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Abstract 

Analysis is carried out to study free convective heat and mass transfer of an incompressible,  

electrically conducting fluid past a moving vertical plate in the presence of suction and injection 

with thermal diffusion (Soret) and diffusion-thermo (Dufour) effects. Similarity solutions are 

obtained using scaling transformations. Furthermore, using a similarity variable, the governing 

non-linear partial differential equations have been transformed into a set of coupled non-linear 

ordinary differential equations, which are solved numerically by applying shooting iteration 

technique together with sixth order Runge-Kutta integration scheme. A comparison with 

previous work is performed and the results are found to be in good agreement. Numerical results 

for the local skin friction coefficient, the local Nusselt number and the local Sherwood number as 

well as the velocity, the temperature and the concentration profiles are presented for different 

physical parameters. The result indicates: (i) for fluids with medium molecular weight (H2, air), 

Dufour and Soret effects should not be neglected; and (ii) the suction and injection parameter has 

significant impact in controlling the rate of heat transfer in the boundary layer. Finally, numerical 

values of physical quantities, such as the local skin-friction coefficient, the local Nusselt number 

and the local Sherwood number are presented in tabular form. 
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1. Introduction 

Transport of heat through a porous medium has been the subject of many studies due to the 

increasing need for a better understanding of the associated transport processes. This interest 

stems from the numerous practical applications which can be modeled or can be approximated as 

transport through porous media such as packed sphere beds, high performance insulation for 

buildings, chemical catalytic reactors, grain storage, migration of moisture through the air 

contained in fibrous insulations, heat exchange between soil and atmosphere, sensible heat 

storage beds and beds of fossil fuels such as oil shale and coal, salt leaching in soils, solar power 

collectors, electrochemical processes, insulation of nuclear reactors, regenerative heat 

exchangers and geothermal energy systems and many other areas. Literature concerning 

convective flow in porous media is abundant. Representative studies in this area may be found in 

the recent books by Nield and Bejan [1], Ingham and Pop [2], Vafai [3], Pop and Ingham [4], 

Ingham et al. [5], Bejan et al. [6], Vadasz [7], etc. 

 

The problem of steady hydromagnetic flow and heat transfer over a stretching surface could be 

very practicable in many applications in the polymer technology and metallurgy. In particular, 

many metallurgical processes involve the cooling of continuous strips or filaments by drawing 

them though a quiescent fluid and that in the process of drawing, these strips are sometimes 

stretched. In the case of annealing and thinning of copper wires, the properties of the final 

product depend to a great extent on the rate of cooling. By drawing such strips in an electrically 

conducting fluid subject to a magnetic field, the rate of cooling can be controlled and final 

products of desired characteristics might be achieved [8]. And also, in several engineering 

processes, materials manufactured by extrusion processes and heat treated materials traveling 

between a feed roll and a wind up roll on convey belts possess the characteristics of a moving 

continuous surface. The steady flow on a moving continuous flat surface was first considered by 

Sakiadis [9] who developed a numerical solution using a similarity transformation. Chiam [10] 

reported solutions for steady hydromagnetic flow over a surface stretching with a power law 

velocity with the distance along the surface. 

Makinde [11-14] have presented some works on the subject of magneto-hydrodynamics (MHD) 

convection in porous medium. The problem of magneto-hydrodynamics natural convection about 

a vertical impermeable flat plate can be found in Sparrow and Cess [15], Yih [16] studied the 
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free convection effect on MHD coupled heat and mass transfer of a moving permeable vertical 

surface. Alan and Rahman [17], examined Dufour and Soret effects on mixed convection flow 

past a vertical porous flat plate with variable suction embedded in a porous medium for a 

hydrogen-air mixture as the non-chemical reacting fluid pair. Gaikwad et al. [18], investigated 

the onset of double diffusive convection in a two component couple stress fluid layer with Soret 

and Dufour effects using both linear and non-linear stability analysis. Emmanuel et al. [19] 

studied numerically the effect of thermal-diffusion and diffusion-thermo on combined heat and 

mass transfer of a steady hydromagnetic convective and slip flow due to a rotating disk with 

