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Abstract

in tis paper, the role of mathemaical modeling in the development of clean technoiogy has been considered.
One method each for obiaining aporoximate salutions of mathematical modeis by ordnary derential equatns
and partial differential equations respectively arising from te modeling of systems and physical phenomena has
been consiereg. The CORSIUCHON OF conBNUOUS Rybrid methods for the NUMercal apprximation of e S0iLans
of initial vaiue problems of ordinary diferential equations a5 well a5 homotopy analysis method, an approximate
analytical method, for the Soution of noninear partial diferential equations are aiscussed.

Koy words: Mathematical models, simulation, confinuus hybrid methods, homotopy analysls method

1. Introduction

The term "clean technologies” refer to production systams
developed and adopted for the primary purpose of
Improwing  envionmental  performance,  (Kolunlewicz,
2008). The development of these environmentaly friendly
technoiogies I of great inberest fo sclentisis and
govenments all over the woald 25 a result of the effects of
giobal wanming. In Nigera for Instance, 3 Sclence and
Technology Policy, which advocates Me use of ciean
technoiogies In production systems, was launched In
3011 by her federal govemment o undesscore fhe
Importance ft accords the development of cean

technoiogies (Federal Republlc of Migera Sclence
Technoiogy and Innovation Pollcy, Seplember, 2011}

The realiy Is that this advancement In technology has
modiied In many ways the expectations facing
mathematiclans and Te practice of appled research.
Wkh Ingusiies becoming  typicaly  “high-tech”,
computationally Intensive mefhods are empioyed at 3l
lewels. The Increased supply In computing powsr has also
made It possbie to Implement and apoly computational
methods no matter how sophisticated. This Intesplay of
mathematics, computing and technplogy could best be
gescriped as the art of mathematcal modeing and
simuiation (Helll, 2003).

According fo the report of the 2012 Workshop on
mathematical modeing and simulation of power piant and
CO; capire held at the University of Warwick,
mathematical modelng and simulabion piay mportant
roless In proof of concept, feasiiity study, rellabiity and
performanca analysls for the designs and development
of new sysiems {0 be cost efeciive and robust. This Is

espacially reievant where experiments with real objects
are difcult or compistely nat feasible.

The design and development of any new system, typlcaly
begine with a mathematical model which |5 assumed o
regresent the structure and the |aws goveming the
gysiem or phenomenon. The model represents the key
reiationships among system componenis by means of
equatons. The equations can be derfved In @ numier of
ways. Many of them come from extensie sclenttfic
sudies thal hawe formulated and esbed mathematical
relationship  against resl data. Some come from
laboratory testing of relationships where that |s feasible.
Zometimes real data are used to derdve relationships
using statistical techniques to M a particular relationship
to the data and to measure the level of emor associated
with that rapresentation.

The aim of this paper ks not to bulld mathematical modsais
but fo discuss e numercal approvimation to the
salutions of the mathematical models of systems that lead
bo diferentlal equations.

The paper |5 amanged as follows: In saction two
mathematical modals by ordinary differanilal equations
and the methods of obtaining approximate solutions are
considersd; modals by partial dfferential equations and
the methods of appm:ﬂmamg thelr solutlons  are
described as well In section Mres; and saction four Is the
conciusion
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2. Models

Equations {ODE)
Mary mathematical problems In applied mathematics
lead to ordinary diferential eguations. In the simplest
case, o solve ODE one seels a diferentlable Tunciion,

say x=xif] of one resl varabler, whose

n® dertvative, x" (1], m=l2,___ -1, 5 to satsfy an
equation of the form

St xR (0.2 (1) 27 (7).

gescribing Systems with dissipation, whefe m represents
prder of the problem, or the spaclal case,

id"x

=iz x(t]]. 2
o (exlt)
for systems without dissipafion. Generally, for an Iniial

vaue problem (IVP), one sesks 3 solution, sayx(r),
which satisfies » Initial condiion of the form

I"""{ru}-xu. 3

whare n=01 2 »n-1.

