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Abstract 

We prove the existence of periodic solutions for equation (1.1) using degree 
theoretic methods. The uniqueness of periodic solutions is also examined. 
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1. Introduction 

This paper is devoted to the study of existence and uniqueness of periodic solutions to the 
fourth order differential equation with delay of the form 

x"' (1) + a:i' + b.i' + h(x).i· + ~(l,x(l- r)) = p(t) ( 1.1) 

x 1''(0) = x'''(211'),i = 0,1,2,3. 
where a,b arc constants, r e [O,ZII') is a li:<ed time delay. 

h : ~H ~ ~H is continuous, p e L1
2.T and g : [0,211'] x ~H ~ ~H is 211' periodic in t and satisfies 

certain carathcodory condit ions. The unknown function x: [0,211' ] -> ~ll is defined for 
0 ~ 1 ~ r by x(t- r) = x(211'- (1- r)). 

In a recent paper [2) we studied the above equation with h(x) = c, a const;mt, with g(t,y) 
satisfying certain non-resonant conditions. The n1ethod of proof used was based on 
coincidence degree theory [ 1]. In our present study, we will allow g(t, y) to satisfy certain 
resonant conditions and the technique of proof utilises the Lcray-Schaudcr degree theory It 
is pertinent to note that fourth order boundary value problems with delay occur in a variety 
of physical problems (sec [2], [3 ]). 

. ' 
I~ section 2 of this paper, we study the linear part of ( 1.1 ). Section 3 deals with the problem 
of existence of periodic solutions of ( 1.1) and in section 4 we obtain uniqueness 
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results. We use the following notations and definitions. Let 'Jl denote the real line and I the 
interval [0, 2 rr ]. The fo llowing spaces wi ll be used: L'' ~.T = L" (/,~H) arc the usual Lebesgue 

spaces, I :::; p < oo with x E L'' 2• , 2 rr - periodic 

{ 

x: I ~ ~l,x, x, ... ,x'-1 arc absolutely continuous, x' e L2z. and 

H 1l .T= 

x<•l (0) = _.<•l (2rr), i = 0, I, 2, 3 , ... , k-1 

( rK )2 A ' .T 

with normllxll 2 u•,, = ll• x(l)dt + l~ L r I x <'1(1) 1
2 
dt 

••I 

{ 

x: I~ ~ll ,x,:i:, ... ,x'-1 arc absolutely continuous, x' E L2 z. and 

and Wuz., = 
x 1il (0) = x<'l (2rr), I = 0, I, 2, ... , k-1 

with norm 

llxll2w' ·'·l.T =-& :t r ,,\"(i)(f)l 2df. 
i•O 

A function x e W4
'
2 z. is a solution of ( 1.1) if it satisfies ( 1.1) almost everywhere on ~t 

2. Some Results on the Linear Part 

We shall consider here the linear delay differential equation of the form 

x"· +a:\'+ b.\' + d + d(r)x(r- r) = p(r) (2.1) 

x1<~(0) = x1 ' 1 (2~r), i = 0,1,2,3. 

The coeflicicnt d is not necessarily a constant. We have the following results which apart 

from being of independent interest are also useful in the non-linear cases involving ( 1.1 ). 

Theorem 2.1: Let b < 0 and let r(r) = b-1d(r) e el.T. Suppose that 

0 < r{f) < I a.c 1 e (0,2~r} The for arbiCrary constant a and e the boundary value 

problem (2,1) admits in w•.zlH Only the trivial SOlution. 

