PERIODIC BOUNDARY VALUE PROBLEMS FOR
THIRD ORDER ORDINARY DIFFERENTIAL EQUATIONS WITH DELAY

S. A. Iyase

Department of Mathematics, Statistics and Computer Sciences, University of Abuja, PMB 117, Abuja, FCT, Nigeria, West Africa
(Received 1 February 1994; accepted 1 December 1994)

We study the periodic boundary value problem
$\dddot{x}(t)+f(\dot{x}(t)) \ddot{x}(t)+g(t, \dot{x}(t-\tau))+h(x(t))=p(t)$
$x(0)-x(2 \pi)=\dot{x}(0)-\dot{x}(2 \pi)=\ddot{x}(0)-\ddot{x}(2 \pi)=0$
under some resonant conditions on the asymptotic behaviour of $x^{-1} g(t, x)$ for $|x|$
$\rightarrow \infty$. The uniqueness of periodic solutions is also examined.

1. INTRODUCTION

In this paper we study the periodic boundary value problem

$$
\left\{\begin{array}{l}
\dddot{x}+f(\dot{x}) \ddot{x}+g(t, \dot{x}(t-\tau))+h(x)=p(t) \tag{1.1}\\
x(0)-x(2 \pi)=\dot{x}(0)-\dot{x}(2 \pi)=\ddot{x}(0)-\dddot{x}(2 \pi)=0
\end{array}\right\}
$$

with fixed delay $\tau \in[0,2 \pi)$, where $f: R \rightarrow R$ is continuous, $P:[0,2 \pi] \rightarrow R$ and $g:[0,2 \pi] \times R \rightarrow R$ are 2π-periodic in t and g satisfies certain Caratheodory conditions. The unknown function $x:[0,2 \pi] \rightarrow R$ is defined for $0<t \leq \tau$ by $x(t-\tau)=[2 \pi-(t-\tau)]$. We are specifically concerned with the existence of periodic solutions of eqn. (1.1) under some resonant conditions.

The differential equations

$$
\begin{aligned}
& \dddot{x}+a \ddot{x}+f(x) \dot{x}+g(t, x(t-\tau))=p(t) \\
& x(0)-x(2 \pi)=\dot{x}(0)-\dot{x}(2 \pi), \dddot{x}(0)-\ddot{x}(2 \pi)=0
\end{aligned}
$$

in which $a \neq 0$ is a constant and

PROOF : We consider a solution of the form $x(t)=e^{\lambda s}$ where $\lambda=$ in with $i^{2}=-1$.

Then Lemma 2.1 will follow if

$$
\begin{equation*}
\psi(n, \tau)=-n^{2}+b \cos n \tau \neq 0 \tag{2.3}
\end{equation*}
$$

for all $n \geq 1$ and $\tau \in[0,2 \pi)$
By (2.2) we get

$$
\psi(n, \tau) \leqslant-n^{2}+b<0
$$

Therefore $\psi(n, \tau) \neq 0$ and the result follows. If $x \in L_{2 \pi}^{1}$ we shall write

$$
\bar{x}=\frac{1}{2 \pi} \int_{0}^{2 \pi} x(t) d t, \tilde{x}(t)=x(t)-\bar{x}
$$

so that

$$
\int_{0}^{2 \pi} \tilde{x}(t) d t=0
$$

Our next result concerns the delay equation

$$
\begin{aligned}
& \dddot{x}+a \ddot{x}+b(t) \dot{x}(t-\tau)+c x=0 \\
& x(0)-x(2 \pi)=\dot{x}(0)-\dot{x}(2 \pi)=\ddot{x}(0)-\ddot{x}(2 \pi)=0
\end{aligned}
$$

where a, c are constants and $b \in L_{2 \pi}^{2}$.
Theorem 2.1 - Let $c \neq 0$. Suppose that $b(t)$ satisfies

$$
\begin{equation*}
0<b(t)<1, t \in[0,2 \pi] \tag{2.5}
\end{equation*}
$$

- Then for arbitrary a eqn. (2.4) admits in $W_{2 \pi}^{3,2}$ only the trivial solution.