viscous dissipation and Ohmic heating. Anwar et al. [20] examined the combined effects of Soret 

and Dufour diffusion and porous impedance on laminar magneto-hydrodynamic mixed 

convection heat and mass transfer of an electrically-conducting, Newtonian, Boussinesq fluid 

from a vertical stretching surface in a Darcian porous medium under uniform transverse 

magnetic field. Nithyadevi and Yang [21] investigated numerically the effect of double-diffusive 

natural convection of water in a partially heated enclosure with Soret and Dufour coefficients 

around the density maximum. Olanrewaju [22] examined Dufour and Soret Effects of a Transient 

Free Convective Flow with Radiative Heat Transfer Past a Flat Plate Moving through a Binary 

Mixture. Recently, Ibrahim and Makinde [23] studied the combined effects of wall suction and 

magnetic field on boundary layer flow with heat and mass transfer over an accelerating vertical 

plate. The present communication considers the effects of Dufour and Soret on a free convection 

of a continuously moving porous vertical surface as presented in [23]. It investigates numerically 

the effects of heat and mass transfer in a hydromagnetic boundary layer flow of a moving 

vertical porous plate with uniform heat generation, chemical reaction with Dufour and Soret in 

the presence of suction/injection. By using scaling transformations, the set of governing 

equations and the boundary conditions are reduced to non-linear ordinary differential equations 

with appropriate boundary conditions. Furthermore, the similarity equations are solved 

numerically by using shooting technique with sixth-order Runge-Kutta integration scheme. 

Numerical results of the local skin friction coefficient and the local Nusselt number as well as the 

velocity, temperature and concentration profiles are presented for different physical parameters. 
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2. Governing equations 

We consider the steady free convective heat and mass transfer flow of a viscous, incompressible 

and electrically conducting fluid past a moving vertical plate with suction/injection in the 

presence of thermal diffusion (Soret) and diffusion-thermo (Dufour) effects (see Fig. 1) The non-

uniform transverse magnetic field Bo is imposed along the y-axis. The induced magnetic field is 

neglected as the magnetic Reynolds number of the flow is taken to be very small. It is also 

assumed that the external electric field is zero and the electric field due to polarization of charges 

is negligible. The temperature and the concentration of the ambient fluid are
 CandT , and 

those at the surface are )()( xCandxT ww , respectively.  

 

 

 
 
                                     g 

        u=U(x)             

 
           T=Tw 

                          u 

            v=V     

         C=Cw                   v 
                                 
 
Fig.1: Physical configuration and coordinate system 

 

It is also assumed that the pressure gradient, viscous and electrical dissipation are neglected. The 

fluid properties are assumed to be constant except the density in the buoyancy terms of the linear 

momentum equation which is approximated according to the Boussinesq’s approximation. Under 

the above assumptions, the boundary layer form of the governing equation can be written as (see 

Ref. [24]) 
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The boundary conditions for Eqs. (1)-(4) are expressed as  
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where B is a constant, a and b denotes the stratification rate of the gradient of ambient 

temperature and concentration profiles, (u, v) are the velocity components in x- and y- directions, 

respectively, T is the temperature, βT is the volumentric coefficient of thermal expansion, α is the 

thermal diffusivity, g is the acceleration due to gravity, υ is the kinematic viscosity, Dm is the 

coefficient of diffusion in the mixture, C is the species concentration, σ is the electrical 

conductivity, Bo is the externally imposed magnetic field in the y-direction, kT is the thermal-

diffusion ratio, cs is the concentration susceptibility, cp is the specific heat at constant pressure 

and Tm is the mean fluid temperature. We introduce the following non-dimensional variables; 
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where F(η) is a dimensionless stream function, θ(η) is a dimensionless temperature of the fluid in 

the boundary layer region,    is a dimensionless species concentration of the fluid in the 

boundary layer region and η is the similarity variable. The velocity components u and v are 

respectively obtained as follows 
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where 
B

V
Fw   is the dimensionless suction velocity. 

