PERIODIC SOLUTIONS OF A CLASS OF EVEN ORDER DIFFERENTIAL EQUATIONS

H. O. Tejumola
(University of Ibadan, Ibadan, Nigeria)
S. A. Iyase
(University of Abaja, Abaja, Nigeria)

Abstract

We investigate sufficient conditions (Theorem 1) for the non-existence of periodic solutions of equation (2.1) with $P \equiv 0$ and sufficient conditions (Theorem 2) for existence of periodic solutions of equation (1.1.1).

Key words ω-periodic solution

1 Introduction

1.1

The aim of this paper is to provide sufficient conditions for the existence of periodic solutions of the 2th order differential equation

$$x^{(2r)} + a_1 x^{(2r-1)} + a_2 x^{(2r-2)} + \cdots + a_{2r-1} x + f_{2r-1}(\xi) \xi + f_{2r-1}(x) \xi + f_p(x) = 0,$$

(1.1.1)

and the non-existence of non-trivial periodic solutions in the case $P \equiv 0$, where $a_1, a_2, \cdots, a_{2r-1}$ are constants and $f_{2r-1}, f_{2r-1}, f_p, p$ are continuous real-valued functions depending only on the arguments shown, the function p is ω-periodic in t, that is $p(t, x_1, \cdots, x_{2r}) \equiv p(t + \omega, x_1, \cdots, x_{2r})$ for some $\omega > 0$ and for arbitrary x_1, \cdots, x_{2r}. Such periodic differential equations arise

*Manuscript received Nov. 10, 1996
From (1.2.4) we also derive that $\phi_1(\alpha) > 0$ if r is even and a_{2j-1}, $j = 1, 2, \ldots, r$ satisfy
\[a_1 \geq 0, a_3 \leq 0, a_5 \geq 0, \ldots, a_{2r-1} < 0 \] or
\[\phi_1(\alpha) < 0 \text{ if } r \text{ is odd and } a_{2j-1}, j = 1, 2, \ldots, r-1 \text{ satisfy} \]
\[a_1 \geq 0, a_3 \leq 0, a_5 \geq 0, \ldots, a_{2r-3} < 0 \]
Thus it follows from (1.2.5) that if r is even (resp. from (1.2.6) if r is odd) that (1.2.1) does not have periodic solutions except $x = 0$.

Therefore from the general theory, the perturbed equation
\[x^{(r)} + a_1 x^{(r-1)} + a_2 x^{(r-2)} + \cdots + a_{2r-2}\dot{x} + a_{2r-1}\dot{x} + a_{2r}x = p(t) \] in which p is a continuous ω-periodic function of t has a unique ω-periodic solution. Our main object here is to obtain non-linear analogues of (1.2.5) and (1.2.6) from which we shall derive our non-existence and existence results. Similar non-existenee and existence results using non-linear analogues of (1.2.7) and (1.2.8) are under preparation and will appear elsewhere.

2 Main results

2.1

We start here with the differential equation
\[x^{(r)} + a_1 x^{(r-1)} + a_2 x^{(r-2)} + \cdots + a_{2r-3}\dot{x} + f_{2r-2}(x)\dot{x} + f_{2r}(x) = 0 \]
\[(f_{2r}(0) = 0) \] (2.1.1)
where as before $a_1, a_2, a_3, \ldots, a_{2r-3}$ are constants and $f_{2r-2}, f_{2r-1}, f_{2r}$ are continuous real valued functions depending only on the arguments shown. Our non-existence result is as follows:

Theorem 1 Let the constants a_{2j}, $j = 1, 2, \ldots, r-2$ and the function f_{2r-2} and f_{2r} satisfy
\[a_2 \leq 0, a_4 \geq 0, a_6 \leq 0, \ldots, a_{2r-4} \geq 0 \]
\[y \int_{0}^{y} f_{2r-2}(s)ds \leq 0, y f_{2r}(y) > 0 \quad (y \neq 0) \] (2.1.2)
To prove theorem 1, it suffices to show that every ω-periodic solution $(x_1(t), \ldots, x_\omega(t))$ of (2.2.1) satisfies $(x_1(t), x_2(t), \ldots, x_\omega(t)) = (0, 0, \ldots, 0)$ for all t.

