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ABSTRACf 

We use coincidence degree arguments in order to derive the existence and unique
ness of periodic solution of equation (1.1}. 

1. Introduction 

In this paper we prove the existence and uniqueness of 2n-periodic solution for 
the fourth order differential equation with time delay of the form 

, 
xiv(t) +ax (t) + bx(c) + cx(t) + g(t,x(t - r)) = p(t) 

x!il(O) = x(il(2n), i = 0, 1, 2, 3, ( 1.1) 

where a, b, c are constants, g is a Caratheodory's function, p E q,. and r E [0, 2n] is 
a fixed time delay. The unknown function x: [0, 2n] -+ lR is defined for 0 ~ r ~ r by 
x(t- r) = x(2n- (t- r)). Various fourth order boundary value problems are used 
to model deformations of elastic beams that have found applications in structures 
such as aircraft, buildings, ships and bridges. Some of these equations have been 
extensively studied in recent years (see [1], [4], and references therein). Similarly 
some problems in biological or physiological systems can be modelled by fourth 
order differential equations with time delay, for instance the oscillatory movements 
of muscles that occur from the interaction of a muscle with its load (see [7]). 

In ~ection 2 of this paper we shall consider the problem of non-existence of non
trivial 2n-periodic solutions of some linear analogues of (1.1). In section 3 we shall 
prove that under suitable conditions on the constants a, b, c and on the asymptotic 
behaviour of the ratio ~ the equation (1.1) possesses at least one 2n-periodic 

y . 
solution for each p E L~,. . The technique of proof uses coincidence degree theory [6] 
and the a priori estimates are obtained by adapting the methods established in [3]. 
Finally, in section 4 we shall obtain uniqueness results. 

We use the following notations and definitions. Let lR denote the real line and I 
the interval [0, 2n]. The following spaces will be used : L~" = U(l, lR) are the usual 
Lebesgue spaces, 1 ~ p < co, with x E L~,. . 2n-periodic ' 

[ 

x : /-+ JR.x,x . .. :(' - 1 are absolutely 

H~,. = Hk (I , JR) = continuous x" ~>L~,. and 

x!il(O) = x;(2n), i = 0, 1, 2, 3 . . :k - 1 
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with norm ll x ll~~. = (~ f~" x(t)dtf + 2
1
" ~=I J0

2
" lx1(t) i2dt, and w;~1 = {x:I -+ 

IR,x , x ... xk- l ar~ absolutely continuous, xk E L~" and x1(0) = x1(2n),i = 0,1,2, 
3 ... k - 1} with norm 

1 k 12" llxll~··• = 2 L ix(il(t)ldt. 
2• 7t i=O 0 

A function x E Wi~1 
is a solution of (1.1) if it satisfies (1.1 ) almost everywhere on 

JR. For such a solution, we set x = x + x where 

II 

x(t) = ao + L:<ak coskt + bk sin kt) 
k=l 

00 

x(t) = z:::· (ak cos kt + bk sin kt). 
k - n+l 

2. The linear case 

( 1.2) 

(1.3) 

To motivate our study, we consider in this section the problem of non-existence 
of non-trivial periodic solutions for some Iine'ar analogue of (1.1). Specifically, we 
consider the equation 

xiv +ax + bx +eX + d(t)x(t - t) = 0 

x1(0) = x1(2n), i = 0,1, 2, 3 

where a, b, c a re constants and d(t) E q ". 
Our result is as follows. 

(2.1) 

Theorem 2.1. Let n ~ 1 be an integer and let the following conditions be satisfied : 
(i) a > 0, 

(ii) ~ > n2, 

(iii) b < -;2
• 

(iv) n2 ~ b- 1d(t) ::::;; (n + 1)2 holdsuniformlya.e in t E [0, 2n), with strict inequalities 
n2 < b- 1d(t ), b- 1 d(t) < (n + 1 )2 holding on subsets of [0, 2n) of positive 
measure, 

and suppose that there exist constants. ~ > 0, 11 > 0 with 
(v) 0 < ~ < IJ , 

then the boundary value problem (2.1) has no non-trivial periodic solution in w;~l· 

PROOF. First, we rewrite (2.1) in the form 

b- 1 [x1v + a x + ex] + [x + r(t)x(t - r )) = 0 (2.2) 

where r(t) = b- 1d(t) E Li". Let x = x + x E Hj" be any solution of (2.2). Then, 
on multiplying (2.2) by x (t - r) -.x(t) and integrating over I , we obtain I 1 + I2 = 0 
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where 
. b-l {2" . 1 