Following eq.(6), the partial differential equations (2)-(4) are transformed into local similarity 

equations as follows: 

 

  0  cr GGFMFFFF      (8) 

  0PrPr   DuFF      (9) 

  ,0  ScSrFFSc      (10) 

where primes denote differentiation with respect to η. The appropriate flat, free convection 

boundary conditions are also transformed into the form, 
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The quantities of physical interest in this problem are local skin friction, the local Nusselt 

number, and the local Sherwood number. 

 

3. Numerical methods for solution 

 

 

Eqs. (8)-(10) constitute a highly non-linear coupled boundary value problem of third and second-

order. So we develop most effective numerical shooting technique with sixth-order Runge-Kutta 

integration algorithm. To select  we begin with some initial guess value and solve the problem 

with some particular set of parameters to obtain      00,0   andF . The solution process is 

repeated with another larger value of  until two successive values of      00,0   andF  

differ only after desired digit signifying the limit of the boundary along η. The last value of   is 

chosen as appropriate value for that particular simultaneous equations of first order for seven 

unknowns following the method of superposition [25]. To solve this system we require seven 

initial conditions whilst we have only two initial conditions     ,00 FonFandF  two initial 

conditions on each on  and . Still there are three initial conditions      00,0   andF  which 

are not prescribed. Now, we employ numerical shooting technique where these two ending 

boundary conditions are utilized to produce two unknown initial conditions at η = 0. In this 
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calculation, the step size 001.0  is used while obtaining the numerical solution with 

11max  and five-decimal accuracy as the criterion for convergence. 

 

4. Results and discussion 

Numerical calculations have been carried out for different values of the thermophysical 

parameters controlling the fluid dynamics in the flow regime. The values of Schmidt number 

(Sc) are chosen for hydrogen (Sc = 0.22), water vapour (Sc = 0.62), ammonia (Sc = 0.78) and 

Propyl Benzene (Sc = 2.62) at temperature 25
o
C and one atmospheric pressure. The values of 

Prandtl number is chosen to be Pr = 0.72 which represents air at temperature 25
o
C and one 

atmospheric pressure.  Attention is focused on positive values of the buoyancy parameters i.e. 

Grashof number Gr > 0 (which corresponds to the cooling problem) and solutal Grashof number 

Gc > 0 (which indicates that the chemical species concentration in the free stream region is less 

than the concentration at the boundary surface). The cooling problem is often encountered in 

engineering applications; for example in the cooling of electronic components and nuclear 

reactors. In all computations we desire the variation of F,  and   versus  for the velocity, 

temperature and species diffusion boundary layers. Table (1) shows the comparison of Ibrahim 

and Makinde [23] work with the present work for Prandtl number (Pr= 0.72) and it is noteworthy 

that there is a perfect agreement in the absence of Dufour and Soret. From table (2),  it is seen 

that the local skin friction together with the heat and mass transfer rate at the moving plate 

surface decreases with increasing magnitude of fluid suction (Fw) at the moving surface while 

surface increasing with decreasing magnitude of fluid injection at the moving surface. The rate 

of heat and mass transfer at the plate surface increases with increasing intensity of buoyancy 

forces (Gr, Gc) , decreases with increasing intensity of magnetic field (M), Dufour and Soret 

numbers (Du, Sr). Moreover, the skin friction decreases with buoyancy forces and increases with 

Increasing magnetic field intensity and Schmidt number (Sc). Finally, we observed that the flow 

field is appreciably influenced by the Dufour and Soret effects. Therefore, we can conclude that 

for fluids of hydrogen-air mixtures, the Dufour and Soret effects should not be neglected. 

Furthermore, the surface mass transfer rate increases while the surface heat transfer rate 

decreases with an increase in the Schmidt number. From Table (3), it was observed that the 

suction parameter (Fw > 0) tends to increase the local skin friction, while the opposite trend is 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



8 
 

observed for the injection parameter (Fw < 0). This is because blowing gives rise to a thicker 

velocity boundary layer, thereby causing a decrease in the velocity gradient at the surface. The 

local Nusselt number increases at the negative value of the suction parameter, while it decreases 

at the positive value of the injection parameter. This is because as the injection is applied at the 

surface, the momentum transport is reduced near the surface thereby causing a reduction in the 

local Nusselt number. Similarly, the local Sherwood number increases when suction parameter is 

present, while it decreases when the surface is subjected to injection parameter. 

