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Abstract - A one-step implicit hybrid block solution method 
for initial value problems of general second order ordinary 
differential equations has been studied in this paper. The one-
step method is augmented by the inclusion of off step points to 
enable the multistep procedure. This guaranteed zero stability 
as well as consistency of the resulting method. The convergence 
and weak stability properties of the new method have been 
established. Results from the new method compared with those 
obtained from existing methods show that the new method 
gives better accuracy. 

 
Index Term - one-step, hybrid method, block method, 

stability, off step. 
 
 

I. INTRODUCTION 
 
Conventionally, higher order ordinary differential 

equations of the form 

       1, , , , ,n ny x f x y y y y     (1) 

are solved by the reduction of order method, [11], [8] and 
[14]. An approach widely reported to be cumbersome and 
prone to accumulation of errors in the course of the   
integration process, (See [1], [4] [20] and 22]). Direct 
method is an alternative to the reduction of order method 
where the problem is approximated directly. This approach 
has been extensively studied by many researchers in recent 
years (See [2], [5] [21] and [25]). A commonly adopted 
method to approximate the solution of (1) directly is the 
linear multistep method. Implementation of this method has 
mostly been either in the predictor-corrector mode [17], or 
the block mode, [6] and [15]. The former is widely reported 
to be costly in terms of the human effort involved in 
developing predictors; subroutines to supply starting values 
for the integration process and the wastage of computer time 
and memory. In the latter, development of predictors 
separately is not required; using other methods and writing 
subroutines to supply starting values is not necessary and the 
method can be applied as a parallel integrator thereby 
reducing the usage of computer memory and computing 
time.  
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However, the underlying condition for these methods of 
implementation is the Dahlquist’s barrier conditions, [10]. It 
stipulates that a zero stable linear multistep method is at best 
of order 1p k   for odd number of steps and 2p k  for 

even number of steps. Thus, if one desires to reduce the 
number of steps and hence the number of function 
evaluations per given order while still achieving a higher 
order of accuracy and zero stability then, one must 
circumvent Dahlquist’s barrier conditions. To achieve this, 
the hybrid methods were introduced in [9] and [12].  
 

Generally, these hybrid methods are known to share with 
Runge-Kutta methods the advantage of easy change in step 
length and evaluating data at off step points. Although, 
hybrid methods were considered initially not to be methods 
on their own, [19], today, many notable authors have used 
the method independently to derive new numerical schemes 
of step number 1k  , for the solutions of initial value 
problems of ordinary differential equations. Some examples 
include hybrid-predictor-corrector method, [7] and [17] and 
the hybrid block methods, in which different hybrid schemes 
are combined to form a single block, [15] and [24]. 

 
In this paper, we propose a continuous one-step implicit 

hybrid block method for the direct solution of initial value 
problems in the class of (1) particularly, when 2n with 
initial conditions prescribed, that is; 

      , , , ,
a a

y f x y y y a y a       . (2) 

Where [ , ], ,x a b a b   and f  is continuously 

differentiable in[ , ]a b . Basically, we assume the existence 

and uniqueness of the solution of (2) according to [23]. 
 
II DERIVATION AND SPECIFICATION OF THE 

METHOD 
Suppose the solution of (2) is approximated in the range  

1n n
x x x     such that the step length is given by

1n n
h x x  . Suppose also that the approximate solution is 

of the form of the power series polynomial: 

  
0

j

j
j

P x a x



   (3) 

Then, imposing r s conditions on (3), (where and r s
represent the number of collocation and interpolation points 
respectively), polynomials of degree atmost 1m r s    
are obtained as follows: 

  
1 1n n

P x y    
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 
   

2 2

, ,
j

n n

n n j n j n j

P x y

P x f x y y

 



 

   



   (4) 

Where 
1 2

0, , ,1j    and
1 2 1
, { , }

n n
x x    are off step points. 

This system of equations each with degree atmost mcan 
be written in the matrix form:  
 Ax b  (5) 

i.e.  