To this end we define a function $V(y_1, \ldots, y_\omega)$ which will play a crucial role in our proof as follows:

$$V = (-1)^{r+1} y_1 \int_0^\infty F_0(s) ds + (-1)^{r+1} \int_0^\infty s F_0(s) ds$$

$$+ \sum_{k=2}^{2r} (-1)^k y_1(y_2 + \sum_{k=1}^{2r-k} a_k y_2 - k)$$

$$+ \sum_{k=2}^{2r} (-1)^k y_1(y_2 + \sum_{k=1}^{2r-k} a_k y_2 - k)$$

$$+ \sum_{k=1}^{2r} (-1)^{k+1} a_{2k-1} y_2^{2k-1}$$

and show that $\dot{V} = 0$ and from this we conclude that $(y_1(t), y_2(t), \ldots, y_\omega(t)) = (0, 0, \ldots, 0)$ for all t.

To prove theorem 2, we will consider the non-linear vector differential equation.

$$\dot{x} = A(t)x + G(t,x)$$

where $A(t)$ is an $n \times n$ matrix continuously for all $t \in R$. $A(t) = A(t+\omega)$, $G(t,x)$ is continuous for all $(t,x) \in R \times R^n$, $G(T,x) \equiv G(t+\omega,x)$ and the following theorem.

Theorem: If

a. the homogeneous linear equation

$$\dot{z} = A(t)x$$

has no non-trivial ω-periodic solution and if

b. there exists an a-priori estimate independent of μ for the ω-periodic solutions of the equation

$$\dot{z} = A(t)x + \mu G(t,x), 0 \leq \mu \leq 1,$$

then (2.2.3) admits at least one ω-periodic solution. In what follows for any
\[\int_{a}^{b} x^2 \, dx - \int_{a}^{b} (x-1)^2 \, dx - \int_{a}^{b} (x-2)^2 \, dx - \cdots - \int_{a}^{b} (x-n)^2 \, dx = \frac{n(n+1)(n+2)}{6} \]

\[\left(\left[x^3 \right]_{a}^{b} - \int_{a}^{b} 3x^2 \, dx \right) - \left(\left[x^3 \right]_{a}^{b} - \int_{a}^{b} 3x^2 \, dx \right) - \cdots - \left(\left[x^3 \right]_{a}^{b} - \int_{a}^{b} 3x^2 \, dx \right) = \frac{n(n+1)(n+2)}{6} \]

For \(n = 1 \), \(\int_{a}^{b} x^3 \, dx - \int_{a}^{b} 3x^2 \, dx = 0 \)

\[\frac{1}{(x)^2f} > \frac{x}{(x)^2f} \]

\[\frac{1}{(x)^2f} + \frac{x}{(x)^2f} = \frac{(x)^2f + x}{(x)^2f} \]

\[\frac{(x)^2f + x}{(x)^2f} + \frac{(x)^2f + x}{(x)^2f} + \cdots + \frac{(x)^2f + x}{(x)^2f} = \frac{n(n+1)(n+2)}{6} \]

\[\frac{1}{(x)^2f} + \cdots + \frac{1}{(x)^2f} = \frac{n(n+1)(n+2)}{6} \]

Proof of Theorem 2

\[\frac{n(n+1)(n+2)}{6} = 0 \]

When \(n = 0 \), \(\int_{a}^{b} f(x) \, dx = 0 \)

\[\int_{a}^{b} f(x) \, dx = 0 \]

Therefore, if \(n = 0 \), \(f(x) \) is odd or even.