Table 1: Computation showing comparison with Ibrahim & Makinde [23] of )0(F  , )0(   and 

)0( for various values of embedded parameter for Pr=0.72, Sr=0, and Du=0 

     Present Present Present I&M[23] I&M[23] I&M[23] 

Gr Gc M Fw Sc - )0(F   - )0(   - )0(  - )0(F   - )0(   - )0(  

0.1 0.1 0.1 0.1 0.62 0.88908545 0.79653042 0.72547664 0.888971 0.7965511 0.7253292 

0.5 0.1 0.1 0.1 0.62 0.69603619 0.83787782 0.76585079 0.695974 0.8379008 0.7658018 

1.0 0.1 0.1 0.1 0.62 0.47509316 0.87526944 0.80202587 0.475058 0.8752835 0.8020042 

0.1 0.5 0.1 0.1 0.62 0.68702142 0.84207706 0.77016532 0.686927 0.8421370 0.7701717 

0.1 1.0 0.1 0.1 0.62 0.45778202 0.88182384 0.80871749 0.457723 0.8818619 0.8087332 

0.1 0.1 1.0 0.1 0.62 1.26462533 0.70938977 0.64116350 1.264488 0.7089150 0.6400051 

0.1 0.1 3.0 0.1 0.62 1.86838864 0.58541218 0.52519379 1.868158 0.5825119 0.5204793 

0.1 0.1 0.1 1.0 0.62 0.57074524 0.56010990 0.52730854 0.570663 0.5601256 0.5271504 

0.1 0.1 0.1 3.0 0.62 0.27515400 0.29557231 0.29025308 0.275153 0.2955702 0.2902427 

0.1 0.1 0.1 0.1 0.78 0.89351757 0.79373969 0.83398390 0.893454 0.7936791 0.8339779 

0.1 0.1 0.1 0.1 2.62 0.91236953 0.78489176 1.65041891 0.912307 0.7847840 1.6504511 

 

Table 2: Computation showing )0(F  , )0(   and )0( for various values of embedded parameter  

Gr Gc M Fw Sc Pr Sr Du - )0(F   - )0(   - )0(  

0.1 0.1 0.1 0.1 0.62 0.72 0.1 0.03 0.88743829 0.78854903 0.69526904 

0.5 0.1 0.1 0.1 0.62 0.72 0.1 0.03 0.69354257 0.82992680 0.73536678 

1.0 0.1 0.1 0.1 0.62 0.72 0.1 0.03 0.47168842 0.86730429 0.77114416 

0.1 0.5 0.1 0.1 0.62 0.72 0.1 0.03 0.68184199 0.83527987 0.74089827 

0.1 1.0 0.1 0.1 0.62 0.72 0.1 0.03 0.44921329 0.87564043 0.77968381 

0.1 0.1 1.0 0.1 0.62 0.72 0.1 0.03 1.26355437 0.70177349 0.61218037 

0.1 0.1 3.0 0.1 0.62 0.72 0.1 0.03 1.86786443 0.57862504 0.49948379 

0.1 0.1 0.1 1.0 0.62 0.72 0.1 0.03 0.57021615 0.55630816 0.51327770 

0.1 0.1 0.1 3.0 0.62 0.72 0.1 0.03 0.27512619 0.29487694 0.28789907 

0.1 0.1 0.1 -0.1 0.62 0.72 0.1 0.03 0.98394287 0.85469292 0.74626691 

0.1 0.1 0.1 -1.0 0.62 0.72 0.1 0.03 1.54315969 1.22650204 1.03503982 

0.1 0.1 0.1 0.1 0.78 0.72 0.1 0.03 0.89168750 0.78417217 0.79805392 

0.1 0.1 0.1 0.1 2.62 0.72 0.1 0.03 0.90971550 0.76190308 1.56957263 
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0.1 0.1 0.1 0.1 0.62 1.0 0.1 0.03 0.89315322 0.95809716 0.68355351 