1 1 1 1 1

2 2 2 2 2

1 1 1

2 2 2

2 3 4 5

0

2 3 4 5

1

2 3

2

2 3

3

2 3

4

2 3

51 1 1

1

1

0 0 0 6 12 20

0 0 0 6 12 20

0 0 0 6 12 20

0 0 0 6 12 20

n n n n n

n n n n n

n n n

n n n

n n n

n n n

ax x x x x

ax x x x x

ax x x

ax x x

ax x x

ax x x

    

    

  

  

    

    

  

  

  

   
   
   
   
   
   
   
   

     

1

2

1

2

1

n

n

n

n

n

n

y

y

f

f

f

f



















 
 
 
 

  
 
 
 
  

 

 
Using Gaussian elimination method, the unknown 

coefficients j
a  s can be obtained. Putting the j

a  s back into 

(4), gives the continuous one-step implicit hybrid method: 

        1 1 2 2

2
2

0 1
i i

k

n k n n j n j n
j i

y t y t y h t f t f            
 

        (6)       

Where, n z nx x zh   ;  n z n zy y x   is the approximation of 

the exact solution at the grid point n z
x  and 

 , , ,
n z n z n z n z

f f x y y
   

  for any z .  

The coefficients  i t ,  j t ; 1,2; 0, ,1ii j    are 

continuous coefficients obtained by using the transformation 

2nth x x   in (5). The method (6) is completely 

determined by these coefficients for values of some values 
of [0,1]t .   

The first derivative of the coefficients of (6) with respect 
to t  gives the derivative method: 

        1 1 2 2

2
2

0 1
i i

k

n k n n j n j n
j i

y t y t y h t f t f            
 

           
(7) 

Hence, using (6) and (7), approximate methods and their 
derivatives, (needed to set up the block formula), can be 
derived at the step and off step points respectively.  

 
A careful choice of the off step points is necessary if zero 

stable methods are to be derived. For the new method, we 
have carefully chosen off step points to be at equal distances 

of one third apart, starting from the origin. Thus, 1
1

3  and

2
2

3  .  

In particular, the coefficients     , ;
i jt t 

1, 2, 0, ,1ii j    which determine (6) are given respectively 

as follows: 

 

 
 

   

   

   

   

1
3

2
3

2

5 3
0

2

5 4 3
1

3

2

5 4 3 2
2

3

2

5 4 3
1

3

3 1

243 90 7
1080

243 135 180 22
360

243 270 90 180 43
360

243 405 180 8
1080

t t

t t

h
t t t t

h
t t t t t

h
t t t t t t

h
t t t t t














 

  

   

    

   

 (8) 

Evaluating (6) at the step points nx x  and 1nx   so that 

2
3t  and 1

3  respectively, gives the discrete methods 

 2 1 2 1
3 3 3 3

2

1 12 10
108

n nn n n n

h
y y y f f f    

        (9) 

 2 1 2 1
3 3 3 3

2

2 10
108

n nn n n n

h
y y y f f f

   
        (10) 

Similarly, the coefficients     ,
i jt t  

1,2; 0, ,1ii j    in (7) are as follows: 

 

 
 

   

   

   

   

1
3

2
3

1
3

2
3

4 2
0

4 3 2

4 3 2

4 3 2
1

3

3

1215 270 7
1080

1215 540 540 22
360

1215 1080 270 360 43
360

1215 1620 540 8
1080

t

t

h
t t t

h
t t t t

h
t t t t t

h
t t t t












 
 

   

    

     

    

 (11) 

Evaluating (7) at n ix x  ,  1
30 1i  implies 2 1

3 3, ,0,t   

and 1
3 respectively. Thus, the following derivative methods 

are obtained: 

 2 1 2 1
3 3 3 3

13 3 8 9 414 127
1080

n n nn n n n

h
y y y f f f f   

          (12) 

 1 2 1 2 1
3 3 3 3 3

13 3 7 66 129 8
1080

n nn n n n n

h
y y y f f f f    

         (13) 

