International Journal of Mathematics and Computation, ISSN 0974-570X (Online), ISSN 0974-5718 (Print), Vol. 3; No. J09; June 2009, Copyright © 2009 by CESER Publications

125

Resonant Oscillation of Certain Fourth Order Nonlinear Differential Equations with Delay

S. A. Iyase and P. O. K. Aiyelo*

Department of Mathematics & Computer Science Igbinedion University, Okada P.M.B. 0006, Benin City, Edo State, Nigeria.

Abstract

We prove the existence of periodic solutions for equation (1.1) using degree theoretic methods. The uniqueness of periodic solutions is also examined.

Key words and phrases: periodic solutions, resonant oscillations, caratheodory conditions

Mathematics Subject Classification: 34B15, 34C15, 34C25

1. Introduction

This paper is devoted to the study of existence and uniqueness of periodic solutions to the fourth order differential equation with delay of the form

(1.1)

$$x^{(i)}(t) + a\ddot{x} + b\ddot{x} + h(x)\dot{x} + g(t, x(t-\tau)) = p(t)$$

$$x^{(i)}(0) = x^{(i)}(2\pi), i = 0.1, 2, 3.$$

where a,b are constants, $\tau \in [0, 2\pi)$ is a fixed time delay.

 $h: \mathfrak{R} \to \mathfrak{R}$ is continuous, $p \in L^{1}_{2\pi}$ and $g: [0, 2\pi] \times \mathfrak{R} \to \mathfrak{R}$ is 2π periodic in t and satisfies certain caratheodory conditions. The unknown function $x: [0, 2\pi] \to \mathfrak{R}$ is defined for $0 \le t \le \tau$ by $x(t-\tau) = x(2\pi - (t-\tau))$.

In a recent paper [2] we studied the above equation with h(x) = c, a constant, with g(t,y) satisfying certain non-resonant conditions. The method of proof used was based on coincidence degree theory [1]. In our present study, we will allow g(t, y) to satisfy certain resonant conditions and the technique of proof utilises the Leray-Schauder degree theory It is pertinent to note that fourth order boundary value problems with delay occur in a variety of physical problems (see [2], [3]).

In section 2 of this paper, we study the linear part of (1.1). Section 3 deals with the problem of existence of periodic solutions of (1.1) and in section 4 we obtain uniqueness

*Corresponding author E-mail: aiyelo2000@yahoo.com

www.ceser.res.in/ijmc.html

results. We use the following notations and definitions. Let \Re denote the real line and I the interval [0, 2π]. The following spaces will be used: $L^{p}_{2\pi} = L^{p}(I, \Re)$ are the usual Lebesgue spaces, $1 \le p < \infty$ with $x \in L^{p}_{2\pi}$, 2π - periodic

$$H^{k}_{2\pi} = \begin{cases} x: I \to \Re, x, \dot{x}, ..., x^{k-1} \text{ are absolutely continuous, } x^{k} \in L^{2}_{2\pi} \text{ and} \\ x^{(i)}(0) = x^{(i)}(2\pi), i = 0, 1, 2, 3, ..., k-1 \end{cases}$$

with norm $||\mathbf{x}||^2_{H^4_{2r}} = \left(\frac{1}{2\pi} \int_0^{2\pi} x(t) dt\right)^2 + \frac{1}{2\pi} \sum_{i=1}^4 \int_0^{2\pi} |x^{(i)}(t)|^2 dt$

and
$$W^{k,2}_{2\pi} = \begin{cases} x: I \to \Re, x, \dot{x}, ..., x^{k-1} \text{ are absolutely continuous, } x^k \in L^2_{2\pi} \text{ and} \\ x^{(i)}(0) = x^{(i)}(2\pi), \ 1 = 0, 1, 2, ..., k-1 \end{cases}$$

with norm

x"

, 68

$$\|\mathbf{x}\|^{2} \mathbf{w}^{k,L}{}_{2\pi} = \frac{1}{2\pi} \sum_{i=0}^{k} \int_{0}^{2\pi} \|x^{(i)}(t)\|^{2} dt.$$

A function $x \in W^{4,2}_{2\pi}$ is a solution of (1.1) if it satisfies (1.1) almost everywhere on \Re .

2. Some Results on the Linear Part

We shall consider here the linear delay differential equation of the form

$$+ a\ddot{x} + b\ddot{x} + c\dot{x} + d(t)x(t-\tau) = p(t)$$

$$x^{(i)}(0) = x^{(i)}(2\pi), i = 0, 1, 2, 3.$$

The coefficient d is not necessarily a constant. We have the following results which apart

from being of independent interest are also useful in the non-linear cases involving (1.1).

Theorem 2.1: Let b < 0 and let $\Gamma(t) = b^{-1}d(t) \in L^{2}_{2\pi}$. Suppose that

 $0 < \Gamma(t) < 1$ a.e $t \in [0, 2\pi]$ The for arbitrary constant a and c the boundary value

.

(2.1)

problem (2.1) admits in $W^{4,2}_{2\pi}$ only the trivial solution.