0.1 0.1 0.1 0.1 0.62 3.0 0.1 0.03 0.90829074 1.75368367 0.63526228 

0.1 0.1 0.1 0.1 0.62 7.0 0.1 0.03 0.91639143 2.67686061 0.58104858 

0.1 0.1 0.1 0.1 0.62 0.72 0.4 0.03 0.88370546 0.79233598 0.60364269 

0.1 0.1 0.1 0.1 0.62 0.72 2.0 0.03 0.86479566 0.81097022 0.10794354 

0.1 0.1 0.1 0.1 0.62 0.72 0.1 0.15 0.88598564 0.75328336 0.69792631 

0.1 0.1 0.1 0.1 0.62 0.72 0.1 0.60 0.88062396 0.61906425 0.70778467 

 

Table 3: Results of )0(F  , )0(   and )0(    for various values of Fw (Pr=0.72, Sc=0.62, 

Gr=0.1, Gc=0.1, M=0.1, Du=0.03, Sr=0.1). 

Fw )0(F   - )0(   - )0(  

0.5 0.724431308 0.67300439 0.60569621 

0.3 0.801101962 0.72809519 0.64853672 

0 0.934397731 0.82089177 0.72021233 

-0.3 1.090853905 0.92677824 0.80186611 

-0.5 1.208096735 1.00494205 0.86231477 

 

A.   Velocity Profiles  

Figures 2-5 depict the effects of emerging flow parameters on non-dimensional velocity profiles. 

In figure 2 the effect of increasing the magnetic field strength and injection suction parameter on 

the momentum boundary-layer thickness is illustrated. Increasing the magnetic field strength  

parameter lead to a decrease in the velocity which confirmed with the fact that the magnetic field 

presents a damping effect on the velocity by creating a drag force that opposes the fluid motion. 

Figure 2 also shows an increase in the fluid velocity within the boundary layer due to suction and 

a decrease in the fluid velocity within the boundary layer due to injection. This indicates the 

usual fact that suction stabilizes the boundary layer growth. Furthermore, figure 3 shows that an 

increase in the buoyancy forces parameters lead to an increase in the velocity profile. It is 

established that increase in buoyancy forces enhancing the fluid flow. It was observed in Figure 

4 that increases in Soret and Dufour numbers lead to an increase in the fluid flow causes the 

momentum boundary layer thickness generally increases away from the plate satisfying the 

boundary conditions. Figure 5 show the comparison between [23] and the present study when Du 

= 0, Sr = 0 and Du = 0.6, Sr = 2. It is clearly seen from the graph that when Soret and Dufour 

numbers were include the velocity boundary layer thickness increases across the plate. 
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Figure 2: Velocity profiles of                  M= 0.1, Fw = 0.1, ooooo M = 5, Fw = 0.1, +++++++ M= 0.1, 

Fw = -1 for fixed values of Pr=0.72, Sc=0.62, Gr=Gc=0.1, Sr=0.1, Du=0.03. 

 

Figure 3: Velocity profiles of                  Gr = 0.1, Gc = 0.1, oooooGr = 5, Gc = 0.1, ++++++Gr = 0.1, 

Gc = 5 for fixed values of Pr = 0.72, Fw = 0.1, M = 0.1, Sc = 0.62, Du = 0.03, Sr = 0.1. 
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Figure 4: Velocity profiles of               Du = 0.03, Sr = 0.1, oooooDu = 0.6, Sr = 0.1, ++++Du = 0.03, 

Sr = 4 for fixed values of Pr = 0.72, Fw = 0.1, M = 0.1, Sc = 0.62, Gr = Gc = 0.1. 