For the boundary value protiems (EVP), the desired
solution of {1) and {2) has fo satisty a boundary condition

r[x[a]:x{b}]-ﬂ. 4
whare g=fare  tao gifferent  numoers and
T[-H:'l-z:l—- rl.l:ul:"':.E:'-':J"!n:.l'l:.l'l:-"-.rnjl 53 i o
L [m:uz._...:un:n._vz:...,1,}

mgiven functions nof 2n varabkes.

In ‘what follows, Me numerical approximatian of solutkans
of WP of ODE 5 discussed

by Ordinary Differential

21  Numericsl Approximation of the Soluflans
of IVF of QDE

The mumerical solution of mathematical models by
ordinary oferential eguations, In paricular Intal vake
problems, has been witely studied. The most widely
sad numerical method for this olass of problems £ the
finile difference methods. For BVP, any of the following
meihods can be employed: infe slament methods and
thie seml-analytic methods such as homaotopy perturation
miethod (He, 2008, 2009a; Jin, 2008; Liang and Jemrey,
2009), the adomilan decompostion method (Adomian,
1384), homotopy analysls methods (Kumar and Gupta,
2010; Liang and Jeffrey, 2009; llao, 1952, Yuen el al.,
2010; Znw et al., 2010), varational Rerathve method (He,

19953, 2000; Nikkar, 2012), reguiar perfurbation methods
{Coie, 1968), efc. In the sequel, only fine diference
methads for IVP of ODE shall be consldered.

211 Finite Direrence Mothods

This Is e most wigely used numencal method 1o sohve
ordinary diferentia ns of the form (1), (or the
special case [2), wih either of fe condiions (3) or [4).
This method uses diference equations to approximaie
the soltion of the problem. They Include first order
methads such as Ewers method, the family of Runge-
Eutia methods, and higher order methods such as
Runge-Eutta Nystrom method, the backward difersncs
methods, and the continuous Inear muRistep methods
(Lambert, 1973). The focus here shall be on the
Integration of the Inkial value protilem (1) and (3) direclly
by continuous hybrid one step methods. For Me purpose
of this papsr, second order problems, that s whenn=2,
which anse from the modeling In the domains of celestal
and mechankal systems are considered (Hindamarsh,
1336,

Conventionally, to solve the Iniial value prodlem (1) and
{3), ONE can either choose to reduce the prodlem to an
equivalent system of firsl order equations and Men use
any of the frst order methods or soive the prodlem
directly wsing higher order methods. It has been reported
In [Anake, 201Z3, 20120) however, mat It & mare
convenient to solve the Inifal value problem {1) and (3}
directly.

The continuous one S1ep Nybad method Uses e power
gafies poiynomial of the form

o
Pltl=ZTug!, 5
o

as the appmoximaling poiynomial on the  partition
syt @ely S8yl =B of the Interval of
Integration [g.5]. The numerical scheme ks developed

by the combined fechniques of Interpoiation and
coliocation. The approximabing polynomial, expecied 0
gatisty (1) and (3}, 1akes the Tom

i
Plt)m T ugl, &

Juii )
where rand s represent the number of Interpolation and
colocation poinds respectively. In particular, et us
Interpalate (5] at the ongin and the fif paint, that is r=2
and collocate the differertal sysiem at nine poinis, that
E5=0, In the one siep hyord desigr. 11 16 worh
mentioning, Mat this one step hybrid deslgn Incorporates
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SEven non-step points betwsen the orgin and the next
step point. Thus, these eleven conditions Imposad by the
IVP (1) and (3} on (&) given as

1]
PlilmZut a5 7
e
and
. LI .
P(t)h= T jli-Dud e fir,, 5=012,__8,
i

g
Leads to a system of eleven equations i eeven
LmKnoWNS to be determined using any convenient method
In tha Iteraturas.
By putting the unknowns obtalned In Me system (7) and

(E] Imo [5), 3 one step numerical scheme Is cotained In
thie form

Foy = () ), %s.[r},fmﬁ (2] fom

. |

where, ¥; Indicates the non-step ponts, A=l —f

5 3 fued SED SR mbasjH,  Xosj=X(les; )
approximates  the exact solion at f., and
Jot =S\ bt o Xt 2 %ty |- The coeficients e, () and
£i(z) are obtaned om e vansfrmation of the

unknowns obtained earfler using 3 scaling factor, T=%.