PROOF : If x is a possible solution of (2.4) then since

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}-\dot{\tilde{x}}(a \ddot{x}+c x) d t=0
$$

as can be easily verified, we have from (2.5) that

$$
\begin{aligned}
& 0=\frac{1}{2 \pi} \int_{0}^{2 \pi}-\dot{\tilde{x}}(\dddot{x}+a \ddot{x}+b(t) \dot{x}(t-\tau)+c x) d t \\
&=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\ddot{\tilde{x}}^{2}-b(t) \dot{\tilde{x}} \dot{x}(t-\tau)\right) d t .
\end{aligned}
$$

Proof : Integrating by parts and using the identity

$$
-a b=\frac{[a-b]^{2}}{2}-\frac{a^{2}}{2}-\frac{b^{2}}{2}
$$

and noting that

$$
\left.\frac{1}{2 \pi} \int_{0}^{2 \pi}-\dot{\tilde{x}}(t)(a \ddot{x}+c x)\right) d t=0
$$

we get

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{00}^{2 \pi}-\tilde{x}(\dddot{x}+V(t) \dot{x}(t-\tau)) d t \\
&=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\ddot{\tilde{x}}^{2}(t)-V(t) \dot{\tilde{x}}^{2}(t)\right) d t \\
& \geq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\ddot{\tilde{x}}^{2}(t)-b(t) \dot{\tilde{x}}^{2}\right) d t-\frac{\varepsilon}{2 \pi} \int_{0}^{2 \pi} \dot{\tilde{x}}^{2}(t) d t \\
& \geq \delta|\tilde{\tilde{x}}|_{H_{2 x}^{\prime}}^{2}-\varepsilon \mid \dot{\tilde{x}}_{2}^{2} \\
& \geq \delta|\ddot{\tilde{x}}|_{2}^{2}-\varepsilon|\ddot{\tilde{x}}|_{2}^{2} \\
&=(\delta-\varepsilon)|\ddot{x}|_{2}^{2} .
\end{aligned}
$$

We shall next consider the non-linear delay equation

$$
\begin{aligned}
& \dddot{x}+f(\dot{x}) \ddot{x}+g(t, \dot{x}(t, \tau))+h(x)=p(t) \\
& x(0)-x(2 \pi)=\dot{x}(0)-\dot{x}(2 \pi)=\ddot{x}(0)-\ddot{x}(2 \pi)=0
\end{aligned}
$$

where $f, h: R \rightarrow R$ are continuous functions and $g:[0,2 \pi] \times R \rightarrow R$ is. such that $g(\cdot x)$ is measurable on $[0,2 \pi]$ for each $x \in R$ and $g(t, \cdot)$ is continuous on R for almost each $t \in[0,2 \pi]$.

We assume moreover that for each $r>0$ there exists $\gamma_{r} \in L_{2 \pi}^{2}$ such that $|g(t, y)| \leq \gamma_{r}(t)$ for a.e $t \in[0,2 \pi]$ and all $x \in[-r, r]$ such a g is said to satisfy Caratheodory's conditions.

Theorem 3.1 - Let g be a Caratheodory's function with respect to the space $L_{2 \pi}^{2}$ such that
(i) There exists $s>0$ such that
$x g(t, x) \geq 0$ for $|x| \geq s$

Define as in Mawhin and Ward ${ }^{5}$

$$
\begin{aligned}
& L: \operatorname{dom} L C x \rightarrow z, x \rightarrow \dddot{x} \\
& F: x \rightarrow z, x \rightarrow f(\dot{x}) \ddot{x} \\
& G: x \rightarrow z, x \rightarrow \tilde{\gamma}(t, \dot{x}(t-\tau)) \dot{x}(t-\tau) \\
& H: x \rightarrow z, x \rightarrow h(x) \\
& A: x \rightarrow z, x \rightarrow b(t) \dot{x}(t-\tau) \\
& G_{0}: x \rightarrow z, x \rightarrow g_{0}(t, \dot{x}(t-\tau))
\end{aligned}
$$

The proof of the theorem will follow from Theorem 4.5 of Mawhin ${ }^{7}$ if we show that the possible solutions of the equation

$$
\begin{equation*}
L x+\lambda F x+(1-\lambda) A x+\lambda G x+\lambda G_{0} x+(1-\lambda) c x+\lambda H x=\lambda p(t) \tag{3.5}
\end{equation*}
$$

where $c>0$ are a priori bounded independently of $\lambda \in[0,1]$.
For $\lambda=0$ we get the equation

$$
\dddot{x}+b(t) \dot{x}(t-\tau)+c x=0
$$

which by theorem (2.1) has only the trivial solution.
Observe that

$$
0 \leq(1-\lambda) b(t)+\lambda \tilde{\gamma}(t, \dot{x}(t-\tau)) \leq b(t)+\frac{\delta}{2} .
$$