Proof: Let X e W4
'
2

2 .. be any solution of (2.1) and let x(t) =X+ x(t) where 

' 
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X= -21 rK x(l)dl and x(/) = x(l)- X so that -21 f.'·• x(t)dt = 0. 
If I ,f I 

We consider (2.1) in the fonn 

b-1 [x"· +a:\:+ 6]+ [.:C + l(t)x(t- r)] = 0 (2.2) 

Then on multiplying (2.2) by x- x(t) and integrating over [0,2JT] and noting that 

+, fK (I- x(t)Xa:~· + 6 )dt = 0 -· J) 

-f; r (I- x(t))x'·· (t)dt =-r f 2 (t)dt 

We have on using 

that 

-ab= (a-bY a~ b
2 

2 -2- 2 

0 == -f; r (x -x(l)~b-1 (x'· +a:i: +c.r) +(.\' + f(t)x(t-r))}lt 

= -~: ( "i 2
dt + 2\ r (x -x(t )){.\'(1)+ f(l)x(/- r))dt 

~ 2~ r (.\'- x(t))(.\'(1) + f(t)x(l- r))d/ 

f.
'·• rc• [ L + 2~T ~ (x(f- f)- X(f)) + 2.\' 2 pf 

From the periodicity of x it follows that 

r 12 
(l)dt = r t 2 

(/- r)dt 

Therefore from the positivity of rand by Lemma I of[ 4] we have 

o <: 1( 21
, tru>- r(t)x 2 <1)}t)+ t( 2~ f'['i~u-r>-r<,>x 2 (t- r>D"' 

-~-~2 I <: (j X II 2K 

(2.3) 

(2.4) 

for some o > 0. This implies x = 0 a.e and hence x = x, however since f(t) * 0 we have 

x=O . ' 
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Corollary 2.1: Let r be as in theorem 2. I . Then for every fixed r e [0,2n') and for every 

11 e L2z. the problem 

x" + a:i:' + b.'V + c.i· + d(t)x(t - r) = u(t ) (2.5) 

x111 (0) = x 1
., (2JT), i = 0, I, 2, 3 

aamits in w•·2z., one and only one solution which depends continuously on u. 

Proof: The operator 

T : xew•·z~. -)X" erzz., 

is Fredholm of index zero. The operator F : x e W 4'
2 ~ , --) a:i:' + b.~+ 6 + d(t)x(t - r) e L~ ~ ., is 

I 

completely continuous. Hence T + F is Fredholm of index zero. Since ker(T +F)= {o} 

we conclude that (2.5) has a unique so lution. The continuous dependence of the solution on u 

follows from the l3anach continuous inverse theorem. 

Theorem 2.2: Let all the conditions of Theorem 2.1 hold and let c5 be related to r by 

Theorem 2.1. Suppose further that V e L2z., satisfies 0 S V (t) S f(l) + c a.e 1 e (0,2JT] where 

c > 0. Then 

f; r (x- x(l)xb-1 (x "' + a:i: + c.i-)+ .\' + V(t)x(t- r)~l <! (cY- ~) I x lu1
2H (2.6) 

Proof: Using (2.3) and (2.4) we have 

i; r (x - x(l)~b-1 (x "' + a:i-· + c.i: )+ .\' + V(t)x(t- r)}lt 

=-f. r i' 2 
(t )dt + -& r (x - x(t)X.v + V(t)x(t- r)ylt 

~ t r (x- x(I)Xx(t) + V(t)x(t- r)}Jt 

Proceeding as in the proof of theorem 2.1, \o.•e g~ 

f ,. , 

.I 
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::!: r (i 2 (I)- V(t)x 2 (t)}dl::!: TT r (i 2 (I) - f(l)x 2 (l))dl-* r :/ (l)dl 

~c51xl 2 t1 1 2K - clxi 2
11

1
2K= (c5-c)lxl 2

11
1

2.< 

3. Main Result 

Definition 3.1 : Let g: [0,21r Jx ~ll __, '.H be such that g(. x) is mensurable on [0, 21r] for each 

x e ~H and g(t .) is continuous for a.c 1 e [0.21r ]. Assume moreover that for each r > 0, there 

exists Y,. e L2z. such that lg(t, x)l :5 )~ for a.c 1 e [0,21r) and all x e [- r,r ] . Then such a g is 

said to satisfy carathcodory 's condi tions. 