For emphasis, note that () is compiletely daternined by
the coemclents {a, (z), & | 2)} for all vawes otz ]0.1].

Emor lssues concaming the scheme, (3) are consldered
by the concept of local tuncation emor. The local
trumcation ermor {i.te) is a simple concept that determines

the difference betwesn the approxdimate soiution I“.|..I,

and the exact solution x| 7y, | when e step is aken with
all 2arlier data exact Typicaly, (9) satisfies (Lte Hf
[1e=0{h™ | as h—0,

i g

where p, determined by relations among the schemes

coefficlents, ks the order of accuracy of the scheme. Apart
from analyzing emor Issues, for [9) fo be vald, the nature
of s convergence has to be established. To do this, i
suMices to show that the method Is consistent and zen
stabie acconding to (Henriel, 1962). Furiher more, the
absoiute s@Eblfy of the scheme Is Fvestigated using
gither, DouNdary locus methods, Schurz criteron method

or e Rowt Hureiz method (Lambert, 1973). This

property guarantees that If the soiution of the VP [1) and
{3) Is Dounded then, the numerical solution (3] Is also

bounded.

3. Models by
Equations
Partia Diferantal Equations (PDE) are equations that
Inwalve rates of change wih respect fo two of more
coninuous varabies. The disTncion In the configuration
of POE problems unilke ODE probiems makes i usually
much harder io solve. Howaver, simpler solutions exist for
ingar problems. Baskally, POE may afse from
phenomena such 3  acoustics, flud  flow,
electrodgynamics, and heat transfiar.
For a function F |, the PDE I of ®e form
| fu  fu Fu
Fl 5. Y X ly— ey — y ——— ey ———— ..
l T, e Endn,

Partial Differential

=0

Ed

10

A solution of 3 PDE ks generally nat unique; addrional
conditions must generally be specified on the boundary of
the region where the soision |s defined. Basically, FDE
are ciassiied as parabolc, hyperolc and alliptic. The
ciassification provides a guide o aporophate iitlal and
tl-ll.ll'lﬂ-ﬂ'}' candltions, and to emoothness of the solutions.

Several methods have been siudied for the soiution of
POE; this range from analytkcal fwough approximate
analylical methods {He, 1938, 19903, 19990, 2000; Jin,
2008; Kumar and Gupta, 2010; Liang and Jeffrey, 2009;
Liao, 1952 Nikkar, 2012; Yuen et al., 2010; Znu et al,
2010 to numerical methods.

In this paper, only approximate analytical wil be
discussad.

3.1  Approximate Analyfical Methods

By apprommate analytical methods we refer to serss
EHPME-IM mefods. These Incluge the Adomlan
decompasition method (Adomian, 1994), the homotopy
perfurbation method (He, 1938, 1989a; Jin, 2008;Liang
and Jeffrey, 2009), varational MHeration methods
{He1990b, 2000; MIkkar, 2012}, homolopy analysis
methods (Kumar and Gupta, 2010; Liao, 1952; Yuen &t
al, 2010; Zhu et al, 2010), reguiar perturbation
{Cole,1968), eic. They are especlally suitable for non
inear PDE. Nofe that, the Adomian decomposition
method, the Lyapunoyv artficlal small parameter method,
and He's homotopy pertwbabion method are all special
cases of the more general homotooy analysls method
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[Liao, 1992). Except for the Lyapunov method, these
meshots are independent of small physical paramelsrs as
compared to the well known perfurbation theory, which
means greater Nexibilty and solubion generallty. In what
folows, the Homotopy analysls method Is discussed for
the solfon of nonlinear PDE Hl'l-E-hg from the
mathematical modedng of physkal phenomena.

