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Abstract 

This paper describes the effect of duality principle in option pricing driven by 

exponentially Lévy market model. This model is basically incomplete - that is; 

perfect replications or hedging strategies do not exist for all relevant contingent 

claims and we use the duality principle to show the coincidence of the associated 

underlying asset price process with its corresponding dual process. 

The condition for the ‘unboundedness’ of the underlying asset price process 

and that of its dual is also established. The results are not only important in 

Financial Engineering but also from mathematical point of view. 
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1  Introduction  

Ever since the seminal article of Fisher Black, Myron Scholes, and R. Merton 

[4] on the analytical model that would determine the fair market value of options 

paying no dividends, and their reformation in terms of martingale theory by 

Harrison and Pliska [12], stochastic analysis has become indispensable in the 

study of modern finance. Stochastic analysis and martingale theory appear to be 

tailor made for their applications in mathematical finance; where the proceeds 

from the investment in an asset can be represented as a stochastic integral, while 

the rational price of an option on an asset equals its discounted expected payoff 

under a martingale measure.  

Initially, the applications relied mainly on the use of Brownian motion as the 

driving process but empirical evidence showed that this assumption is too 

restrictive. Hence, one of the remedies was to consider L�́�vy processes as the 

driving force as pioneered be E. Eberlein, D. Madan and their co-workers in [6] 

and [7], since for any time increment ∆𝑡 , any infinitely divisible distribution 

(i.d.d.) can be chosen as the increment distribution over periods of time ∆𝑡 and 

also, they can describe the observed reality of financial markets in a more accurate 

way than models based on Brownian motions, since, in the real world, we 

observed that asset price processes have jumps or spikes and risk managers need 

to take them into consideration; these jumps are considered in Le ́vy processes. 

Bachelier [2] proposed the exponential Brownian motion 𝑒𝑥𝑝𝐵𝑡 as a stock 

price model. Few years later, an exponential Le ́vy process model with a 

non-stable distribution was proposed by Press in [8]. 

For investors and option traders, the price of the option is not the only thing of 

interest. The duality principle which establishes a call-put parity in option pricing 

plays a vital role. The duality principle as noted by Papapantoleon [25] and EPS in 

[7], demonstrates its full strength when considering exotic derivatives. 

This paper is structured as follows: section 2 deals with preliminaries on 

L�́�vy processes and exponentially L�́�vy market model, section 3 takes care of 
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the duality principle with a corresponding theorem. In section 4, the applications 

of the main results are presented, and a concluding remark is made in section 5. 

With regard to our results, we can therefore say that the work is very 

effective in the option pricing theory from the theoretical point of view. 

 

 

2  Preliminaries 

Definition 2.1 Let 𝐿 = {𝐿𝑡: 𝑡 ≥ 0} be a L�́�vy processes defined on a filtered 

probability space (µ , 𝔅, 𝛺, 𝔽(𝔅) ), that is, 𝐿 is an adapted stochastic, right 

continuous process starting from zero (0) with stationary and independent 

increments. 

Under the market measure ℙ, the Le ́vy process {𝐿𝑡}𝑡  ≥ 0 is assumed to follow 

the process given by: 

        𝐿𝑡   =  µ𝑡 +  𝝈Wt +   ∑ Yn𝑁𝑡
𝑛=1                  (2.1) 

where µ is a mean rate of return, Wt  is a Brownian motion, 𝝈 is a volatility 

parameter, 𝑁𝑡 is a Poisson process and 𝑌𝑛  is a jump size variable. 

Equation (2.1) shows the three components of a L�́�vy process: a purely 

deterministic linear part, a Brownian motion and a pure-jump process. 

 

 

2.1  Exponentially L�́�vy Processes 

Let 𝑆𝑡 be the underlying asset price process and suppose that a filtered 

probability space (µ , 𝔅, 𝛺, 𝔽(𝔅) ) is given and that the asset price process 

𝑆𝑡  =  𝑆0𝑒𝑟𝑡 +  𝐿𝑡  is defined on this space, where 𝐿𝑡  is a L�́�vy process, and 𝑟 

is the interest rate on a non-risky asset, we therefore call such process 𝑆𝑡 an 

exponential Le ́vy  process (henceforth ELP). It is remarked that any L�́�vy 

process has a specific form of its characteristic function given by 
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L�́�vy-Khintchine formula.  

