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1.  INTRODUCTION1.  INTRODUCTION

••Combustion is defined as a chemical reaction under conditions of Combustion is defined as a chemical reaction under conditions of 
progressive selfprogressive self--acceleration which are brought about by accumulation of acceleration which are brought about by accumulation of 
heat or catalyzing products of reaction in the system: (1) thermal combustion heat or catalyzing products of reaction in the system: (1) thermal combustion 
(2) autocatalytic combustion(2) autocatalytic combustion
••Ignition is the process whereby a material capable of reacting Ignition is the process whereby a material capable of reacting 
exothermically is brought to state of rapid combustionexothermically is brought to state of rapid combustion
••Ignition temperature is the temperature to which a fuel must be raised Ignition temperature is the temperature to which a fuel must be raised 
before it begins to burnbefore it begins to burn
••Exothermic reactions release heat as the reactants are consumed, heat is Exothermic reactions release heat as the reactants are consumed, heat is 
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••Exothermic reactions release heat as the reactants are consumed, heat is Exothermic reactions release heat as the reactants are consumed, heat is 
released and the temperature of the reaction increases and the temperature released and the temperature of the reaction increases and the temperature 
rise may lead to an ignition or explosionrise may lead to an ignition or explosion
••Two step reactions is the reaction that has only one intermediary between Two step reactions is the reaction that has only one intermediary between 
themthem



2. Illustration 2. Illustration -- Applications   Applications   
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EnergyOHCOOCH  2224 22
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Design Internal Combustion EngineDesign Internal Combustion EngineDesign Internal Combustion EngineDesign Internal Combustion Engine



Application Contd.Application Contd.

Exothermic reaction involvedExothermic reaction involved
Burning of Coal + Oxygen to heat water Burning of Coal + Oxygen to heat water 
to produce vapor to turn the turbine to produce vapor to turn the turbine 
blade to produce Electricityblade to produce Electricity
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Application Contd.Application Contd.
Exothermic reaction involvedExothermic reaction involved
SafetySafety-- Using of Air bags in  CarsUsing of Air bags in  Cars

)(222

2223

23

glassSolicatealkalineSiOONaOK

NONaOKKNONa

NNaNaN








Application Contd.Application Contd.
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reduction of carbon monoreduction of carbon mono--oxide)oxide)

)(22

)(Re2

22

22

processOxidationCOOCO

processductionONNO






Application Contd.Application Contd.
Production of Engineering MaterialsProduction of Engineering Materials
i.e Iron, steel,… through direct heatingi.e Iron, steel,… through direct heating

(Blast furnace)(Blast furnace)



Application Contd.Application Contd.

Household and Industrial HeatingHousehold and Industrial Heating

Solar heaterSolar heater-- Utilizing the Utilizing the 
sun thermal energysun thermal energy



Application Contds.Application Contds.

Fire out brake or explosionFire out brake or explosion



Application Contd.Application Contd.
Exothermic reaction involve( Quenching fire Exothermic reaction involve( Quenching fire 
or explosion) or explosion) 
Chemical reactions is been taken place and Chemical reactions is been taken place and 
water is been released to expand the volume water is been released to expand the volume 
of the fire then quench the flameof the fire then quench the flame



3. AIMS AND OBJECTIVES3. AIMS AND OBJECTIVES

 To stimulate certain combustion processesTo stimulate certain combustion processes
 To develop predictive capability for combustion systems To develop predictive capability for combustion systems 

under various operating conditionsunder various operating conditions
 To guide the design of combustion experimentsTo guide the design of combustion experiments
 To determine the effect of individual parameters in To determine the effect of individual parameters in  To determine the effect of individual parameters in To determine the effect of individual parameters in 

combustion processes by conducting parametric studiescombustion processes by conducting parametric studies
 To burn fuel efficientlyTo burn fuel efficiently
 To avoid knocking of enginesTo avoid knocking of engines
 To determine thermal stability of combustion problemsTo determine thermal stability of combustion problems
 To enhance safety under Emergency situationsTo enhance safety under Emergency situations
 To reduce pollution of combustion productsTo reduce pollution of combustion products



4. MATHEMATICAL MODEL4. MATHEMATICAL MODEL

We We consider a two step exothermic chemical reaction of consider a two step exothermic chemical reaction of 
combustible materials in a slab, taking into account the combustible materials in a slab, taking into account the 
diffusion of the reactant and the temperature dependent diffusion of the reactant and the temperature dependent 
variable prevariable pre--exponential factor (see Fig. 1). exponential factor (see Fig. 1). 

yy

Fig. 1. Sketch of the physical model.Fig. 1. Sketch of the physical model.