We shall establish the existence of periodic solutions to the non-linear differential 

equation ( 1.1) when the non-linear tenn g(l, y) is a carathcodory function with respect to 
• 
L2

2.t and satisfies certain resonant conditions stated below. 

Theorem 3.1: Let b < 0 and suppose g is a carathcodory fu nction satisfying the inequalities 

b x g(t, x) ~ 0 ( lxl ~ r) 

Lim Sup f<;;' 1 :5 r{l) 
1•1-) (7,J 

uniformly a.c 1 e [0,21r] where r > 0 is a constant and r e L1
2.1 is such that 

0 < f(l) < I 

Suppose further that 

f• p = 2~ .L p(t)dl = 0 

(3. 1) 

(3.2) 

(3.3) 

Then for arbitrary constant a and arbi trary continuous function h, the boundary value problem 

(1.1) has at least one 2Tr periodic solution for cvc.ry fixed r e [0,21r) . 

Proof: Let o > 0 be related to r as in theorem (2.1 ). By hypothesis (3. 1) and (3.2) there 

exists r > 0 such that 

' 

,., 
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0 ~ Jd;;s) ~ f(t ) + 1 

for a.e I e [0,2tr] and I xi ~ r. 

(3.4) 

Define 

Y(t,x) = 

\ 

(bxr1 g(t,.r), 

(br)-1 _\; (l,r), 

-(br)-1 g(t,-r), 

f{t), 

lxl ~ r 

O< x< r 

-r < x < 0 

x =O 

We have 0$ Y(t ,x) $ r(t)+ 'Yz (3.5) 

For a.e 1 e [0.21r] and x e ~H. Moreover the function Y (I ,y) satisfies caratheodory's 

conditions and g: (0,2tr ]x ')! ~ ~H defined by 

g(t ,x(t- r)) = g (t, x(t - r))-bx(l- r)Y(I;x(t- r )) 

is such that for a.e 1 e [0,2tr] and all x e ')!, I g(t. x(t - r)) I ~ a(t) for a.e I e [0,2tr 1 x e ')! 

and some a(t) e L2
2 • • Let A e [0,1] and x e H 1

2. be such that 

b-1 x"' + b-1d.r' + .\' + Ab-1h(x).i' + (1 - A)r(t)x(t- r) + b-1 (1 - A)d , 

Ab-1g(t,x(t - r) )-b-1Ap(1) = 0 (3.6) 

.For A = 0, we obtain equation (2.1 ) which hy theorem (2.1) admits only the trivial solu tion. 

for A= I, we get the original equation ( 1.1 ). To prove that equation (3.6) or equivalently 

( 1.1) has at least one 2tr periodic solution, it suffices according to the Leray-Schauder 

method to show that the possible solutions of the family of equations 

b-1 [x"' + a:r· + A.h(:c)x ]+ ).' + (1- A)r(t)x(l- r) + A.Y(t,x(t- r ))x(t - r) 

Ab-1 g(t ,x(t- r))+ b -1 (I - A.)c.i- b-'A.p(t) = 0 (3.7) 

• arc a priori bounded in C1 [0,211' ] independently of A. E [0,211'} Notice that by inequalities 

(3.5) one has 

0 ~ (1- A.)f(t ) + A.Y(t,x(t- r)) :S f (t) + '/i (3.8) 

for a.e t e [0,2tr] and all x e ')! and for A.= 0 e·quatiol;l (3.7) has only the trivial solution. 

Hence using theorem (2.2) with 

V(t) = (1- A.)f(t) + AY (t .x(t- r )) 

and Cauchy-Schwartz inequality we get 

' • [ ] . - . 
0 = -f; f (x - x(t))W' x"· + a:i:· + Ah(x)x + .\' + ((1- A.)r(t)x(t - r) + AY(t,x(t - r))x(t- r) 
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,ib-'g(t ,x(t - r)) + b-1 (I- A.)c.i· - b-'A.p(t )} 

~ ~ lx l2u',. -lbi" ' <la 12 + lrb> (lx I+ lx lz) 

~~ I x l2u',. - P (I xI+ I x 12 , .,.) 