Thus, for 𝑥ϵLt   , t ≥ 0 , the characteristic form of 𝐿 = {𝐿𝑡: 𝑡 ≥ 0} is: 

𝜑𝑥(θ)  =  𝔼�𝑒𝑖⟨θ�, �𝐿𝑡⟩�  =  exp �t𝑉∗ (θ)�                                            (2.2)                    

𝑉∗(θ) =  i⟨𝑏�, �θ⟩  −  1
2
⟨𝑎θ �; �θ⟩  +  ʃℝ𝑑[𝑒𝑖⟨θ� ; �𝑥⟩ − 1 −   𝑖⟨θ �; �𝑥⟩. 1{|𝑥|}≤1]υ(𝑑𝑥)    (2.3) 

where bϵℝ𝑑 , a = a(d × d)  is a positive definite symmetric matrix, and 

v = υ(𝑑𝑥)  is a L�́�vy measure on ℝ𝑑   such that v(0) = 0 ,  1{|𝑥|}≤1 denotes 

an indicator function and 

  ʃℝ𝑑  (|𝑥|2˄1)𝜐(𝑑𝑥) < ∞ 

It is noteworthy to point out that 𝜑𝑥(θ) is specified by three characteristic 

triples 𝑎, 𝑏  and  𝑣. For instance:  if X~N(m, σ2), then, b =  m  and a =  σ2   

with  v = 0 implies that  

𝜑𝑥(θ) =  𝔼(𝑒𝑥𝑝𝑖⟨θ �, �𝑋𝑡⟩)  = 𝑒𝑥𝑝{𝑡[𝑖⟨𝑚, �𝜃⟩���  −
1
2 
⟨𝜃�, ���𝜃𝜎2⟩]} 

which is the characteristics function of a Gaussian random variable 𝑋𝑡. 

If 𝑋 is a random variable having a Poisson distribution with parameter 𝜆,  then   

  v(dx)  =  𝜆1{|𝑥|}≤1(dx)  is a measure concentrated at the point  𝑥 = 1, b =  𝜆,  

hence, 

𝜑𝑥(θ) = exp𝜆[𝑒𝑥𝑝(𝑖𝜃) − 1] =  𝑒𝜆[eθi − 1] 

 

 

3  Duality Principle 

The duality principle plays a significant role in option pricing theory. This 

was carefully analyzed in [7] in terms of several assets whose price processes are 

driven by general semi-martingales. 

The duality principle states that the calculation of a call option for a model 

with price process S = 𝑒𝑥𝑝(𝐻)  with respect to the measure ℙ is equivalent to 

the calculation of the price of a  put option for a suitable dual model with price 
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process S∗ = exp (𝐻∗)  with respect to a dual measure ℙ∗,  where  𝐻  in 

particular is a L�́�vy process. 

In what follows, we shall assume that 𝑆 is also a martingale on [0,T]; thus, 

the mathematical expectation of  S at maturity is one (1), that is  𝔼(𝑆𝑇) = 1, this 

allows us to define on  (µ , 𝔅, 𝛺, 𝔽(𝔅) )  a new  probability measure ℙ∗ 

with 

       dℙ∗

dℙ
 = ST                          (3.1) 

Since S is a martingale   and   0 ≤ t ≤ T, then (3.1) gives: 

       dℙ∗|ᵝt�

dℙ|ᵝt�
 = St  

and for S > 0 (p. a. s), we have that   ℙ ≤  ℙ∗  and   dℙ
dℙ∗

  =   1
ST

 

Introducing the process:  

                             S∗  =   1
S
                        (3.2) 

and denoting H∗ the dual of H  with   H∗  =  −H gives: 

        S∗   =  exp (H∗)                     (3.3) 

 

Remark 3.1 The following reveal the call-put duality in option pricing depending 

on the nature of option(s) that are involved. 