I 1 = 2; lo (x(t- -r)- x(t))[x'" +ax + c.x]dt (2.3) 

and 

1 {2" 
I2 = 

2
1t lo (x(t- -r)- x(t)[x + r(t)x(t- -r)] dt. (2.4) 

• 
To estimate I 1, we obtain first from definitions (1.2), (1.3) and orthogonality of 

x and x that 

1 1211 . . 1 12" . 1 12" . - (x(t- -r)- x(t))[x'" + x'"]dt = - x(t- -r)x'"-- xx'"dt 
21tt 0 21t 0 21t 0 

n oo 

= 'Lk4(a~ + bncosh- L k4(a~ + bi). 
k- 1 k- n+l 

_!_ {
2

" (x(t- -r)- x(t))[x + x ]dt = -
2
1 f

2

" x(t- -r)'x dt = t k3(az + bf) sin h. 
2n Jo 1t lo k=l 

1 1211 • • 1 1211 • II 

2 
(x(t- -r)- x(t))[x + x]dt = 2 x(t- -r)xdt = L k(a~ + bz) sin h .. 

1t 0 1t 0 k-1 I 

Thus 

n oo 

I I = b-1 L {[k4 cosh+ (ak3 - ck) sin h](az + bf)} - b-
1 L k

4
(az + b~). 

k- 1 k-n+l 

n oo 

II 1l ~ lbl- 1 L {[k4 1 cos h i+ lak3
- ckll sin hi]( a~ + b~)} + lbl-

1 L k4(a~ + bh 
k~ l k=n+l 

00 00 

~ lbl-1 L k4(a~ + b~) + albl- 1 max I~ - k
21 L k4 (af + bO. 

, I:Sk:Sn a 
k=l k=l 

From condition (ii) we have 

00 <X> 

II 1l ~ lbl-1 L k4(a~ + b~) + lbl-1 arJ L k~(a~ + b~) 
k= l k=l 

where 
c 2 c 

'1 = max 1-- k I = 1-- 11, 
I:Sk:Srr a a 
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and from condition (iii) we get 

00 00 

lltl ~a I>2
(af + bf) + a217 Lk2(af + bf) 

k=l k - 1 

= ajxl~2 + a217I.XI~2 
211' 2~~: 

~(a+ a2'7) 1xl~~ . 
l• 

The term /2 can be .estimated as in [5] to obtain 

1 12" h ~ -
2 

[i2
(t) - r (t)x2(t)]dt 

1t 0 ' 

1 {2" 
+ 2n lo [i\t - r)- r(t)x2(t- r)]dt 

1 1
271 

..:.2 + 2 [T(t)x(t - <) - x (t- r)]dt 
1t 0 , 

~ blxl~~ for some t:5 >b. 
2• 

Therefore 

0 = It+ /2 ~ (.:5- (a+ a2'7)1x l~ ~. 
2• 

Using condition (v) we conclude that x = 0. 

3. The non-linear case 

We shall be concerned here with the non-linear boundary valve problem of the 
furm ' 

xiv +ax+ bx +ex+ g(t,x(t- <)) = p(t) 

x<~>(O) = x(il(2n) i = 0, 1, 2, 3 (3.1) 

where a, b, care constants and p E L~71 , g: I x IR--+ IRis such that g(t+ 2n, x) = g(t, x) 
and is a Caratheodory's function with respect to L~" ' that is 

(i) g(., x ) is measurable on I for each x E IR , 
(ii) g(t,.) is continuous on IR for a.e t E / , 

(iii) for each r > 0 there exists Yr E L~" such th~t 

lg(t,x) l ~ Yr(t)3.2) (3.2) 

for almost every t E I and all x E IR such that lxl ~ r. 
First, we shall prove the following lemma. 

r 
i 
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Lemma 3.1. Let all the conditions of Theorem 2.1 be satisfied. A ssume that a., {3 E L~,. 
satisfy the following conditions: 

n2 :;;; b- 1a(t) :;;; b- 1 {3(t) :;;; (n + 1}2 (3.3) 

for a.e t E [0, 2tt] where n ;;::: 1 is an integer, and n2 < b-1a.(t), b- 1 {3(t) < (n + 1? 
on subsets of [0, 2tt] of positive measure. Suppose that there exist constants t: > 0 and 
a0 > 0 with 

b-1 a(t) - e ~ b- 1 d(t) ~ b- 1 {3(t) + e, 

then 

1
21< 

lxiv + ax + bx + c.X + d(t)x(t - •)ldt ~ aolxl w•·•· 
0 h 

(3.4) 

