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We study the periodic boundary value problem 

.X" (t) +ft. x (t)) .x· (t) + g(t, x (t - 1:)) + h(x(t)) - p(t) 

x(O)- x(2n) - x (O)-x (2n) -X' (0) - .x· (2n) = 0 

under some resonant conditions on the asymptotic behaviour of x- 1 g(t, x) for I x I 
_... oo. The uniqueness of periodic solutions is also examined . 

1 . INTRODUCilON 

In this paper we study the periodic boundary value problem 

l
·x·+ fl. x) x· + g(t, x (t - 1:)) + h(x) - p(t) 1 

x{O)- x(2Jt)- x (0)-x (:at) - x· (0) - X' (:at) - 0 
... (1.1) 

with fixed delay 't E [0, 2Jt), where f : R - R is continuous, P : [0, 2Jt)-+ R and 
g : [0, 2Jt) x R - R are :at-periodic in t and g satisfies certain Caratheodory 
conditions. The unknown function x : [0, 2Jt) - R is defined for 0 < t s 't by 
x(t - 1:) = [231: - (t- 1:)]. We are specifically concerned with the existence of periodic 
solutions of eqn. (1.1) under some resonant conditions. 

The differential equations 

x ·+ax· + j{x) x + g(t, x(t - 1:)) - p(t) 

x(O)- x{23t) - i(O) -·x {231:), x· (0)- x· (2Jt) = 0 

in which a .. 0 is a constant and 
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PROOF : We consider a solution of the form x(t) = e>u where ). - in with 
i2 = - 1. 

Then Lemma 2.1 will follow if 

'41(n, 't) - - n2 + b cos ITt .. 0 

for all n ~ 1 and 't E [0, at). 

By (2.2) we get 

'41(n, 't).s-n2 +b < 0. 

Therefore '41(n, 't) .. 0 and the result follows. If x E L~ we shall write 

so that 

2Jt 

x- ~ f x(t) dt , X{t) - x(t)-x 
0 

2Jt 

f x(t) dt = o. 
0 

Our next result concerns the delay equation 

x·+a.x· +b(t)i(t-'t) +ex= 0 

x(O) -x(2n)- i (0) -i (2n)- .x· (0) -i· (2n) = o 

where a, c are constants and b E L~. 

Theorem 2.1 - Let c .. 0. Suppose that b(t) satisfies 

0 < b(t) < 1, t E [0, 2n). 

• Then for arbitrary a eqn. (2.4) admits in W~2 only the trivial solution. 

PROOF : If x is a possible solution of (2.4) then since 

2Jt 

1 f . 2n -i(ax· +cx)dt = o 
0 

as can be easily verified, we have from (2.5) that 

2Jt 

o = ~ f -x(x·+a.x· +b(t)i(t - 't)+a)d~ 
0 

2Jt 
1 f .. . = 2n (x 2 - b(t)xx(t-'t))dr. 

0 

... (2.3) 

... (2.4) 

. .. (2.5) 
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PROOF : Integrating by parts and using the identity 

and noting that 

we get 

2J< 

~ I -i<t) (a.X. +ex)) dt = 0 
0 

2J< 

~ I -xcx·+ v(r)x(t-'t))dr 
00 

2J< 
1 I .. 

= 2Jt < ; 2 <r)- v(r) t 2 (r)) dr 
0 

2J< 2J< 
1 ·· · E • ~ 2Jt I < x? (r)- b(t) x2) dt- 2Jt I ;2 (r) dt 

0 0 

~ [) I ~ 1~1 - E I i ~ 
2a 

.• 2 .• 2 
~ blx~ -E ixh 

I . ·12 = ({)-E) X 2 · 

We shall next consider the non-linear delay equation 

x·+ J( .i:) x· + g(t, .i: (t, 't)) + h(x)- p(t) 

x(O)- x(2Jt) - .i:(O)- .i: (2Jt) - x· (0)- x· (2Jt) = 0 
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... (3.1) 

where f, h : R - R are continuous functions and g : [0, 2Jt] x R- R is. such that 
g(· x) is measurable on [0, 2Jt] for each x E R and g(t, ~ ) is continuous on R for 
almost each t E (0, 2Jt]. 