Mechanisms of two steps reactionMechanisms of two steps reaction



5. PROBLEMS TO BE SOLVED5. PROBLEMS TO BE SOLVED

where where , , , , , r, b , r, b represent the Frankrepresent the Frank--Kamenetskii Kamenetskii 
parameter, activation energy parameter, two step parameter, activation energy parameter, two step 
exothermic reaction parameter, activation energy exothermic reaction parameter, activation energy 
ratio parameter and the initial temperature ratio parameter and the initial temperature 
parameter respectively. In the following section, parameter respectively. In the following section, 
Eqs. (1)Eqs. (1)--(3) are solved numerically using a semi(3) are solved numerically using a semi--
discretization finite difference method.discretization finite difference method.



SEMISEMI--DISCRETIZATION FINITE DIFFERENCE METHODDISCRETIZATION FINITE DIFFERENCE METHOD



PERTURBATION METHODPERTURBATION METHOD



6. RESULTS AND DISCUSSION6. RESULTS AND DISCUSSION

Table 1:Table 1: Computations Showing the Procedure Rapid Convergence for Computations Showing the Procedure Rapid Convergence for  =0; =0; rr = 0.1 = 0.1 



RESULTS AND DISCUSSIONRESULTS AND DISCUSSION

Table 2:Table 2: Computations Showing Criticality for Sensitized, Arrhenius and Bimolecular Computations Showing Criticality for Sensitized, Arrhenius and Bimolecular 
ReactionReaction



RESULTS AND DISCUSSIONRESULTS AND DISCUSSION

Fig.2Fig.2: Temperature profiles: b=0; : Temperature profiles: b=0;  =0.3; =0.3;  =0.4; =0.4;  = 0.1; m=0.5; r = 0.1;  ______= 0.1; m=0.5; r = 0.1;  ______ t t = 0.1; ooooo = 0.1; ooooo t t 
= 0.5; ++++= 0.5; ++++ t t = 1; ……= 1; ……t t = 5.= 5.



RESULTS AND DISCUSSIONRESULTS AND DISCUSSION

Fig.3Fig.3: Temperature profiles: b=0; : Temperature profiles: b=0;  =0.3; =0.3;  =0.4; =0.4;  = 0.1; t=5; r = 0.1;  ______= 0.1; t=5; r = 0.1;  ______ m m = = --2; ooooo 2; ooooo m m = 0; ++++= 0; ++++ m m = = 
0.50.5



RESULTS AND DISCUSSIONRESULTS AND DISCUSSION

Fig.4Fig.4: Temperature profiles: b=0; : Temperature profiles: b=0;  =0.3; =0.3;  =0.4; t = 5; m=0.5; r = 0.1;  ______=0.4; t = 5; m=0.5; r = 0.1;  ______ = 0; ooooo= 0; ooooo = = 
0.1; ++++0.1; ++++  = 0.2; ……= 0.2; …… = 0.3= 0.3



RESULTS AND DISCUSSIONRESULTS AND DISCUSSION

Fig.5Fig.5: Temperature profiles: b=0; : Temperature profiles: b=0;  =0.1; =0.1;  =0.4; =0.4; tt = 5; m=0.5; r = 0.1;  ______= 5; m=0.5; r = 0.1;  ______ = 0.1; ooooo= 0.1; ooooo = = 
0.2; ++++0.2; ++++ = 0.3; ……= 0.3; ……= 0.4= 0.4



RESULTS AND DISCUSSIONRESULTS AND DISCUSSION

Fig. 6.Fig. 6. A slice of approximate bifurcation diagram in theA slice of approximate bifurcation diagram in the (λ , (λ , maxmax (( = 0.1, = 0.1, m m = 0.5,= 0.5, rr = 0.5,= 0.5,  = = 
0.1)) plane 0.1)) plane 



7. CONCLUSION AND 7. CONCLUSION AND 
RECOMMENDATIONRECOMMENDATION

 Thermal criticality conditions and the solution branches were Thermal criticality conditions and the solution branches were 

accurately obtained ( Fig. 6)accurately obtained ( Fig. 6)

 Influence of parameters coming into the model were accurately Influence of parameters coming into the model were accurately 

Determined ( Tables 1, 2)Determined ( Tables 1, 2)

Steady state solution was accurately obtained ( Figs. 2Steady state solution was accurately obtained ( Figs. 2--5)5) Steady state solution was accurately obtained ( Figs. 2Steady state solution was accurately obtained ( Figs. 2--5)5)

 Overheating avoided Overheating avoided –– knocking of engines prevented (Figs. 2knocking of engines prevented (Figs. 2--5)5)

 Reduction of pollution of combustion products obtained     Reduction of pollution of combustion products obtained     

(Combustion Mechanism)(Combustion Mechanism)

 Two steps reaction enhances explosion or thermal runaway    Two steps reaction enhances explosion or thermal runaway    

(Tables 1(Tables 1--2)2)



8. FURTHER STUDY8. FURTHER STUDY

 The problem can be studied in a cylindrical The problem can be studied in a cylindrical 
pipepipe

 The problem can be studied in the The problem can be studied in the 
presence of heat losspresence of heat losspresence of heat losspresence of heat loss

 More steps may also be involvedMore steps may also be involved
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1.  INTRODUCTION

