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1. Introduction

Sigmoid function is once the special functions which is a branch of mathematics
which is of utmost importance to scientists and engineers who are concerned with
actual mathematical calculations such as in physics, engineering, statistics, computer
science etc. These special functions do play important role in geometric function
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theory. Activation function acts as squashing function such that the output of a
neuron in a neural network is between certain values (usually 0 and 1 or -1 and
1). There are three types: threshold function, piecewise-linear function and sigmoid
function. Sigmoid function is the most popular of the three with gradient-descendent
type algorithms Fadipe et al [2] and Oladipo [7].

Activation function is an information process that is inspired by the way biologi-
cal nervous system such as brain processes information. It composed a large number
of highly interconnected processing element (neurons) working together to solve a
specific task. This function works in similar way the brain does, learns by examples
and can not be programmed to solve a specific task. Activation function has a wide
applications in the real world. It can be used in industries, business, forcasting sales,
identifying patterns trend and modelling especially in human cardiovascular system
and human population. Sigmoid function can be evaluated using truncated series
expansion, look-up tables or piecewise approximation [2].

The logistic sigmoid function g(z) = 1
1+e−z

is differentiable, which is very useful
in weight learning algorithm and serve as a link to the class of univalent functions.

Sigmoid function has the following properties:

(i) It outputs real number between 0 and 1

(ii) It maps a large domain to a small range

(iii) It is one-to-one function hence the information is well preserved

(iv) It increases monotonically

With all the properties mentioned by [2], sigmoid function is perfectly useful in
geometric function theory.

Let H(ω) be the subfamily of S(ω) ⊂ A(ω) ⊂ A where A denote the class of
analytic functions of the form

f(z) = z +

∞
∑

k=2

akz
k (1)

which are regular in the unit disk U = {z : |z| < 1} and normalized with f(0) = 0
and f ′(0)− 1 = 0. The above class of functions have been studied by many authors
most especially in terms of starlikeness, convexity, close-to- convexity, subordination,
convolution, extremal etc the literatures of which littered everywhere.

In 1999, Kanas and Ronning [4] developed and investigated a subclass of A

denoted by A(ω) of the form

f(z) = (z − ω) +

∞
∑

k=2

ak(z − ω)k (2)

which is analytic and regular in the unit disk U = {z : |z| < 1} and normalized
with f(ω) = 0, f ′(ω) − 1 = 0 and ω is a fixed point in U . They obtained someIn
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interesting and useful results in terms of ω-starlikeness, ω-convexity and coefficient
bounds. Several other authors, the likes of Acu and Owa [1], Selvaraj and Vasanthi
[8], Oladipo [5,7], have intensively studied this class of functions and they generated
several useful results as contained in the literatures mentioned. For the purpose of
clearity, we wish to state the following

ST (ω) = S∗(ω) =

{

f ∈ S(ω) : Re

(

(z − ω)f ′(z)

f(z)

)

> 0, z ∈ U

}

,

CV (ω) = Sc(ω) =

{

f ∈ S(ω) : 1 +Re

(

(z − ω)f ′′(z)

f ′(z)

)

> 0, z ∈ U

}

,

and ω is a fixed point in U .
For the purpose of our investigation, the following lemma shall be necessary.

Lemma A. (see [2]) Let g(z) be a sigmoid function and G(z) = 2g(z), then
G(z) ∈ P , |z| < 1.

Lemma B. (see [2]) Let

Gk(z) = 1 +
∞
∑

k=1

(−1)k

2k

(

∞
∑

m=1

(−1)m

m!
zm

)k

,

then |Gk(z)| < 2,m = 1, 2....

Lemma C. (see [2]) If G(z) ∈ P , then f(z) is a normalized univalent function.

In this work, our objective is to investigate the class of functions of the form (2)
with respects to symmetric and conjugate points as related to modified activated
sigmoid function of the form

Gω(z) = 1 +
∞
∑

k=1

(−1)k

2k

(

∞
∑

m=1

(−1)m

m!
(z − ω)m

)k

(3)

and ω is a fixed point in U .
From Lemma B, we can conviniently say that

|Gω

k | <
A−B

(1 + d)(1 − d)k
, k ≥ 1, −1 ≤ B < A ≤ 1, and |ω| = d (see [2], [5]). (4)

Additionally, the following definitions shall be helpful in our investigation.