3.1.1  The Homatopy Analysis Method [HAM)

The homotopy analysis method was first developed In
1992 by 5. J. Liao, {Liao, 1952). The simpie manner in
which this method ensures the CONVErgEnce afl thea
soiution Genies B0es Not remove the fact that he metmod
Is 3 powerful mathematical toal for obigining accurate
enough aporodmations.

To describe e baslc iea of HAM, consiger the Tolowing
noniinear diferental equaton:

Niu(x,t]]=0. 1
where Nis a nonlnear operator and the unknown

function u(x,1)Is speciied by the Ingependent vanabies

@ and f. The zeroth-order deformation equation 1s
gertved by means of HAM as follows:

(1=2) 26 (2.}t (1] R (1) N #( 2]
' 12
wherz pe[0.1]1s the embedaing parameter, A=0, Is 3
norzero auxiiary parameter, H(x,r)=0, Is an audiiary
function, L Is an auxdliary inear operator, u, [X,t) I8 the
nifal guess of u(x.f). We can see that when the
embeddng parameter changes from p=0 to p.], the
function @ x,t; p) varies from the Initial quess [ x,7)
to the exact solmlonu|xt). Mow, expanding

#(%.7, P)in Taylor series with respect o p gives

{2 P)=uy (2. 0)+ T Py (1), i3

: %t T pw

whena

"if”]"%a*f 14
|

The parameter fi controls the convergence of Me senes
[13) stech that IT 12 15 convergent at p=1, we have
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#lxrp)-w f—‘i:!]+_'E.1m (x1).

As proven earller In [19], this must be one of the soutions
of {11).

Substituting {13} Into {11) and equating the cosMdients of
ke powers of pr, the m™-order deformation equation is
obtained as Tolows:

£|:|:a,, (2.} Z it {:,rj]-ﬁit,,(n’H (x.2)). 15
subject io the Infdal conditions

[ x,0)=0 16
whare tha vector
E'r[-x: I}'-{uﬂ ["L r]:"':'l 11 r] sy iy {I,.I'j},

1 @ N[#(xrp)]

R (Tt (.1 =

J =1y 1

{m-1) g -
and

Iﬂ={:l ::-illl

Thiss, the soiution of the m™ -order deformation equation
(15] for m21becomes

i
U (X, )= Flly | 5,1 )+ A B iy 2.8 Ji T2, 17
1

where ¢is the Integration consiant detesmined by the
Inizal condition {15). This way, we obiain the soiution of
i11) a5

u(xt) Elﬁ“_:,f‘jl 18
where

W-l
Swlxt)=T umlx,t).

p

The main advantage of the HAM Is that It always provides
one With a simpie way to adust and conirol the
convergence radus of soltion senes (Lo, 1992).
Different from perturbation technigues, the HAM Is valki
ne matter ¥ a nonlinear FII'HHE'I'I'I contains H'TIHHEF?!
physical paramelers; be It 3 strongly nonlinear system or
a m.atlr nonlinear c3ses.
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4. Simulations

It 5 a well knoam faci that ewen though mathematical
gquations can be formuiated to model systems, thess
equations are many tmes analytically Infractable. In thess
shuations, a compuier can implemeant the mathematics
IRerally and repeatedly 1o very extreme advantages. Both
miethods discussed above for InslEnce, lend themseies
gaslly 1o compuier simulations. Infact, the Implementation
of the scheme (9) 5 only realistic when a compuler
program [ wiitten to Eimulate the resull at the respective
grid poinds. Similarly, symbolic computation programs
Such as mapie, mathamatica or matiab are employed to
ootain the solutions In {17).

5. Conclusion

The role of mathematical models and simuiation In the
development of clean technology is revealed In the
methots discussed for the solutlons of ordinary and
partial @ifferential equations. Systems and phenomena
that |=ad %o IVP of onrdinary diferentlal equabions and
noninear parial offerential equations are  cleary
wnderstood and can be Imerpreted from the solufions of
these mathematical models. In this paper, one method
gach for e soiutions of modeds oy CODE and madels by
PDE respeciively Nas been discussed. These methods
are oy no means Me only methods avalable as earler
mentioned, but they seemed the most convenient for this
discasslon.
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