Hence by Lemma 3.1 we get

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi}-\dot{\tilde{x}}(t)\{\ddot{x}+\lambda f(\dot{x}) \ddot{x}+[(1-\lambda) b(t)+\lambda \tilde{\gamma}(t, \dot{x}(t-\tau))] \\
& \dot{x}(t-\tau)+(1-\lambda) c x\} \\
& \geq \frac{\delta}{2}|\ddot{x}|_{2}^{2} .
\end{aligned}
$$

- Thus

$$
\begin{aligned}
0=\frac{1}{2 \pi} \int_{0}^{2 \pi} & -\dot{\tilde{x}}(t)\{\ddot{x}+\lambda f(\dot{x}) \ddot{x}+[(1-\lambda) b(t) \\
& +\lambda \tilde{\gamma}(t, \dot{x}(t-\tau))] \dot{x}(t-\tau)+(1-\lambda) c x \\
& \left.+\lambda g_{0}(t, \dot{x}(t-\tau))+\lambda h(x)-\lambda p(t)\right\} d t
\end{aligned}
$$

From (3.8) we obtain

$$
x(t)=x\left(t^{*}\right)+\frac{1}{2 \pi} \int_{t^{*}}^{2 \pi} \dot{x}(s) d s
$$

Hence

$$
\begin{equation*}
|x|_{\infty} \leq \beta_{6}+|\dot{x}|_{\infty} \leq \beta_{6}+\beta_{2}=\beta_{7} \tag{3.9}
\end{equation*}
$$

for some $\beta_{7}>0$
From eqn. (3.5) and by continuity of h we obtain

$$
\begin{equation*}
|\dddot{x}|_{1} \leq \beta_{8} \quad \text { for some } \beta_{8}>0 \tag{4.0}
\end{equation*}
$$

Now since $\dot{x}(0)=\dot{x}(2 \pi)$, there exists $t_{0} \in(0,2 \pi)$ such that $\ddot{x}\left(t_{0}\right)=0$. Hence

$$
\ddot{x}(t)=\ddot{x}\left(t_{0}\right)+\int_{t_{0}}^{2 \pi} \ddot{x}(s) d s .
$$

Therefore

$|\ddot{x}|_{\infty} \leq \beta_{9}$ for some $\beta_{9}>0$.
Hence

$$
|x|_{c^{2}}=|x|_{\infty}+|\dot{x}|_{\infty}+|\ddot{x}|_{\infty} \leq \beta_{7}+\beta_{2}+\beta_{9}=\beta_{10}
$$

Choosing $\rho>\beta_{10}>0$ we obtain the required a priori bound in $c^{2}[0,2 \pi]$ independently of x and λ.

4. Uniqueness Result

If in (1.1) $f(x)=a, h(x)=d$ where a and d are constants, then we have the following uniqueness result.

Theorem 4.1 - Let a and d be constants with $d>0$. Suppose g is a Caratheodory function satisfying

$$
0 \leq \frac{g\left(t, \dot{x}_{\mathrm{j}}\right)-g\left(t, \dot{x}_{2}\right)}{\left(\dot{x}_{1}-\dot{x}_{2}\right)} \leq b(t)
$$

for all $\dot{x}_{1}, \dot{x}_{2} \in R, \dot{x}_{1} \neq \dot{x}_{2}$, where $b(t) \in L_{2 \pi}^{2}$ is scuh that $0<b(t)<1$. Then for all arbitrary constant a and every $\tau \in[0,2 \pi)$ the boundary value problem

$$
\begin{align*}
& \dddot{x}+a \ddot{x}+g(t, \dot{x}(t-\tau))+d x=p(t) \tag{4.1}\\
& x(0)-x(2 \pi)=\dot{x}(0)-\dot{x}(2 \pi)=\ddot{x}(0)-\ddot{x}(2 \pi)=0
\end{align*}
$$

has at most one solution

