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Abstract

Methods of collocation and interpolation were adopted to
generate a continuous implicit scheme for the solution of second order
ordinary differential equation. Newton polynomial approximation method
was used to generate the unknown parameter in the corrector. This enables
us to solve both initial and boundary value problems.
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1.0  Introduction
The second order ordinary differential equation of the form

Y =f(xy.y) (1.1)
subject to y(a) = n(,,y'(a) =7),is called initial value problem. When the condition is of the

form y(a)=mn,, y(b)=y, fora<x<D it is called a boundary value problem, where f is a

continuous function. Scientific and technological problems often lead to mathematical
modeling of real life applications such as motion of projectiles or orbiting bodies, population
growth, chemical kinetics and economic growth. Differential equation is often used to model
the problems and most times these equations do not have analytic solution, hence an
approximate numerical method is required to solve the problems. Equations (1.1) is
conventionally solved by first reducing it to the system of first order ordinary differential
equation and then one applies the various methods available for solving the system of the first
order. This approach is extensively discussed in the literature and we cite few examples among
~others, {1}, {21, [3], [4], [5]. [6], [7]. Although this approach has tremendous success yet it has
certain drawback. For instance, computer programs associated with the method are often
’COmpllcated especm]ly when the subrovu_tmgs~ to supply the startmo va]ues for the methods result
(8], stated that these methods do not utilize additional mf01mat10n assocnated with a spec1ﬁc
ordinary differential equation, such as oscillatory nature of the solution.
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Block methods for numerical solution of the first order ordinary differential equations
have been proposed by several researchers such as in [18, 20, 21 and 27]. Rosser [19]
introduced the 3- point implicit block method based on integration formulae which is basically
Newton's cote type. Zanariah et al [26], proposed 3 points implicit block method based on
Newton’s backward divided difference formula.

Considerable attention has been devoted to development of method to solve special
second order ordinary differential equation of the type v = f(x, y) directly without reducing
it to system of first order. For instance [1],[9], [10], [11] and [12] among others. Hairer and
Wanner [13] proposed Nystrom type method and stated other conditions for determining the
parameter of the method. Chawla and Sharma [14] proposed a method due to Runge kutta
method. Method of linear multistep method have been considered by Awoyemi and Kayode
[15]. and Kayode [23]. These methods are predictor corrector methods, although the
implementation of the miethod in a pc mode yield good accuracy. the procedure is costly to
implement. For instance, pc subroutine are very complicated to write, since they require special
techniques for supplying the starting values and for varying the step size, which lead to longer
time and more human effort. Jator and Li [16], proposed an order 5 method that was
implemented without the need for either predictor or starting values from other methods. Jator
{6] proposed an order 6 method based on the same method. Adesanya et al. [17] proposed a
two step method for the general solution of second order which is self starting and adopt
Newton’s polynomial to generate the starting value. Awoyemi et al. [24] recently proposed u
self starting Numerov method. This method solves both initial and boundary value solution of
ordinary differential equation. Yahaya [12] constructed a Numerov method from a quadratic
continuous polynomial solution. This process led to method applied to both initial and
boundary value problems.

In this work. we propose a block method for three steps. This method adopt Newton's
polynomial approximation to generate the starting value and solves both initial and boundary

value problems.
2.0  Methodology
We first state the uniqueness theorem for higher order ordinary differential equation
with initial value problem
Theorem 2.1
Let

L3 (2:1)

u" = fut et ) (2, )=

k=0, )...nsd,where u are scalars
Let R be the region defined by the inequalities x, <x<x,+a, lS; -'—(',lSh ;

Jj=0l..,n=1,(a>0,b>0). Suppose f(x,s,...,s,_,)Iis defined in R and in addition
(a) - Fisnon negative and non decreasing in each x,s,,...s,_ in R A
(b) TG, J 2 OOF X, SXE X, 4

(c) g, 20 k=12, .0~
Then the initial value problem (1.1) has a unique solution in R. (sec Wend [25]) for
details). We consider an approximate solution to (1.1) in power series

y(x) = Za_,¢_, (x)

J=0
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g = o', a;, j =0(1)2k — I are constants to be determined. Consider a linear multistep method
'L ¢

of the form

m=1

=
Y= 9 (0., 1Y 0 (0 f,., (2.3)

r=0) <=
where x =[x,.x,. |. k = step length, 'm = the distinct collocation point. t is the interpolation

point, for our method, the step length k =3

4=l

G(x)= D @ p(x).r =012 m—1 (2.4)
i=()
R 1+m—1
he(x) = ZIlzqol.”_r(x)pl.(x),r:(),l,Z...,m -1 (2.5)
i=0)
y(x,,)=y,..rel0L,2,... =1y x)=f,.r=01m-1 (2.6)

To get @,(x) andg,(x). According to Yahaya [12], Onumanyi arrived at matrix of the form

DC =1, where [ is an identity matrix of dimension (1 +m)X (1 +m).