\[\int_{a}^{b} f(x) \, dx = (i)A \]

\[\int_{a}^{b} f(x) \, dx = (i)A \]

\[\int_{a}^{b} f(x) \, dx = (i)A \]

\[\int_{a}^{b} f(x) \, dx = (i)A \]
From (3.2.9)

\[a_{2r-2} = a_{2r+1} = 0 \]

similarly from (3.2.3) or (3.2.4) we get

\[a_{2r} = b_{2r} > 0 \]

or

\[a_{2r} = b_{2r} < 0 \]

depending on whether \(c \) is even or odd. Combining (2.2.10)-(3.2.14) we get that (3.2.8) has no non-trivial \(\omega \)-periodic solution. Hence assumption (a) of theorem is satisfied. Since \(\text{det}(e^{-\omega A} - I) \neq 0 \), \(I \) being the \(2\omega \times 2\omega \) identity matrix all \(\omega \)-periodic solutions \(x(t) \) of (3.2.6) must satisfy the integral equation

\[x(t) = \mu T(x(t)) = \mu (e^{-\omega A} - I)^{-1} \int_0^{2\omega} e^{-(s-t)A} G(s, x(s)) ds \]

To verify hypothesis (b) of theorem we must show that

\[\|x\| = \max \{ |x_1(t)| + |x_2(t)| + \cdots + |x_{2\omega-1}(t)| \} \leq D_0 \]

It is sufficient in view of (3.2.7) and (3.2.15) to obtain the following estimates.

\[\max_{t \in [0,\omega]} |x_1(t)| \leq D_1, \quad \max_{t \in [0,\omega]} |x_2(t)| \leq D_2, \quad \max_{t \in [0,\omega]} |x_3(t)| \leq D_3 \]

For every \(\omega \)-periodic solution \(y(t) \) of (3.2.1), we define a function \(w = w(y_1 \cdots y_{2\omega}) \) by

\[w = (-1)^{r+1} y_1 \int_0^\omega f_{2\omega-2}(s) ds + (-1)^{r+1} \mu \int_0^\omega s f_{2\omega-1}(s) ds + \cdots \]

\[+ (-1)^{r+1} y_1 (y_3 + \sum_{k=1}^{2r-3} a_k y_{2r-1-k}) \]

\[+ \sum_{k=2}^r (-1)^k y_k \left[f_{2r+1-k} + \sum_{j=1}^{2r+1-2k} a_j y_{2r+1-k-j} \right] + \frac{1}{2} \sum_{k=1}^{r-1} (-1)^k a_{2r-2k} y_{2r+1-k} \]

(3.2.18)
and by hypothesis (2.1.6) we have

\[|p(x) - k| \leq k|x| \]

Thus

\[\vartheta \geq \sum_{l=1}^{r-2} ((-1)^{r-2} a_k x^{r-1-k}) + (-1)^{r+1} b_2 x^2 - k|x| \]
\[\geq -a_k x^2 + a_k x^{r-2} - a_k x^{r-2} + \cdots + a_{r-2} x^{2} + a_{r-2} x^{2} - (-1)^{r+1} \frac{k^2}{4b_2} \]

Using condition (3.2.10) if \(r \) is even or (3.2.11) if \(r \) is odd, we get

\[w \geq D_1 (x^2 + \cdots + x^{r-2} + x^2 + \cdots + \frac{x^2}{2} - (-1)^{r+1} \frac{k^2}{4b_2} \) \tag{3.2.22} \]

where \(D_1 = \min(-a_k, a_k, \cdots, a_{r-2} x^{r-2}) \). Integrating (3.2.22) from \(t = 0 \) to \(t = \omega \) and using the fact that \(w(t) = w(t + \omega) \) we get

\[0 \geq D_3 \int_0^\omega (x^2 + \cdots + x^{r-2} + x^2 + \cdots + \frac{x^2}{2}) dt - (-1)^{r+1} \frac{k^2 \omega}{4b_2} \] \tag{3.2.23} \]

Hence

\[\int_0^\omega x^2 dt \leq \frac{(-1)^{r+1} k^2 \omega}{4b_2} \equiv D_3 \] \tag{3.2.24} \]

where

\[D_3 = \max \{ D_2, \frac{D_2 \omega^2}{4e^2} \} \]

Since

\[\int_0^\omega x^2 dt \leq \frac{\omega^2}{4e^2} \int_0^\omega x^2 dt \]

The periodicity condition

\[\dot{x}(0) = \dot{x}(\omega) \text{ on } x \text{ implies that } \dot{x}(T_1) = 0 \]

at some \(T_1 \in (0, \omega) \).

Thus

\[\dot{x}(t) = \dot{x}(T_1) + \int_{T_1}^t \dot{x}(s) ds \]