 

Definition  3.1  European call and put options In the case of a standard a call 

and a put option, the payoff function on them is defined and denoted as:  

        ƒ𝑻   = �  (ST  −  K)+  ,   for  call options
  (K − ST )+ ,   for  put  options

�           
(3.4)
(3.5)

 

where K  > 0 is the strike price, and the associated option prices are given by the 

formulae: 

   𝔼[ƒ𝑻]  =   �
CT(S ;  K) =  𝔼[(ST  −  K)+  ],   for  call options

  PT(K ;  S) =  𝔼 [(K − ST )+] ,   for  put  options
�    

(3.6)
(3.7)

 

for 𝔼 the expectation operator with respect to the martingale measure ℙ. 
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Using 𝑆 = 𝑒𝑥𝑝(𝐻) in equation (3.6) with  𝔼[(ST)]+  = 1, 𝐾𝐾∗ = 1, and 

𝑆𝑇𝑆∗ 
𝑇 = 1 gives the below relation:    

𝔼[ƒ𝑻] = CT(S ;  K) =  𝔼[(ST  −  K)+  ] =   𝔼[{K𝑆𝑇 �
1
K

 −  
1

ST
�}+   

             =  K 𝔼[{𝑆𝑇 �
1
K

 −  1
ST
�}+  ] =  K[𝔼∗� (K∗  −  S∗)+  ] 

    =  K P∗T(K∗, S∗)                          (3.8) 

  Similarly, using (3.7) yields the following relation: 

              𝔼�ƒ𝑻� =  𝑃𝑇(𝐾 ; 𝑆) =   𝔼 [(K − ST )+] =  K C∗T(S ∗ ; K∗ )           (3.9)                                  

 

Remark 3.2 Comparing (3.6) with (3.8) and (3.7) with (3.9) gives the following 

results: 

 

Theorem 3 For standardized call and put options, the option prices satisfy the 

following duality relations 
1
K

CT (S ; K) = P∗ 
T(K∗, S∗) 

and  
1
K

PT (K ; S) = C∗ 
T(S∗ ; K∗), 

where P∗ 
T(K∗, S∗) and C∗ 

T(S∗ ; K∗) are the corresponding prices for put and 

call options respectively, with  S∗ as the price process computed with respect to 

the dual measure ℙ∗. 

The proof of Theorem 3 is immediate from Remark 3.1 above. 

 

 

4  Applications of Results 

4.1  Options Parity 

Suppose 𝑆 is the price process of an underlying asset and ℙ is the associated 
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probability measure, then the call and put prices in markets (S ;  ℙ ) and (𝑆∗;ℙ∗) 

satisfying the duality relations are connected by the following: 

• Call-call parity:  

                                       𝐶𝑇 (𝑆 ;𝐾) = 𝐾C∗ 
T(S∗ ; K∗) + 1 –𝐾               (4.1) 

 and 

• Put - put parity:  

 𝑃𝑇 (𝐾 ; 𝑆) = 𝐾P∗ 
T(K∗ ; S∗) + 𝐾 − 1               (4.2) 

    Recall from (3.4) and (3.5) that  

                     ƒ𝑇 = max(ST − K , 0) =  (ST  −  K)+  ,     

hence, the following identity holds: 

   (ST  −  K)+  =  (K − ST )+  +  ST –  K                (4.3) 

Taking mathematical expectation of (4.3) with respect to the measure ℙ gives: 

       𝔼(ST  −  K)+  =   𝔼 (K − ST )+ +  𝔼(ST) − 𝔼(K)   

      ⇒   CT(S ;  K) =  PT(K ;  S)  + 1 − K             (4.4) 

Applying Theorem 3 and (4.1) on (4.4) gives: 

       CT(S ;  K) =  𝐾C∗ 
T(S∗ ; K∗) + 1 –𝐾   (call - call parity)    

Similarly, for put-put parity: 

                            ƒ𝑇  = max(K −  ST  , 0) =  (  K −  ST )+  ,           (4.5)           

We recall from (4.3) and (4.4) that: 

CT(S ;  K) =  PT(K ;  S)  + 1 − K   and   CT (S ; K) = KP∗ 
T(K∗, S∗) 

(From Theorem 3)    

Hence, relating (4.5) and Theorem 3 with (4.4) gives: 

           CT(S ;  K) =  PT(K ;  S)  + 1 − K 

      KP∗ 
T(K∗, S∗) =  PT(K ;  S)  + 1 − K          (4.6) 

Showing that: 

    PT(K ;  S)   =  KP∗ 
T(K∗, S∗) + K − 1    (put - put parity) 