Definition A. (i) Let S∗
s (ω) be the subclass of S(ω) consisting of functions

given by (1) satisfying the condition

Re

(

(z − ω)f ′(z)

f(z)− f(−z)

)

> 0, z ∈ U
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This class of functions shall be referred to as the class of ω-starlike with respect to
symmetric points and ω is a fixed point in U .

(ii) Let S∗
c (ω) be the subclass of S(ω) consisting of functions given by (1) satis-

fying the condition

Re

(

(z − ω)f ′(z)

f(z) + f(z)

)

> 0, z ∈ U

and ω is a fixed point in U . This class of functions shall be called ω-starlike with
respect to conjugate points.

(iii) Let Sc
s(ω) be the subclass of S(ω) consisting of functions given by (1) sat-

isfying the condition

Re

(

((z − ω)f ′(z))′

(f(z)− f(−z))′

)

> 0, z ∈ U

This class of functions shall be called ω-convex with respect to symmetric points
and ω is a fixed point in U .

In 1982, Goel and Mehrok [3] introduced a subclass of S∗
s denoted by S∗

s (A,B)
in terms of subordination. Also, Oladipo [6] in 2012 extended the class of functions
studied by [8] and interesting results were obtained. The authors here wish to give
the analogue definitions in the same manner by extension as follows.

Definition B. (i) Let S∗
s (ω,A,B) be the subclass of S(ω) consisting of functions

given by (1) satisfying the condition

2(z − ω)f ′(z)

f(z)− f(−z)
≺

1 +A(z − ω)

1 +B(z − ω)
,−1 ≤ B < A ≤ 1, z ∈ U

and ω is a fixed point in U

(ii) Let S∗
c (ω,A,B) be the subclass of S(ω) consisting of functions given by (1)

satisfying the condition

2(z − ω)f ′(z)

f(z) + f(z)
≺

1 +A(z − ω)

1 +B(z − ω)
,−1 ≤ B < A ≤ 1, z ∈ U

and ω is a fixed point in U

(iii) Let Sc
s(ω,A,B) be the subclass of S(ω) consisting of functions given by (1)

satisfying the condition

2((z − ω)f ′(z))′

(f(z)− f(−z))′
≺

1 +A(z − ω)

1 +B(z − ω)
,−1 ≤ B < A ≤ 1, z ∈ U
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and ω is a fixed point in U.

(iv) Let Sc
c(ω,A,B) be the subclass of S(ω) consisting of functions given by (1)

satisfying the condition

2((z − ω)f ′(z))′

(f(z) + f(z)
≺

1 +A(z − ω)

1 +B(z − ω)
,−1 ≤ B < A ≤ 1, z ∈ U

and ω is a fixed point in U

In this work, the authors wish to introduce the class σs(ω, β,A,B) consisting of
analytic functions f(z) of the form (1) and satisfying

2(z − ω)f ′(z) + 2β(z − ω)2f ′′(z)

(1− β)(f(z) − f(−z)) + β(z − ω)(f(z)− f(−z))′
≺

1 +A(z − ω)

1 +B(z − ω)
,

− 1 ≤ B < A ≤ 1, 0 ≤ β ≤ 1, z ∈ U

and ω is a fixed point in U .
Also, we wish to introduce the class σc(ω, β,A,B) consisting of analytic functions

f(z) of the form (1) and satisfying

2(z − ω)f ′(z) + 2β(z − ω)2f ′′(z)

(1− β)(f(z) + f(z)) + β(z − ω)(f(z) + f(z))′
≺

1 +A(z − ω)

1 +B(z − ω)
,

− 1 ≤ B < A ≤ 1, 0 ≤ β ≤ 1, z ∈ U

and ω is a fixed point in U

Therefore, by the definition of subordination, it follows that f ∈ σs(ω, β,A,B)
if and only if

2(z − ω)f ′(z) + 2β(z − ω)2f ′′(z)