We assume moreover that for each r > 0 there exists Yr E L~ such that 
I g(t, y) Is Yr (t) for a.e t E [0, 2Jt] and all x E [- r, r] such a g is said to satisfy 

Caratheodory's conditions. 

Theorem 3.1 - Let g be a Caratheodory's function with respect to the space 

L~ such that 

(i) There exists s > 0 such that . 

xg(t, x) ~ 0 for I xI ~ s 
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Define as in Mawhin and Ward5 

L : domL c x -z, x-x· 

F : X -+ z, X-+ j{ x) x' 
G : X -z, x-+y(t,x(t-'t))i(t-1:) 

H : x - z, x -+ h(x) 

A : X - z, X - b(t) X (t - 't) 

G0 : x -z, x-+g0 (t,x(t-'t)). 

335 

The proof of the theorem will follow from Theorem 4.5 of Mawhin7 if we show 
that the possible solutions of the equation 

Lx + f...Fx + (1 - A.) Ax + A. Gx + A. GQX + (1 -A.) ex + )J-/x- 'Ap(t) .. . (3.5) 

where c > 0 are a priori bounded independently of A. E [0, 1]. 

For A. = 0 we get the equation 

x '+b(t)x(t-'t)+ex = 0 

which by theorem (2.1) has only the trivial solution. 

Observe that 

( - . b 0 :s; 1 -A) b(t) + A y(t, X (t- 1:)} :S b(t) + 2 · 

Hence by Lemma 3.1 we get 

• Thus 

'bt 

~ I -i{t) {x ·+ A.J{ x) x· + [(1 - A.) b(t) + A.y (t, X<t- 1:))] 
0 

b 1" 12 2: 2 X 2· 

'bt 

x(t- 't) + (1- A.) ex} 

o = ~ I - i<t> {x'+ "!( x) x· + [(1- A.) b(t) 
0 

+ A.y (t, x(t- 1:))] x (t - ·1:) + (1- A.) ex 

+ A.g0 (t,i{t-'t))+1Jz(x)-Ap(t)} dl 
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From (3.8) we obtain 

2lt 

1 I . x(t ) = x(t*) + 2 x (s) ds. 
:rt ,. 

Hence 

I X leo :S ~6 + I X leo S ~6 + ~2 - ~ ... (3.9) 

for some ~7 > 0. 

From eqn. (3.5) and by continuity of h we obtain 

l'x'l1 s ~8 for some ~8 > 0. 
... (4.0) 

Now since x (0) - x (2.:rt), there exists t0 E (0, 2.:rt) such that x' (t0 ) - 0. Hence 

2lt 

x· <t> - x· (to> + I x· <s> ds. 

'• 
Therefore 

I x' leo s ~~~ for some ~9 > 0. 

Hence 

I X lc2 =I X lao + I X leo + I x' loo S ~7 + ~2 + ~9 "" ~10· 

Choosing p > !3 111 > 0 we obtain the required a priori bound in c2 [0, 2.:rt] inde
pendently of x and 'A. 

4 . UNIQUENESS R ESULT 

If in (1.1) j{,:x ) = a, h(x) = d where a and d are constants, then we have the 
following uniqueness result. 

Theorem 4.1 - Let a and d be constants with d > 0. Suppose g is a 
Caratheodory function satisfying 

g(t,x;1_:-_g(t, x2> s b(t} 
Os ( xl- x2) 

• . • • 2 
for all x 1, x2 E R, x 1 .. x2, where b(t) E Lm is scuh that 0 < b(t) < 1. Then for all 
arbitrary constant a and every "t E [0, 2:rt} the boundary value problem 

I 

·.x· + a.x:· + g(t, x (r - "t)) + dx = p(t} 
... (4.1) 

x(O)- x(2:rt) - x (O)- x(2:rt) = x· (0)- x· (2:rt) = 0 

has at most one so lution. 