Whence, the markets (S ;  ℙ ) and (𝑆∗;ℙ∗) satisfied the duality relation and are 

connected via the call - call parity and  put - put parity      Q.E.D. 
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4.2  The dual dynamics 

Consider the stock price process of a risky asset defined by  

      𝑆𝑡 =  𝑆0𝑒𝑟𝑡  + 𝐿𝑡                        (4.7) 

For a L�́�vy process L and r the interest rate, letting 𝐿𝑡 =  �𝜆 − 𝑟 −  𝜎
2

2
� 𝑡 + 𝜎𝑊𝑡 

in (4.7) gives: 

          𝑆𝑡 = 𝑆0𝑒
�𝜆−𝜎

2

2 �𝑡+ 𝜎𝑊𝑡                    (4.8) 

where 𝜆 is the drift parameter (rate of return), 𝜎  is the volatility rate and 

𝑊 = {𝑊𝑡: 𝑡𝜖ℝ+}  is a standard Brownian motion. Therefore, the associated 

dynamics of the process is: 

       𝑑𝑆𝑡 =  𝑆𝑡(𝜆𝑑𝑡 +  𝜎𝑑𝑊𝑡)                   (4.9) 

Suppose the (financial) market is purely volatile such that: 

𝑆 = 𝑒𝑥𝑝(𝐻)𝜖𝑀(ℙ) 

 i.e. S is a ℙ-martingale, such that (4.8) and (4.9) become: 

      𝑆𝑡 =   𝑒𝑥𝑝 �𝜎𝑊𝑡 −  �𝜎
2

2
𝑡� �                  (4.10) 

 and 

       𝑑𝑆𝑡 =  𝜎𝑆𝑡𝑑𝑊𝑡                    (4.11) 

respectively, where 𝐻 =  �𝜎𝑊𝑡 −  �𝜎
2

2
𝑡� � , then, the dual price process 𝑆∗  =

 𝑒𝐻∗ =  𝑒−𝐻 under the dual measure 𝑃∗ has stochastic differential 

      𝑑𝑆𝑡∗ =  −𝜎𝑆𝑡∗(𝑑𝑊𝑡 − 𝜎𝑑𝑡), with 𝑆0 = 1 

Proof: 

     𝑆𝑡 =   𝑒𝑥𝑝 �𝜎𝑊𝑡 −  �𝜎
2

2
𝑡� �, with 𝑆0 = 1 shows that: 

     𝑆𝑡 =  𝑒𝑥𝑝(𝐻∗)  , 𝐻 = 𝑒𝑥𝑝{𝜎 𝑊𝑡 −  �𝜎
2

2
𝑡� 

    ∴  𝑆𝑡 =  𝑒𝑥𝑝(𝐻∗) = 𝑒𝑥𝑝(−𝐻) 

               = 𝑒𝑥𝑝 �𝜎
2

2
𝑡 −  𝜎𝑊𝑡�                          (4.12) 

Applying one-dimensional version of Ito� formula on (4.12), with 𝑋 =  𝑆∗ = 𝑊 
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implies that: 

𝑑𝑆𝑡∗ = 𝑑𝑊𝑡,   for 

g ≡ 0, 𝑓 ≡ 0, and   𝑢(𝑡, ��𝑆∗) = 𝑒𝑥𝑝 �𝜎
2

2
𝑡 −  𝜎𝑆𝑡∗� 

hence,  

            𝜕𝑢
𝜕𝑡

=  𝜎
2

2
𝑆𝑡∗ ,  𝜕𝑢

𝜕𝑆∗
=  −𝜎𝑆𝑡∗ ,    𝜕2𝑢

𝜕𝑆∗2
 =  𝜎2𝑆𝑡∗  

But   

        𝑑𝑢(𝑡, ��𝑆∗)  =  �𝜕𝑢
𝜕𝑡

 + 𝑔 𝜕𝑢
𝜕𝑆∗

 +  1  
2
𝑓2 𝜕2𝑢

𝜕𝑆∗2
 �𝑑𝑡 + 𝑓 𝜕𝑢

𝜕𝑆∗
𝑑𝑊𝑡  

       ∴  𝑑 𝑆∗ =  �𝜎
2

2
𝑆𝑡∗  +  1  

2
𝜎2𝑆𝑡∗ � 𝑑𝑡 +  −𝜎𝑆𝑡∗𝑑𝑊𝑡       

            =  𝜎2𝑆𝑡∗𝑑𝑡 − 𝜎𝑆𝑡∗ 𝑑𝑊𝑡  

         =  −𝜎𝑆𝑡∗ (𝑑𝑊𝑡  −  𝜎𝑑𝑡)                      □ 

 