(1− β)(f(z) − f(−z)) + β(z − ω)(f(z)− f(−z))′
=

1 +Ah(z)

1 +Bh(z)
= Gω(z), h ∈ U (5)

and that f ∈ σc(ω, β,A,B) if and only if

2(z − ω)f ′(z) + 2β(z − ω)2f ′′(z)

(1− β)(f(z) + f(z)) + β(z − ω)(f(z) + f(z))′
=

1 +Ah(z)

1 +Bh(z)
= Gω(z), h ∈ U (6)

where Gω(z) is as ealier defined.
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2. Main Result

In this section, we state and prove the following

Theorem 2.1. Let f ∈ σs(ω, β,A,B). Then for k = 2, 3, 4, 5. 0 ≤ β ≤ 1

|a2| <
A−B

2(1 + β)(1 − d2)
,

|a3| <
A−B

2(1 + 2β)(1 − d2)(1 − d)
,

|a4| <
A−B

4(1 + 3β)(1 − d2)(1 − d)2
,

|a5| <
A−B

4(1 + 4β)(1 − d2)(1 − d)3
.

Proof. From (4) and (5), we have

2(z − ω) + 2
∑∞

k=2 k(1 + β(k − 1))ak(z − ω)k

2(z − ω) +
∑∞

k=2(1− β + βk)(1 − (−1)k)ak(z − ω)k

= 1−
1

2

(

∞
∑

m=1

(−1)m

m!
(z − ω)m

)

+
1

4

(

∞
∑

m=1

(−1)m

m!
(z − ω)m

)2

−
1

8

(

∞
∑

m=1

(−1)m

m!
(z − ω)m

)3

+
1

16

(

∞
∑

m=1

(−1)m

m!
(z − ω)m

)4

−
1

32

(

∞
∑

m=1

(−1)m

m!
(z − ω)m

)5

+ ...+ (z − ω) + 2(1 + β)a2(z − ω)2 + 3(1 + 2β)a3(z − ω)3 + 4(1 + 3β)a4(z − ω)4

+ 5(1 + 4β)a5(z − ω)5 + 6(1 + 5β)a6(z − ω)6 + 7(1 + 6β)a7(z − ω)7 + ...

=

[

1 +
1

2
(z − ω)−

1

24
(z − ω)3 +

1

240
(z − ω)5 −

1

64
(z − ω)6 +

779

20160
(z − ω)7 − ...

]

[

(z − ω) + (1 + 2β)a3(z − ω)3 + (1 + 4β)a5(z − ω)5 + (1 + 6β)a7(z − ω)7

+(1 + 8β)a9(z − ω)9 + ...
]

,

(z − ω) + 2(1 + β)a2(z − ω)2 + 3(1 + 2β)a3(z − ω)3 + 4(1 + 3β)a4(z − ω)4

+ 5(1 + 4β)a5(z − ω)5 + 6(1 + 5β)a6(z − ω)6 + 7(1 + 6β)a7(z − ω)7 + ..... =

(z − ω) +
1

2
(z − ω)2 + (1 + 2β)a3(z − ω)3 +

[

1

2
(1 + 2β)a3 −

1

24

]

(z − ω)4

+ (1 + 4β)a5(z − ω)5

+

[

1

2
(1 + 4β)a5 −

1

24
(1 + 2β)a3 +

1

240

]

(z − ω)6 +

[

(1 + 6β)a7 −
1

64

]

(z − ω)7 + ...
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Equating the coefficients of the like powers of (z − ω), we have

2(1 + β)a2 = G1

2(1 + 2β)a3 = G2

4(1 + 3β)a4 = G3

4(1 + 4β)a5 = G4

By applying lemma B, we have

|a2| <
A−B

2(1 + β)(1 − d2)

where A−B

1−d2
= 1

2

|a3| =
A−B

2(1 + 2β)(1 − d2)(1− d)

where A−B

(1−d2)(1−d)
= 0.

|a4| <
A−B

4(1 + 3β)(1 − d2)(1 − d)2

where A−B

(1−d2)(1−d)2 = − 1
24

|a5| =
A−B

4(1 + 4β)(1 − d2)(1 − d)3

where A−B

(1−d2)(1−d)3
= 0. which complete the proof.