 2 2 1 2 1
3 3 3 3 3

13 3 8 129 66 7
1080

n nn n n n n

h
y y y f f f f    

          (14) 

 2 1 2 1
3 3 3 3

1 13 3 127 414 9 8
1080

n n nn n n n

h
y y y f f f f    

         (15) 

 
III IMPLEMENTATION OF THE METHOD 

 
For these methods derived in Section II, block method in 

the sense of [6] but with modification is adapted for their 
implementation. The modified version called the one-step 
implicit hybrid block method is defined in mathematical 
notations as: 

 
     A B Cn n

m m mh Y h y h F Y     . (16) 

Where: 
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   1 2 1 2
3 3 3 3

1 1, , , , ,
T

n

m n nn n n n
Y y y y y y y    

  

   1 2 1 2
3 3 3 3

,, , , ,
T

n

m n nn n n n
y y y y y y y

   
  

   1 2
3 3

1, , ,
T

m n nn n
F Y f f f f  

 . 

Also, n represents the order of the derivative of (6), 
represents the power of h and  is the order of problem (2).

A, B and C  are constant coefficient matrices obtained from 
the combination of methods (9), (10), and (12) – (15) into a 
block. Furthermore, A is invertible. 

Normalizing (16), yields the following new constant 
coefficient matrices: 

1
3

2
3

1 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0 0 1
A , B

0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 1

   
   
   
   

     
   
   
   
           

and 
97 19 13 1

3240 540 1080 405

28 22 2 2
405 135 135 405

13 3 3 1
120 10 40 60

19 51 1
8 72 72 72

1 4 1
9 9 9

3 31 1
8 8 8 8

C

0

 
  
 

   
 
 
 
  

 

 
Substituting matrices A,B, and C  in (16) with the new 

coefficient matrices A ,B  and C ,  the block solutions are 

obtained for each off step and step point respectively. These 
solutions are implemented as simultaneous integrators for 
the approximation of the solutions of problem (2) (without 
requiring neither special methods to supply starting values 
nor the development of predictors separately), over the 
subintervals:    0 1 1, , , ,N Nx x x x  of the partition

0 1 1N Na x x x x b      . 
 
 

IV ANALYSIS OF THE BLOCK METHOD 
 

In this section, fundamental properties of the one-step 
implicit hybrid block method are discussed. 

 
A Order of the method 

Consider the modified block method (16), the associated 
linear difference operator is defined as follows 

 
Definition 1  The linear difference operator L associated 
with (16) is defined as  

        ; A B Cn n

m m my x h h Y h y h F Y       L  (17) 

where  y x is an arbitrary test function continuously 

differentiable on  ,a b . Expanding  n

mY and  mF Y

component wise respectively in Taylor’s series and 
collecting terms in powers of h  gives  

 
           

       

1 22
0 1 2

11
1

;
p pp p

p p

y x h C y x C hy x C h y x

C h y x C h y x


     
  




L
 (18) 

Where the  iC , 0,1,i  are vectors. 

Definition 2   The implicit one-step hybrid block method 
(16) and the associated linear difference operator (17) are 

said to have order p  if  0 1 1 0p pC C C C       and

2 0pC   . 

Definition 3   The term 2pC   called the error constant 

implies that the one-step implicit hybrid block method (16) 
has local truncation error given by 

 
     22 3

2

pp p
n k p nt C h y x h 
    (19) 

 
From our computation, the new method has order of 

accuracy  4,4,4,4,4,4
T

p  and has error term given as  

 7 191 1 1 1
2 349920 21870 21960 174960 21870 6480, , , , ,

T

pC     
  . 

 
 
B Zero stability of the method 
 
Definition 4   The one-step implicit hybrid block method 
(16) is said to zero stable as 0h if its first characteristic 

polynomial  z  satisfies  

      det A B 1 0rz z z z
        (20) 

where r is the order of the matrices A and B , and the 
roots , 1, ,6sz s  of (20) satisfy the condition that 1sz  . 

Furthermore, those roots 1sz  have multiplicity not 

exceeding the order of the differential equation. 
 