1 'Xu 'Xn:‘ N 'X/Ir+’—|
. . 2 rti-1
! Xzt X X
) X 1 1+l
D - l Ta+r=| '\ll+l—] ¥ 'Xu+llvl (27)
0 0 2
0O 0 2 : (t+m=1)(t+m=-2)x""
2 2
A a, - O, L/
2 2
Ay Ay - Oy ., . he,.,
c= (2.3)
z v ’..l s
aH-m‘() aI'H!l.l . a,Hm.r—l 1 ¢I+m,() * h ¢I+IH.IH~]

3.0  Development value for the unknown

Theorem 3.1 7
Assuming that f € ¢""'[a,b] and x, € [a,b)for k=0, 1. n are distinct values, then

f(x) =" y(x)+ R, (x) , where y(x)isa polynomial that can be used to approximate f(x)

For Newton’s polynomial
y(x)=a,+a(x-x)+a,(x—x)(x—x)+..+a,(x—x ) x-x).(x-x,_) G.I)

F(x)= y(x). R, (x)is the remainder and has the form

e+l
R (x}= / )'(x — X =X Pl X=X, W =% ] (2.2)
x

n+l 7t

(See Awoyemi et al. [24]) for details.
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4.6 Development of three steps method

In developing the method with step length k=3, we consider

’71 s x3+l X,'L, X:f“ 'XISI"'T’
x:u! 'X:::+2 . i+2 x;:+2 X:+Z
pt0 0 2 6, 12x2 20, (4.1)
0 0 2 bz, x, UW Xt
0 0 i ®8x,.. 12,\”ﬂ W,
0 0 2 6Xu+3 1’) l(+7 20lu1 i
This gives B
a, =~ cgz =1+]
(/)— 3t* +10° - 71
2= (- )
h 3
=—|3¢° +5¢* - 20r + 221
oot )
"
@, = —— (=30 +10r* +101" + 601> + 431)
- 120
/’12
=—— (31" + 15" + 201" - 8 (4.2)
2 =2 )
o = = a; = |
( 15t +301* -7
o) =5 - )
(1) —~—O(]51 +200° ~ 601 +22)
! hz 4 3 7
P = (= 15¢% + 4017 + 3002 +1201 + 43)
o)1) = s—-—(m +60r" +60:% - 8) (4.3)
X=X +2 . & . = :
where = ; “=  Evaluating (4.2) at x,,i.e. when t =1 and substituting the result in (2.3)
1 <
giVeS » ]2yn+3 24.} n+2 + 12)’,,+; g h (\f/l-ﬂ T ,Of;/+” //Hl) (44)
(4.4) has order p=4 and error constant ¢p** = A4
240
Evaluatmo (4.2) at x, i.e. when = -2 and substituting the result in (2.3) gives
]2yn+2 - 24)’,,.” + ]2V i /7 (f,,+7 e IO//MI *+ fu ) (45)
(4.5) has order pp = 4 and error constant ('p+2 = ——1——.
240

Evaluating (4.3) at 1 =-2 and substituting the result in (2.3) gives
360ky, —360y,,, +360y,,, =h*(=24f, , +9f,.. ~414 /., -1271,) (4.6)

n+2 1+l
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Evaluating (4.3) at r =-1 and substituting the result in (2.3) gives

36Ohyllr+| - 360),1!+2 + 360-);:I-H = h 177 fHJ 546 /IH-" + 47 l‘/'”H - 952/11 ) (47)
Evaluating (4.3) at t = 0 and substituting the result in (2.3) gives
36Ohyl.l+“ 360 vu+7 £ ’;60-) n+l T h (7 fn+'( 66.fu+" ]29 / n+l i3 8./.11 ) (48)

Evaluating (4.3) at7 =1, and .sub.smutmo the result in (2.3) gives
360/’1.)}:'&} - 360))/”2 + 360)}114’1 - h ( 8 le"( + l29-fn" 66 ]‘,,pl 7./.,,) (49)
Solving (4.3), (4.4) and (4.5) using matrix inversion method, we obtain the block

r]_9 -13 _]ﬂ r() 0 21
] O O _Y”” 0 0 _l yu—l 60 ]20 15 —f;prl 9 360—-/;14
01 0|y 40 0 <1y =212 2 Zlr, 1o 0 By
y/1+'_‘ -)n»'.’ ? 15 15 15 fl+2 360 45 . n.-'_’
LO 0 ] yut? O 0 -] yu 37 g_’_/ l‘z _fn+3 0 O z(_) _-fu
0 O ﬂ] .\Yl‘l—l
= 0 0 _2 -)’/IIAZ
00 =3|vy,
Hence. from (4.10)
n’ :
/:+I—) +—36—(ll4fn+l_ /u+2+ 4f111v+97f )+/‘I\’ (4”)
= -) +—~(66 /H«H +6fu-r +6/u+”{ +28-f;1)+2/1y\);1 (4]2)
-\n —a‘n+__.(374/;l+l+81)(n+"+34fu+'§+l]7~f;1)+3h-'v"' (4]3)