 

4.3  Remark 
(i)  Considering (4.10) and (4.11) above, where the market model is purely 

volatile, if the volatility rate is so small; (i.e. 𝜎 → 0 ), then the associated price 

process 𝑆𝑡  = 𝑒𝑥𝑝(𝐻𝑡)  and its dual process  𝑆𝑡∗  = 𝑒𝑝𝑥(𝐻𝑡∗)  = 𝑒𝑝𝑥(− 𝐻𝑡)  

become a constant say (𝑆0). That is; 

𝑆𝑡 =   𝑆𝑡∗ =  𝑆0 

with dynamics process  𝑑𝑆𝑡∗ = 𝑑𝑊𝑡 = 0,  where 𝔼(ST) =  𝔼(S0) = 1. 

This shows the coincidence of the associated underlying asset price process with 

its corresponding dual process. 

(ii) In (4.8), if the volatility rate is again so small (i.e. 𝜎 → 0 ), then the asset 

price process becomes 𝑆𝑡  =  𝑆0𝑒𝑥𝑝(𝜆𝑡) and the corresponding dynamics of the 

price process is purely deterministic. In this case, the asset process grows without 

bound, where 𝑑𝑆𝑡  =  𝜆𝑆𝑡𝑑𝑡. 

Showing that the underlying asset is virtually riskless. At this time, the payoff of a 

European call option with this underlying asset is: 
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      ƒ𝑇  =    (ST  −  K)+  =   (𝑆0𝑒
𝜆𝑇 − 𝐾)+  . 

 

 

5  Concluding Remarks 

The previous sections with regard to the corresponding remarks reveal the 

strength of the duality principle from the theoretical point of view and its 

usefulness in Mathematical finance. The models are quite powerful candidates for 

an incomplete market. Our next target is to verify the immense usefulness of this 

work in the actual world in terms of computational analysis.  
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[19] K. Massaki, Stochastic Processes with Applications to Finance, www.math./ 

Massaki/ , 2001. 

[20] W. Margrabe, The Value of an Option to exchange one asset for another. 

Journal of Finance, 33, (1978), 177-186. 

[21] Y. Miyahara, A Note on Esscher Transformed Martingale Measures for 

Geometric 𝐿�́�𝑣𝑦  processes. E-mail: y-miya@econ.nagoya-cu.ac.jp, 2004. 

[22] D. Nualart and W. Schoutens, BSDE’s and Feynman-Kac Formula for 𝐿�́�𝑣𝑦 

Processes with Applications in Finance. www.math.sc.edu, 2001. 

[23] B. Oksanda, Stochastic Differential Equations: An introduction with 

Applications, Sixth edition, Springer-Verlag, 2000. 

[24] M.F.M, Osborne, Rational Theory of Warrant pricing, Industrial 

Management review, 6, (1965), 13-32. 

[25] A. Papapantoleon, Applications of semimartingales and 𝐿�́�𝑣𝑦 processes in 

Finance-duality and valuation, PhD Thesis, Univ. Freiburg, 2007. 

[26] K. Prause, The Generalized Hyperbolic Model: Estimation, Financial 

Derivatives, and Risk Measures. Dissertation. Mathematische Fakultät der 

Albert-Ludwigs-Universität Freiburg im Breisgau, 1999. 

[27] S. Raible, 𝐿�́�𝑣𝑦 processes in Finance- Theory, Numerics, and Emperical 

Facts, www.math.sc.edu/Raible/ , 2000. 

[28] A.A.F. Saib and M. Bhuiruth, Option Pricing of jump Diffusion Models 

under Exponential 𝐿�́�𝑣𝑦 models using Mathematica, 2008. 

[29] P. Samuelson, Economics Theory and Mathematics – An appraisal, Cowles 

Foundation Paper 61, Reprinted from American Economic Review, 42, (1952), 

56-69. 

[30] A.N. Shiryaev, Essentials of Stochastic Finance – Facts, Models, Theory, 

World Scientific, 1999. 

 


