoulli beams connected by a 
viscoelastic layer.  
 However, in all these previous studies (with the exception of the work in Gbadeyan et al. (2005) ) the 
moving load was idealized as a point model, where the interval for the load distribution is neglected and thus the 
corresponding moving load problems become easier to handle. Nevertheless, Esmailzadeh and Ghorashi (1995) 
argued that for the moving load problem formulation to be realistic, the interval for the load distribution must be 
considered. As a matter of fact, no point load exists physically. 
 The primary motivation for this present paper is derived from this issue which is very important yet 
unaddressed in most of the previous papers on the subject. In particular, in an earlier paper (Gbadeyan et. al., 
2011), the authors carried out an analysis of the dynamics of response of two viscoelastically connected 
Rayleigh beams under a moving point load for which the load distribution interval is not taken into account. As 
an extension of that work, this presentation deals with the problem of vibration analysis of the two 
viscoelastically connected Rayleigh beams traversed by uniform  partially distributed moving load. One obvious 
application for such analysis is the study of vibration of a suspension bridge under a travelling vehicle. 
Furthermore, the moving load problems involving double beams and a point load can be considered as a special 
case of the present one, if the load distribution interval is assumed small. The solution technique employed is 
based on finite Fourier and Laplace integral transformations. Finally, the analysis is illustrated by a numerical 
example. 
  
Formulation of the Problem: 
 
 The Rayleigh beam theory is used here in order to take into account the effect of rotatory inertia, which is 
usually neglected in Euler-Bernoulli beams. 
 The structural model of an elastically connected two-beam system, composed of two parallel Rayleigh 
beams of uniform properties which are joined by a viscoelastic layer, is shown in Fig 1. This layer is simply 

modelled as a spring-dashpot system, where k  and 0  are the spring constant and the damping coefficient 

respectively. The two beams, as shown in Fig. 1, are referred to as upper and lower beam, respectively. The 
forcing function acting on the upper beam considered here is a uniform partially distributed one as opposed to 
the concentrated (point) force. 
 

 
 
Fig. I: Two uniform Rayleigh Beams connected together by a core. 
 
 The transverse vibrations of the double-system shown in Fig. 1 are governed by the following two coupled 
partial differential equations: 
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where  txj ,  is the applied uniform partially distributed moving load defined by 
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  vt  

 The subscript j is attached to the variables associated with the two beams such that with the upper beam, j = 
1, and the lower beam, j = 2.                                     
The boundary conditions of the studied simply supported beams are: 
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The initial conditions, assumed in a homogeneous form, are 
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(since when the beams are at rest they possess neither deflection nor velocity). 
  
Solution of the Forced Vibration Problem: 
 
 The forced vibration problem, alluded to, is solved in this section using two integral transform techniques, 
namely, the Fourier and the Laplace integral transforms as follows: 
 
Analysis I: 
 
 Substituting equation (2) into (1) and rewriting the resulting equation, we have 
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and  
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respectively.  
 Taking the finite Fourier sine transform of each of the equations (5) and (6) we have 
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respectively.  
 
Note that to obtain equations (7) and (8), we made use of the following equation: 
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whose inverse transform is given as 
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Also, an overdot denotes differentiation with respect to time ,t   
and  
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Analysis II: 
 
 Next, Laplace integral transform of each of the terms in equations (7) and (8) is taken using the initial 
conditions (4). To do this end, we apply the following: 
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where, L is the Laplace transform operator and s is the Laplace transform variable, on equations (7) and (8) to 

obtain     











2
6

2
87

52211 ,,
bs

bsb
bsnVcsnVc                                   (13) 

    0,, 1221  snVcsnVc                                (14)  

 
respectively, (with 43221

2
1 , bsbcbsbsc  ) which when solved yields  

    
   43

2
21

22
6

2
8721

2
5

1 ,
dsdsdsdsbs

bsbbsbsb
snV




                                                                                      (15)  

 
And 
 

    
   43

2
21

22
6

2
87435

2 ,
dsdsdsdsbs

bsbbsbb
snV




                                                                (16)  

such that   
 

424313422311 ,,, bbdbbdbbdbbd                                                       (17)  

 
Analysis III: 
 
 The inverse Laplace transformations of the solutions in (15) and (16) are obtained using Maple as follows 
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where, 
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Finally, using the inverse Fourier transformation (7) one readily obtains 
 

   





1

11 sin,
2

,
n l

xn
tnV

l
txV


                                             (19) 

 
and  
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respectively. In conclusion, equation (19) is the desired transverse deflection of the upper beam relative to the 
lower one while equation (20) represents the corresponding transverse deflection of the lower beam. 
 