Thus 

I X 12 
"'•· ~ ¥<I X I + I X 12 

II',. ) 

with p > 0 independently of x. Integrating (3.6) over [0,2tr] we obtain 

(1- A. ) r f (l)x(l - r)dt = -b-'..t r g(l,(x(t- r))dt 

Since r(t) > 0 we derive that f; r f(t)dt = f > 0 . 

73 

(3.9) 

• Hence if x (t) ~ r for all 1 e [0,2/T], (3.1) and (3.9) imply that (1- A.)fr < 0 contradicting 

r > o. 
Similarly, if x(t) $ - r for all t e [0,2tr] we reach a simi lar contradiction. Consequently, 

there exists a 11 e [0,2tr] such that x(t,) < r. From this point, we usc exactly the arguments in 

[4] to obtain 

lxl 11.,. ~ C, , c, > 0 

Thus 

l.rlz s cz, C2 > 0 

Now, 

x(t) = x(t,) + J. x(s)d~ . 
Hence 
'' 

lxL. ~ C3 , C3 > 0 

Multiplying (3. 7) by i-(t) and integrating over [0,2tr] we have 

j.r l 2 ~ ~ la·'llh(x)l .., l-i-1 22+1 1 + ~ llxl ... l.rl 2la·•l +la·•l lal zl·i-1 2 +lpl2l .i-l2 

Therefore there exists c~ > 0 such that 

Hence 

lxl~~ c •. 

l.i· I,.S C~, 

c4 > o 
Cs > 0 

Multiplying (3. 7) by - .~(t) and integrating over [0,2tr] we get 

(3 .1 0) 

(3.11 ) 

(3 .12) 

(3.1 3) 

(3. 14) 

lil 2z$C1,, C6>0 (3.15) 

Hence j.'C j.,$C7 , C1 >0 (3. 16) 

' Finally we multiply (3. 7) by x.,. (I) and integrating over [0,2 tr] using (3. 13), (3. 15) to get 
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lxi• I2S c., Cs> O 

lx'l...,~ c9, C9> 0 

(3.17) 

(3.18) 

From (3. 12), (3.14), (3.16) and (3 .18), we conclude tlt<lt the set of solutions of (3.7) arc a 

priori bounded in C3 [0,2JT] by a constant independent of solutions and -t e [0,2JT] . 

4. Uniqueness of Solution 

In the special case of( 1.1) in which h(x) = C, C a constant, the following uniqueness result 

holds. 

Theorem 4.1: Let a, b , c be constants with b < 0 and suppose that g is a caratheodory 

function satisfying 

g (.x,)-g(t, xl) < f(t ) 
0 < . -

b(x,- ·'2) 

for a.e 1 e [0,2JT] and all x~. x2 e ~11, x1 ~ x2 where r e L2
2" is such that 

0 < f (t) < I 

Then for arbitrary constants a and c and every fixed r e [0,2JT) the bvp 

x·· + aX'+ b.'i + ci + g (t ,x(t- r)) = p(l) 

x4.,(0) =.r4' 1(2JT), i = 0,1,2, 3 

has at most one solution . 

• l 
Proof: Let u = x, - x2 for any two solutions x1, X2 of(4.2). Then u satisfies the bvp 
., : 

b-1 [u "' 1- aii' + cti ]+ ii + p (t )u(t - r) = 0 

11
4
" (0) = 11

4
'
1 (2JT), i = 0, I, 2, 3 

!\l(hcrc P(t) E e ~ . is defined by 

p(t) = g(t,x2(1- r)) - J!(/,x1(1 - r)) 

b(x1 - x 2 } 

(4.1) 

(4.2) 

Since 0 < p (f) !> f(t) for a.e t e [0,2JT] we use the arguments of theorem 2. 1 to show that x1 

· :::: x~ a.c 

' .. I 

i " l 

1'1 
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