PROOF. Assume that the conclusion of the lemma does not hold. Then there exists 
a sequence 

{x,} E Wi;/ with lxnlw•·• = 1 
2• 

and a sequence {d,(t)} E L~,. with 

for a.e, t E [0, 2tt] such that 

a(t) 1 d, (t) {3(t) 1 
-- -~- ~ - + -

b n b b n 

' 1 
lx~ +ax, + bx , + c.X, + d,(t)x,(t - •)IL• < -

(3.5) implies 

lb- 1 d,(t)l ~ Jl(t) 

for some Jl E ql( where Jl(t) can be taken as 
• 

IP(t) + 11 + la(t) - 11 
b b 

using the compact embeddings 

w4,1 c w 3.1 c w:z.• 
2Jt 21< 21< 

a n 

(3.5) 

(3.6) 

(3.7) 

and the continuous embedding of w£.1 into CJI(, and, going if necessary to subse
quences, we can assume that 

By (3.5) we have 

X 11 --+ X in C1 (0, 21t] 

x,--+x in~" 
x,--+ x in L~l( . 

a(t) b :;;; b- ld(t) :;;; {3(t) b . (3.8} 

I 
.I 
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Moreover by corollary 4.8.11 of [2] and (3.7) we have that 

d,(t) -+ d(t) in L1,. 

Now for al11p ELf, we have 

{2" 
lbl - 11 Jo VJ(t)[d,(t)x,(t- •)- d(t)x(t - t)]dt l 

1h 1h ~ lbl-1{1 d,(t)[x,(t- •)- x(t- r}]VJ(t)dt l + I (d,(t) - d(t))VJ(t)x(t- t)dt l} 
0 1 0 • 

{2" 
~ klx,(t- •)- x(t- -r)l + lbl-11 Jo (d,(t)- d(t))x(t- r)VJ(t)dtl 

where 

k = IVJIL'"'·IJ.L(t)ILI. 

So that 

b- 1d,(t)x,(t- -r)-+ b- 1d(t)x(t- -r) in L~71 • 

By (3.6) we deduce that 

X~-+ ax- bx- eX- d(t)X(t- 't). 

The weak closedness of the graph of the linear operator -Ji. implies that x E W:i~1 

and 

x iv + ax +bx +eX+ d(t)x(t - •) = 0. 

By (3.8) and Theorem 2.1 we deduce that x = 0. Thus x ,-+ 0. This contradicts 

Jx,llw•·l = 1 for all n. • 
2• 

We shall now prove the following existen~ result for equation (3.1). 

Theorem 3.2. Let a, b, c be constants such that 
(i) a> 0, 

(ii) ~ > n2 , 

(iii) b < -n2, 

and let g be a Caratheodory function such that the inequalities 

2 1X(t) 1. . f g(t, x) 
1
. g(t, x) P(t) ( 

1
)2 (

3 9
) 

n ~ - b ~ 1m m -b- ~ 1m sup - b- ~ - b ~ n + . 
lxl-+oo X Jxl-+oo X 

hold uniformly for a.e t E / , where n ~ 1 is an integer, IX, P E L~71 • and the strict 
inequalities 

n2 < b- 1d(t),b- 1d(t) < (n + 1)2 
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hold on subsets of I of positive measure. Suppose that there exist constants {) > 0, '7 = 
I~- 11 with 

1>- a 
0 < - 2-::;;; '1· 

a 

then the boundary value problem (3.1) has. at least one solution in w:~· · 

PROOF. Let e > 0 be associated to ex, p in Lemma 3.1. Then by {3.9) there exists a 
constant R = R(e) such that 

cx(t) g(t, x) P(t) 
--;;--e~~~b+e 

for a.e t E I and all x E lR with lxl ~ R. 
Define a function Y: lR---+ lR by 

Hence 

{ 

x- • g(t, x) if lxl ~ R 

Y (t, x) = xR-2g(t, R) + (1 - x R- 1 P(t), 0 ~ x < R 

xR- 2g(t, R) + (1 + x R- 1)P(t), - R < x::;;; 0. 

cx(t) Y (t, x) P(t) 
- ..... e<--<-+e b - b - b 

for a.e t E [0, 21t] and all x E JR. 