The one-step implicit hybrid block satisfies the conditions 
of Definition 4 since from (16), 6r and 2 . Thus,  

    24det A B 1 0z z z     

Clearly, the method is zero stable and consistency 
follows since the order of the new block method is greater 
than one. 

 
C Convergence and Interval of Absolute Stability  

 
From the foregoing, the convergence of the one-step 

implicit hybrid block method is established according to 
[13]. 

The new method is absolutely stable within an interval of 

 7776,0 .  Although the method is not A -stable, it is 

strongly stable with a wide interval of absolute stability 
which makes it suitable for mildly stiff problems. 
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V NUMERICAL EXPERIMENT 
 
In this section, the accuracy of the fourth order one-step 

implicit hybrid block method (16), is experimented on two 
test problems with a fixed step size 1 320h . In each case, 

the computed result is compared with results obtained from 
existing methods. The absolute errors are given at some 
selected points of evaluation in Tables 1 and 2 respectively.  
 
Problem 1 

      2 1
0, 0 1, 0

2
y x y y y       

         Exact solution: 
1 2

1 ln
2 2

x

x

    
. 

For this problem, the new method of order four is 
compared with the three step, fourth order method proposed 
in [6] and the one step, one-hybrid, fourth order method 
proposed in [3]. It is obvious in Table 1 that the new method 
is more accurate than those in [3] and [6]. 
 

Table I for Problem 1 
X Error in [6] Error [3] Error in  

new result 
0.1 6.5501E-11 4.9827E-11 2.5056E-12 
0.2 5.4803E-10 4.1043E-10 2.0446E-11 
0.3 1.9256E-09 1.4286E-09 7.0966E-11 
0.4 4.8029E-09 3.5243E-09 1.7482E-10 
0.5 1.0006E-08 7.2435E-09 3.5904E-10 
0.6 1.8727E-08 1.3336E-08 6.6068E-10 
0.7 3.2346E-08 2.2873E-08 1.1328E-09 
0.8 5.3969E-08 3.7447E-08 1.8543E-09 
0.9 8.8004E-08 5.9504E-08 2.9461E-09 
1.0 1.4353E-07 9.2940E-08 4.6013E-09 

    

Problem 2  

    
2

6 4
0, 1 1, 1 1y y y y y

x x
            
   

 

Exact solution: 
4

5 3

3 3x x
  

 
From Table II, it is obvious that in the solution of 

Problem 2, the new method of order four is more accurate 
than the 3-step hybrid method proposed in [18] and the       
5-step Adam Moulton type method proposed in [16]; both 
methods are of order six and were implemented in the 
predictor-corrector mode.    

 
Table II for Problem 2 

X Error in [16] Error in [18] Error in 
new result 

1.0094 9.6400E-07 8.5357E-10 2.0169E-10 
1.0125 3.6750E-06 1.7846E-09 4.5540E-10 
1.0156 3.9320E-06 2.9171E-09 7.9967E-10 
1.0188 6.2160E-06 4.2420E-09 1.2305E-09 
1.0219 7.4430E-06 5.7509E-09 1.7440E-09 
1.0250 7.7370E-06 7.4341E-09 2.3365E-09 
1.0281 4.3530E-06 9.2848E-09 3.0043E-09 
1.0313 1.1610E-05 1.1295E-08 3.7441E-09 

 

 
VI CONCLUSION 

 
In this paper, it is shown that continuous implicit one-step 

hybrid methods can be formulated as implicit hybrid block 
methods for the direct solution of problems in the class of 
(2). The new one-step implicit hybrid block method 
proposed in this paper is of order four and gives very low 
error terms. The consistency and zero stability of the new 
method guarantee its convergence in the sense of [13]. 
Furthermore, the strongly stable method offers a very wide 
interval of absolute stability suitable for the solution of 
mildly stiff problems. 

 
Apart from the advantage of utilizing data at off step 

points, it can also be deduced from Tables I and II 
respectively, that the method is highly accurate.  
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