4.1 Development of the unknown for k =3
Evaluate the first derivative of (3.1), and neglect a,and higher values of a i.e. Newton's

polynomial of order 4, we obtain

12hy, = =28y, + 48,0, —30Y,02 +16%, 03 =35, (4.14),
12hy, y ==3Y, =10y 318y . <OV i F Vs (4.15)
L (4.16)
12hy, ., ==y, +6y,,—18y,,, +10y,,, +3v,., (4.17)

Making y . the subject in (4.14) and substituting info (4.15)- 4!6) and solving

for -yll+l..y"+'_’ ﬂnd y 143 glve%

»VIH'I = yu + — (57 ‘ n+l loy 1+2 + 3.} n+3 + 27 y;r ) (418)
yn+'_’ = ~ (l 27 leI + 2y;y+2 + 3«\,;1 ) (4 ]9)
yn+3 = _)",, + g (9)]1'7‘” + 6/‘ll+" + 3V,,+z 3yl‘l+!l ) (420)
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the subject in (4.5) and then substitute in (4.6)-(4.8) to solve for f .. [, .,

Make y,,,,
and f,.,. give
. (-3 . 3 . L 1 .
. o = n + % .y/H» + = )”+” + = )IH- N v” (42 , )
j f /1(2 | 2) s 6) 3 6 )
1 7 2 -
/n+7 - 3f + Vi 6y”+7 3 = Yiid + 5 My (4.22)
39 . 69 17 13 .
fll““ -2Sf Tor / ( 2 »)HH - /_ ‘/H»’ T — _ .\ n+3 +—5~"1/J (42’;)
Comparing (4.20)-(4. 23) with the second derivative of (3.1) gives
. = ,
yu+l i 86 — n - 504 }?f” (424)
14417 14417
s 16974 ; 1620 W (4.25)
- 14417 14417
63485 K 45228 W, 496

Y3 = Taa17 7" T 14417

5.0  Numerical example
We test the efficiency of our scheme on linear and non linear second oider differential

equation.
Problem 5.1:
y —x(»)* =0

y0)=1,y(0)= 5/1 0.1740

Exact solution y(,x)-l+—l (2+1J
2 24~x

(Grid point " Expected result Calculated result Error
0.0025 1.00125000065104 | 1.00125000014116 . | 5.09882D-10 .
g 1)0050 1.00250000520835 | 1,00250000032393 ; 2| 4.88542D-09. £}
o007 T T 00575001757828 1.00375001139519  |.6.18308D-09. >.|.
“10.0100"  T[71.00500004166729 | 1.00500001779432 | 2.38729D-08 |
£ 0.0125 - -~} '1.60625008138212 | 1.00625002292868 | 5.84534D-08'
00150 — | 1.00750014062974 | 1.00750005100468 | 8.96250D-08 _|
0.0175 —~ | 1.00875022331755 | 1.00875020629768 | 1.60840D-07
0.0200 - -{-1.01000033335333 | 1.01000007231814 | 2.61035D-07 '
1 0.0225 ~ -~ =[- L.OF125047464542 | 1.01125041188283 | 3.55817D-07
.0.0250 - 1.01250065110271 | 0.012500613537337 | 3.75653D-07

Problem 5.2
v "= 2_\)3
yO)=1,y (0)==1,h=0.1/40

Exact solution y(x) =—
e
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Erid point | Expected result Calculated result Error
0.0025 0.997506234413965 | 0.997506800724006 | -4.560D-07
0.0050 0.995024875621891 | 0.995029339533017 | 1.941D-06
0.0075 0.992555831265509 | 0.992564223860174 | -8.397D-06
0.0100 0.99009900990099 | 0.990070873966239 | 2.814D-05
0.0125 0.98765432098754 | 0.98759291299131 | 6.140D-05
0.0150 0.985221674876847 | 0.985127023087557 | 9.465D-05
0.0175 0.982800982800983 | 0.982633524787924 | 1.675D-04
0.0200 0.980392156862745 | 0.980155071394184 | 2.371D-04
0.0225 097799511002445 | 0.977688418640018 | 3.067D-04
0.0250 0.975609756097561 | 0.975194774137825 | 4.149D-04
Problem 5.3
y" = y+e3"
y(o)zg_z-”_,y'(o)=;—25,h:0.1/4o
Exact solution y(x)= ___4x =
32exp(—3x)
Grid point | gynected result Calculated result Error
00025 | .0.004140915761848 | -0.094140939393182 | 2.34D-08
GICAD -0.094532404142338 | -0.094532599228254 | 1.95D-07
00075 | 0.094924451608388 | -0.094924817272551 | 3.65D-07
o -0.095317044390700 | -0.095317760663383 | 7.16D-07
0.0123 -0.095710168480980 | -0.095710743379670 | 5.74D-07
00150 | 0.096103809629113 | 0.096109967248178 | 6.16D-06
) Sl 10.09649533403163 _| -0.096494619870395 | 7.14D-07
00200 | .0.006892584872264 | -0:096896306302397 | 3.72D-07
190225 | 0.097289689232184 | -0.097285656289237 | 2.03D-06
00250 | 0.097683251173919 | -0.097685517015441 | 2.26D-06
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