(3. fO) 

(3.11) 

Define g and </> by g(t, x) = Y (t, x)x.<J>(t, x) = g(t, x) - g(t, x) and observe that 
both g and </> are Caratheodory's functions. 

Thus there exists Y R E L~n such that 

1</>(t, x)l ~ Y R(t) (3.12) 

for a.e t E I and all x E lR where 

YR = YR(cx, p). 

The equation (3.1) is thus equivalent to 

x1v +ax + bx + c.X: + Y (t, x(t- -r))x(t - -r) + </>(t, x) = p(t) 

x(ll(O) =-x<il(21t), i = 0, 1, 2, 3. (3.13) 

To apply coincidence degree theory [6] to (3.1) written in the form (3.13) we set 

X = Wi~1 , Z = L~,. 

domL = {x E Xi x<1l(O) = x<1>(2ri) and x is absolutely continuous on [0,21t]}. 

L: domL c X I-+ z ' X ---+ x1
v + a X +bx + ex 

H: domL c X ---+ Z, x---+ g(t, x(t- -r)) 

'. 

•I 

J 
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A:domL c X ._. Z, x ._. P(t)x(t - t} 

G:domL c X._. Z , x ._. cp(t,x(t - t}} 

T :domL c X._. Z , x ._. -p(t). 

It is easily checked that H and G are well defined and L-compact on bounded 
subsets of X, and that L is a linear Fredholm mapping of index zero. 

Thus problem (3.1) is equivalent to solving the equation 

Lx + Gx + Hx + T x = 0 (3. 14} 

in domL, where A. E [0, 1]. 
By theorem 4.5 of [6], equation (3.14) will have a solution if we can show that 

for each A. E [0, 1] and each x E domL such that 

Lx + (1 - A.)Ax + A.Gx + A.Hx + A.T x = 0 

we have 

I xi w•·• < p for some p > 0. 
2• 

Let x E domL satisfy (3.15) for some A. E [0, 1). Then 

xiv + ax+ bx + c.X + (1 - A.)P(t) + A.Y(t,x(t - t}x(t - t) 

+ A.cp(t, x(t - t}} - A.p(t) = 0 

and by (3. 11) we have 

o:(t) (1 - A.)P(t) , Y(t, x(t - t}} P(t) 
b -es;. b · +.11. b S:.b+e. 

Therefore using Lemma 3.1 and (3.1 2) we get 

and hence 

0 = ix1v + ax + bx +ex+ (1 - A.)P(t) + A. Y(t , x(t - -r))x(t - -r ) 

+A.cp(t,x(t - -r)) - A.P(t)IL• ~ c5olxl w•·• - IYRIL• - IPIL• 
la h: o la 2c 

lxl w•·• ~ c5; 10YRIL• + IPIL• ). 
l• 2• l• 

To complete the proof we take any p > c5; 1(1YRIL• + IPIL• ). • 
. h h 

4. U niqueness result 

In this section we shall prove a uniqueness result for equation (3.1). 

Theorem 4.1. Let all the conditions of Theorem 3.1 hold with g satisfying 

2 o:(t) g(t, x ) - g(t,y) < P(t) s;, (n + 
1

)2 
n s;, b s;, b(x- y) - b 

(3.15) 

(4.1 ) 
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fo r a.e t E I and x =/= y E JR. Then the boundary value problem (3.1) has a unique 
solution for each p E L~n· 

PROOF. Since condition (4.1) implies (3.9), Theorem 3.1 ensures the existence of at 
least one solution. 

Now let x and y be solutions of (3.1) and set v = x - y . Then v is a solution of 
the boundary value problem 

viu +ax +bv + cil + g(t,v + y) - g(t,y) = 0 

v<il(O) = v<il(2n), i = 0, 1, 2, 3. 

Define f :I x R -+ R by 

f(t) = { v- '[g(t, v+y) -g(t,y)] ifv =/= 0 
, a(t) if v = 0 

Then (4.2) can be written in the form 

with 

for a.e t E I and all v E JR. 

viu + a'i.j + bv + cil + f( t)v = 0 

a(t) f(t) P(t) 
- ~ - ~ -

b b b 

By Theorem 2.1 we deduce that v = 0, i.e. x = y a.e. • 
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