 

Figure 5: Velocity profiles of +++++Pr = 0.72, Du = 0, Sr = 0, oooooPr = 0.72, Du = 0.6, Sr = 2 for 

M = Gr = Gc = Fw = 0.1, Sc = 0.62. 
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B.   Temperature Profiles  

The effects of various thermophysical parameters on the fluid temperature are illustrated in 

Figures. 6 to 10. Generally, the fluid temperature increases from the plate surface and attained its 

peak value at the free stream whenever the plate surface temperature w  is lower than the free 

stream temperature. Figure 6 shows the influence of magnetic field strength and the suction 

parameter on the temperature profile. It is clearly seen that increasing the magnetic field strength 

increases the thermal boundary layer thickness across the plate while suction parameter 

decreases the temperature. In figures 7, we observed that an increase in both thermal and solutal 

Grashof number brings a decrease in the fluid temperature with an increase in the intensity of 

buoyancy forces. Figure 8 shows the influence of Dufour and Soret numbers on fluid 

temperature. We observed an increase in the fluid temperature with an increase in the Dufour 

number while a decrease in fluid temperature when the Soret number increases. The effect of 

Schmitz number and Prandtl number is illustrated in figure 9. We observed that increase in 

Prandtl number causes the thermal boundary layer thickness to increase thereby increases the 

fluid temperature and Schmitz number has little influence on the fluid temperature. Figure 10 

show the comparison between [23] and the present study when Du = 0, Sr = 0 and Du = 0.6, Sr = 

2. It is clearly seen from the graph that when Soret and Dufour numbers were include the thermal 

boundary layer thickness increases across the plate. 
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Figure 6: Temperature profiles of                M= 0.1, Fw = 0.1, ooooo M = 5, Fw = 0.1, +++++++ M= 

0.1, Fw = -1 for fixed values of Pr=0.72, Sc=0.62, Gr=Gc=0.1, Sr=0.1, Du=0.03. 

 

Figure 7: Temperature profiles of              Gr = 0.1, Gc = 0.1, oooooGr = 5, Gc = 0.1, ++++Gr = 0.1, 

Gc = 5 for fixed values of Pr = 0.72, Fw = 0.1, M = 0.1, Sc = 0.62, Du = 0.03, Sr = 0.1. 
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Figure 8: Temperature profiles of              Du = 0.03, Sr = 0.1, oooooDu = 0.6, Sr = 0.1, 

 ++++Du = 0.03, Sr = 4 for fixed values of Pr = 0.72, Fw = 0.1, M = 0.1, Sc = 0.62, Gr = Gc = 0.1. 

 

Figure 9: Temperature profiles of               Sc = =0.62, Pr = 0.72, oooooSc = 2.62, Pr = 0.72, 

+++++Sc = 0.62, Pr = 3 for fixed values of Fw = 0.1, M = 0.1, Gr = Gc = 0.1, Du = 0.03, Sr = 0.1. 
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Figure 10: Temperature profiles of +++++Pr = 0.72, Du = 0, Sr = 0, oooooPr = 0.72, Du = 0.6,  

Sr = 2 for M = Gr = Gc = Fw = 0.1, Sc = 0.62. 

C.    Concentration Profiles  

Figures 11–15 depict chemical species concentration profiles against spanwise coordinate  for 

varying values of physical parameters in the boundary layer. It is noteworthy that the species 

concentration increases from the plate surface and attained its peak value at free stream 

whenever the concentration at the plate surface w  is lower than that of the free stream. Figure 

11 shows the influence of the magnetic field strength and suction parameter on the species 

concentration. Increase in magnetic field strength brings an increase in the species concentration 

boundary layer thickness while injection parameter decreases the chemical species concentration 

within the boundary layer and subsequent decaying of concentration boundary layer thickness. In 

figure 12, the concentration boundary layer thickness decreases with an increase in the thermal 

and solutal Grashof number across the plate. In figures 13, we observed an increase in 

concentration boundary layer thickness as Soret number increases while little or no effect was 

observed with increase in Dufour number. Figure 14 described the influence of Schmidt number 

and Prandtl number on the species concentration and it was observed that increase in Schmidt 

number leads to a decrease in the species concentration within the boundary layer due to the 
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combined effects of buoyancy forces and species molecular diffusivity. Figure 15 demonstrate 

the effects of Dufour and Soret numbers on the species concentration boundary layer thickness 

when Pr = 0.72, Du = 0, Sr = 0 and Pr = 0.72, Du = 0.6, Sr = 2. It was observed that the effects of 

these two parameters on concentration boundary layer thickness cannot be under estimated.  