With various choices of A,B, β, d, many existing and new results could be ob-
tainted. If we set ω = 0 in Theorem 2.1, we have

Corollary A. Let f ∈ σs(0, β,A,B). Then for k = 2, 3, 4, 5. 0 ≤ β ≤ 1

|a2| <
A−B

2(1 + β)

|a3| = 0In
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|a4| <
A−B

4(1 + 3β)

|a5| = 0.

If we set β = 1, A = 1, B = −1 in corollary A, we have

Corollary B. Let f ∈ σs(ω, β, 1,−1). Then for k = 2, 3, 4, 5. 0 ≤ β ≤ 1.

|a2| <
1

2

|a3| = 0

|a4| <
1

8

|a5| = 0

Theorem 2.2. Let f ∈ σc(ω, β,A,B). Then for k = 2, 3, 4, 5.0 ≤ β ≤ 1.

|a2| <
A−B

(1 + β)(1− d2)

|a3| <
A−B

2(1 + 2β)(1 − d2)(1− d)

|a4| <
A−B

3(1 + 3β)(1 − d2)(1 − d)2

|a5| <
A−B

4(1 + 4β)(1 − d2)(1− d)3
.

Proof. From (4) and (6), we have

(z − ω) +
∑∞

k=2 k(1 + β(k − 1))ak(z − ω)k

(z − ω) +
∑∞

k=2(1− β + βk)ak(z − ω)k

= 1 +
1

2
(z − ω)−

1

24
(z − ω)3 +

1

240
(z − ω)5 −

1

64
(z − ω)6 + ...In
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(z − ω) + 2(1 + β)a2(z − ω)2 + 3(1 + 2β)a3(z − ω)3

+ 4(1 + 3β)a4(z − ω)4 + 5(1 + 4β)a5(z − ω)5+

6(1 + 5β)a6(z − ω)6 + ... = (z − ω) +

[

(1 + β)a2 +
1

2

]

(z − ω)2+

[

(1 + 2β)a3 +
1

2
(1 + β)a2

]

(z − ω)3 +

[

(1 + 3β)a4 +
1

2
(1 + 2β)a3 −

1

24

]

(z − ω)4+

[

(1 + 4β)a5 +
1

2
(1 + 3β)a4 −

1

24
(1 + β)a2

]

(z − ω)5+

[

(1 + 5β)a6 +
1

2
(1 + 4β)a5 −

1

24
(1 + 2β)a3

1

240

]

(z − ω)6 + ...

Equating the coefficients of the like powers of (z − ω), we have

(1 + β)a2 = G1,

2(1 + 2β)a3 = G2,

3(1 + 3β)a4 = G3,

4(1 + 4β)a5 = G4.

By applying lemma B, we have

|a2| <
A−B

(1 + β)(1− d2)

where A−B

1−d2
= 1

2

|a3| <
A−B

2(1 + 2β)(1 − d2)(1− d)

where A−B

(1−d2)(1−d) =
1
4

|a4| <
A−B

3(1 + 3β)(1 − d2)(1 − d)2

where A−B

(1−d2)(1−d)2
= 1

48

|a5| <
A−B

4(1 + 4β)(1 − d2)(1 − d)3

where A−B

(1−d2)(1−d)3
= − 5

288 . which complete the proof.

If we set ω = 0 in Theorem 2.2, we haveIn
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Corollary C. Let f ∈ σc(0, β,A,B). Then for k = 2, 3, 4, 5. 0 ≤ β ≤ 1

|a2| <
A−B

(1 + β)
,

|a3| <
A−B

2(1 + 2β)
,

|a4| <
A−B

3(1 + 3β)
,

|a5| <
A−B

4(1 + 4β)
.

If we set β = 1, A = 1, B = −1 in corollary C, we have

Corollary D. Let f ∈ σs(ω, β, 1,−1). Then for k = 2, 3, 4, 5. 0 ≤ β ≤ 1.

|a2| < 1,

|a3| <
1

3
,

|a4| <
1

6
,

|a5| <
1

10
.
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