Literature

Frank- Kamenetskii (1969),Williams (1985),Makinde (2004),Olanrewaju (2005), Makinde (2009), 

		Combustion is defined as a chemical reaction under conditions of progressive self-acceleration which are brought about by accumulation of heat or catalyzing products of reaction in the system: (1) thermal combustion (2) autocatalytic combustion

		Ignition is the process whereby a material capable of reacting exothermically is brought to state of rapid combustion

		Ignition temperature is the temperature to which a fuel must be raised before it begins to burn

		Exothermic reactions release heat as the reactants are consumed, heat is released and the temperature of the reaction increases and the temperature rise may lead to an ignition or explosion

		Two step reactions is the reaction that has only one intermediary between them

















2. Illustration - Applications   

Design Internal Combustion Engine





Exothermic reaction involved







Design Internal Combustion Engine





Exothermic reaction involved













Application Contd.

Exothermic reaction involved

Burning of Coal + Oxygen to heat water to produce vapor to turn the turbine blade to produce Electricity
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    Exothermic reaction involved (Air bag)

For safety in auto-collision











Application Contd.

Exothermic reaction involved

Safety- Using of Air bags in  Cars













Application Contd.

Exothermic reaction involved (Pollution reduction of carbon mono-oxide)















Application Contd.

Production of Engineering Materials

i.e Iron, steel,… through direct heating

(Blast furnace)







Application Contd.

Household and Industrial Heating

Solar heater- Utilizing the sun thermal energy











Application Contds.

       Fire out brake or explosion











Application Contd.

Exothermic reaction involve( Quenching fire or explosion) 

Chemical reactions is been taken place and water is been released to expand the volume of the fire then quench the flame













3. AIMS AND OBJECTIVES

		To stimulate certain combustion processes

		To develop predictive capability for combustion systems under various operating conditions

		To guide the design of combustion experiments

		To determine the effect of individual parameters in combustion processes by conducting parametric studies

		To burn fuel efficiently

		To avoid knocking of engines

		To determine thermal stability of combustion problems

		To enhance safety under Emergency situations

		To reduce pollution of combustion products









4. MATHEMATICAL MODEL

We consider a two step exothermic chemical reaction of combustible materials in a slab, taking into account the diffusion of the reactant and the temperature dependent variable pre-exponential factor (see Fig. 1). 

       







                



Fig. 1. Sketch of the physical model.















Mechanisms of two steps reaction







5. PROBLEMS TO BE SOLVED

where , , , r, b represent the Frank-Kamenetskii parameter, activation energy parameter, two step exothermic reaction parameter, activation energy ratio parameter and the initial temperature parameter respectively. In the following section, Eqs. (1)-(3) are solved numerically using a semi-discretization finite difference method.







SEMI-DISCRETIZATION FINITE DIFFERENCE METHOD







PERTURBATION METHOD







6. RESULTS AND DISCUSSION

Table 1: Computations Showing the Procedure Rapid Convergence for  =0; r = 0.1 







RESULTS AND DISCUSSION

Table 2: Computations Showing Criticality for Sensitized, Arrhenius and Bimolecular Reaction 







RESULTS AND DISCUSSION

Fig.2: Temperature profiles: b=0;  =0.3;  =0.4;  = 0.1; m=0.5; r = 0.1;  ______ t = 0.1; ooooo t = 0.5; ++++ t = 1; ……t = 5.







RESULTS AND DISCUSSION

Fig.3: Temperature profiles: b=0;  =0.3;  =0.4;  = 0.1; t=5; r = 0.1;  ______ m = -2; ooooo m = 0; ++++ m = 0.5







RESULTS AND DISCUSSION

Fig.4: Temperature profiles: b=0;  =0.3;  =0.4; t = 5; m=0.5; r = 0.1;  ______  = 0; ooooo = 0.1; ++++  = 0.2; …… = 0.3







RESULTS AND DISCUSSION

Fig.5: Temperature profiles: b=0;  =0.1;  =0.4; t = 5; m=0.5; r = 0.1;  ______ = 0.1; ooooo = 0.2; ++++  = 0.3; ……= 0.4







RESULTS AND DISCUSSION

Fig. 6. A slice of approximate bifurcation diagram in the (λ , max ( = 0.1, m = 0.5, r = 0.5,  = 0.1)) plane 







7. CONCLUSION AND RECOMMENDATION

		Thermal criticality conditions and the solution branches were accurately obtained ( Fig. 6)

		Influence of parameters coming into the model were accurately Determined ( Tables 1, 2)

		Steady state solution was accurately obtained ( Figs. 2-5)

		Overheating avoided – knocking of engines prevented (Figs. 2-5)

		Reduction of pollution of combustion products obtained     (Combustion Mechanism)

		Two steps reaction enhances explosion or thermal runaway    (Tables 1-2)









8. FURTHER STUDY

		The problem can be studied in a cylindrical pipe

		The problem can be studied in the presence of heat loss

		More steps may also be involved
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