 

Figure 11: Concentration profiles of                  M= 0.1, Fw = 0.1, ooooo M = 5, Fw = 0.1, +++++++ 

M= 0.1, Fw = -1 for fixed values of Pr=0.72, Sc=0.62, Gr=Gc=0.1, Sr=0.1, Du=0.03. 
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Figure 12: Concentration profiles of               Gr = 0.1, Gc = 0.1, ooooGr = 5, Gc = 0.1, ++++Gr = 

0.1, Gc = 5 for fixed values of Pr = 0.72, Fw = 0.1, M = 0.1, Sc = 0.62, Du = 0.03, Sr = 0.1. 

 

Figure 13: Concentration profiles of               Du = 0.03, Sr = 0.1, oooooDu = 0.6, Sr = 0.1, 

 ++++Du = 0.03, Sr = 4 for fixed values of Pr = 0.72, Fw = 0.1, M = 0.1, Sc = 0.62, Gr = Gc = 0.1. 
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Figure 14: Concentration profiles of               Sc = =0.62, Pr = 0.72, oooooSc = 2.62, Pr = 0.72, 

+++++Sc = 0.62, Pr = 3 for fixed values of Fw = 0.1, M = 0.1, Gr = Gc = 0.1, Du = 0.03, Sr = 0.1. 

 

Figure 15: Concentration profiles of +++++Pr = 0.72, Du = 0, Sr = 0, oooooPr = 0.72, Du = 0.6,  

Sr = 2 for M = Gr = Gc = Fw = 0.1, Sc = 0.62. 
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5   Conclusions 

In this paper, we discussed MHD free convective heat and mass transfer past a moving vertical plate with 

Soret and Dufour effect in the presence of suction/injection parameter. The effects of thermal-diffusion 

and diffusion thermo with suction/injection parameter are investigated. Similarity solutions are obtained 

using scaling transformations. The set of governing equations and the boundary condition are reduced to 

ordinary differential equations with appropriate boundary conditions. Influence of Soret number,  Dufour 

number, suction/injection parameter, Schmidt number, Prandtl number, magnetic parameter on MHD free 

convective heat and mass transfer have been discussed in detail. It was observed that the skin friction 

coefficient, the local Nusselt number decreases by increasing Dufour number and decreasing Soret 

number. We observed that in table 1, there are excellent agreement with Ibrahim and Makinde [23]. 

Finally, in the presence of a magnetic field, the fluid velocity is found to be decreased, associated with a 

reduction in the velocity gradient at the wall, and thus the local skin-friction coefficient decreases. 

Similarly, we experienced a decrease in the wall temperature gradient and concentration gradient due to 

applied magnetic field which yield a decrease in the local Nusselt number and the local Sherwood 

number. 
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1. The figures have been redrawn as requested by the reviewer to reduce the number of 

figures and for easy understanding.  

 

     Reviewer #2. 

1. See table 1 and figures 5, 10 and 15 for the comparison. It is clearly seen from eqs 3 and 

4 that only one additional term was added to both equations that is different from [23] 

which represents the Dufour and Soret number in the dimensionless form which was 

neglected from their paper. 

2. No except that Runge-Kutta of order sixth was used for better accuracy in this article 

while they used Runge-Kutta of order fourth [23]. 

3. In their study, Dufour and Soret effects were neglected, since they are of a smaller order 

magnitude than the effects described by Fourier’s and Fick’s law. There are, however, 

exceptions. The Soret effect, for instance, has been utilized for isotope separation and in a 

mixture between gases and with very light molecular weight (H2, He) and of medium 

molecular weight (H2, air) the Dufour effect was found to be of considerable magnitude 

such that cannot be neglected (see [17], [19] and [22]). 

4. See figures 5, 10 and 15 for quick comparison. 

5. Dufour and Soret effects were neglected i.e. Du = 0, Sr = 0 since they are of a smaller 

order magnitude than the effects described by Fourier’s and Fick’s law.  
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