Numerical Example: 
 
 Making use of the theoretical analysis described in the previous sections and in order to assess the effects of 
speed of the moving load, rotatory inertia and fixed length of the load on the deflection of the beams, a 
numerical example is considered here for illustrative purposes.  The numerical values representing the geometric 
and material properties of the two-beam system are chosen as follows:

7
22 , 216000NmEI  , NP 20 ,

075.0 , 15.00  , 2.0k , ml 0.6 , )(0 caseundampedb  , 1n ,
2

lx
 
and m1.0  . The cases when 

the speed (v) of the moving load assumes the values 6.3ms-1, 9.3ms-1 and 12.3ms-1 for the following values of r2 

(rotatory inertia effect):  0.031, 4.0 and 8.0 are considered. 
 The transverse deflections of the upper beam relative to the lower beam and that of the lower beam due to 
the uniform partially distributed moving load for various values of speed, rotatory inertia, fixed length of the 
load are shown in Figs. 2 - 7.  
 

 
 
Fig. 2: The deflection of the upper beam relative to the lower beam with varying speed (v) of the moving load at 

fixed values of r2 (rotatory inertia), i. e. r2= 4 and fixed length of the load, .1.0   
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Fig. 3: The response of the lower beam with varying speed of the moving load at a fixed value of r2 (rotatory 

inertia), i. e. r2=4 and fixed length of the load, .1.0   
 

 

 
Fig. 4: The response of the upper beam relative to the lower beam with varying rotator inertia when the load 

moves at v = 6.3 m/s. 
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Fig. 5: The response of the lower beam with varying rotatory inertia when the load moves at v = 6.3 m/s 
 

 

 
 
Fig. 6: The response of the upper beam relative to the lower beam with varying length of the load,   
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Fig. 7: The response of the lower beam with varying length of the load,   
 
Discussion of Results: 

 
 Figs. 2 and 3 show the effect of the speed of the moving load on the maximum amplitude of deflection of 
the beams. As can be observed, the maximum amplitudes of deflections of the two beams (upper and lower 
beams) increase as the speed of the moving load is increased at fixed values of both the rotary inertia (r2) and 
fixed length of the load ( ). 
 The result of the investigation of the influence of the rotatory inertia on the dynamic response of the system 
is illustrated in Figs. 4 and 5. Fig. 4 indicates that the maximum amplitude of deflection of the upper beam 
increases as the value of the rotatory inertia increases. Contrarily, high rotatory inertia causes the maximum 
amplitude of deflection of the lower beam to increase. (See Fig. 5) 
 Figs. 6 and 7 presents the effect of the fixed length of the load ( ) on the structural model under 
investigation. It is cleared that the amplitudes of deflections of both upper and lower beams increase due to the 
increase of the fixed length of the load. 
 
Conclusion: 
 
 This paper is devoted to the dynamic analysis of forced transverse vibrations of a viscoelastically connected 
simply supported double beam-system using the Rayleigh beam theory. It is assumed that the two beams are 
identical, parallel and homogeneous. The solutions of the problem formulated for the beams subjected to a 
uniform partially distributed moving load are found by applying the Fourier and Laplace integral transform 
techniques. To verify the analysis performed, a numerical example is presented and discussed. It is found that 
the maximum amplitudes of deflection of the beams increase as the speed of the moving load increases. It is also 
found that the maximum amplitude of deflections of the upper beam increases while that of the lower beam 
decreases due to the increase of the rotatory inertia. Finally, it is evident that the amplitudes of deflection of both 
beams increase with increase in the fixed length of the load.  
 
Nomenclature: 
 
EI  : Flexural rigidity of the beam. 

E  : Young’s modulus of elasticity. 
I  : Moment of inertia of the cross-sectional area of the beam. 
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 : Constant mass per unit length of the beam. 

k  : Spring constant of the viscoelastic layer. 

0 : Damping coefficient of the viscoelastic layer. 

 txV j , : Transverse defelction of the jth beam at point x and time t.  

x : Length (axial) co-ordinate with the initial value at the left-hand end of the beam. 
t : Time coordinate with the origin at the instant of the load arriving on the beam. 

b : Circular frequency of the damping of the beam. 

r : Radius of gyration of beam cross-section (m). 

 txi , :  Uniform partially distributed moving load. 

 .H : Heaviside function.  

v : Speed of the load motion. 
 : Fixed length of the load. 
P: Magnitude of the moving load. 
l : Length (span) of the beam. 
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