• **Proof:** Let $x \in W^{4,2}_{2\pi}$ be any solution of (2.1) and let $x(t) = \overline{x} + \widetilde{x}(t)$ where

69

$$\overline{x} = \frac{1}{2\pi} \int_{0}^{2\pi} x(t) dt$$
 and $\widetilde{x}(t) = x(t) - \overline{x}$ so that $\frac{1}{2\pi} \int_{0}^{2\pi} \widetilde{x}(t) dt = 0$.

We consider (2.1) in the form

$$b^{-1}[x^{iv} + a\ddot{x} + c\dot{x}] + [\ddot{x} + \Gamma(t)x(t-\tau)] = 0$$
(2.2)

Then on multiplying (2.2) by $\overline{x} - \widetilde{x}(t)$ and integrating over $[0, 2\pi]$ and noting that

$$\frac{1}{2\pi} \int_{0}^{\pi} \left(\overline{x} - \widetilde{x}(t) \right) (d\overline{x} + c\overline{x}) dt = 0$$
(2.3)

$$\frac{1}{2\pi} \int_{0}^{2\pi} \left(\overline{x} - \widetilde{x}(t) \right) x^{i\nu}(t) dt = -\int_{0}^{2\pi} \frac{\ddot{x}^{2}}{\tilde{x}^{2}}(t) dt$$
(2.4)

We have on using

$$-ab = \frac{(a-b)^2}{2} - \frac{a^2}{2} - \frac{b^2}{2}$$

that

 $0 = \frac{1}{2\pi} \int_0^{2\pi} \left(\overline{x} - \widetilde{x}(t) \right) \left[b^{-1} \left(x^{i\nu} + a \ddot{x} + c \dot{x} \right) + \left(\ddot{x} + \Gamma(t) x (t - \tau) \right) \right] dt$

 $=-\tfrac{b^{-1}}{2\pi}\int_{0}^{\pi} \ddot{\widetilde{x}}^{2}dt + \tfrac{1}{2\pi}\int_{0}^{2\pi} \bigl(\overline{x}-\widetilde{x}(t)\bigr)\bigl\{\ddot{x}(t)+\Gamma(t)x(t-\tau)\bigr\}dt$

$$\geq \frac{1}{2\pi} \int_{0}^{2\pi} \left(\overline{x} - \widetilde{x}(t) \right) (\ddot{x}(t) + \Gamma(t)x(t-\tau)) dt$$

$$+ \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\Gamma(t)}{2} \left[(x(t-\tau) - \widetilde{x}(t)) + 2\overline{x}^2 \right] dt$$

From the periodicity of x it follows that

$$\int_0^{2\pi} \dot{\tilde{x}}^2(t) dt = \int_0^{2\pi} \dot{\tilde{x}}^2(t-\tau) dt$$

Therefore from the positivity of Γ and by Lemma1of [4] we have

$0 \geq \frac{1}{2} \left(\frac{1}{2\pi} \int_{0}^{2\pi} \left[\hat{\widetilde{x}}(t) - \Gamma(t) \tilde{x}^{2}(t) \right] dt \right) + \frac{1}{2} \left(\frac{1}{2\pi} \int_{0}^{2\pi} \left[\hat{\widetilde{x}}^{2}(t-\tau) - \Gamma(t) \tilde{x}^{2}(t-\tau) \right] \right) dt$

 $\geq \delta \|\widetilde{x}\|^2_{11} |_{2\pi}^{1}$

• 1 .

for some $\delta > 0$. This implies $\tilde{x} = 0$ a.e and hence $x = \bar{x}$, however since $\Gamma(t) \neq 0$ we have

1

x = 0.

Corollary 2.1: Let Γ be as in theorem 2.1. Then for every fixed $\tau \in [0, 2\pi)$ and for every

(2.5)

 $u \in L^{2}_{2\pi}$ the problem

70

 $x^{i\nu} + a\ddot{x} + b\ddot{x} + c\dot{x} + d(t)x(t-\tau) = u(t)$

 $x^{(i)}(0) = x^{(i)}(2\pi), i = 0, 1, 2, 3$

admits in $W^{4,2}_{2,r}$ one and only one solution which depends continuously on u.

Proof: The operator

 $T: x \in W^{4,2}_{2\pi} \to x^{i\nu} \in L^2_{2\pi}$

is Fredholm of index zero. The operator $F: x \in W^{4,2}_{2,\tau} \to d\ddot{x} + b\ddot{x} + d(t)x(t-\tau) \in L^2_{2,\tau}$ is completely continuous. Hence T + F is Fredholm of index zero. Since $ker(T + F) = \{0\}$ we conclude that (2.5) has a unique solution. The continuous dependence of the solution on u follows from the Banach continuous inverse theorem.

Theorem 2.2: Let all the conditions of Theorem 2.1 hold and let δ be related to Γ by Theorem 2.1. Suppose further that $V \in L^{2}_{2\pi}$ satisfies $0 \leq V(t) \leq \Gamma(t) + \varepsilon$ a.e $t \in [0, 2\pi]$ where $\varepsilon > 0$. Then

$$\frac{1}{2\pi} \int_{0}^{\pi} (\bar{x} - \tilde{x}(t)) \left[b^{-1} (x^{i\nu} + a\bar{x} + c\bar{x}) + \bar{x} + V(t) x(t - \tau) \right] dt \ge (\delta - \xi) |\bar{x}|_{H^{-1} 2\pi}$$
(2.6)

Proof: Using (2.3) and (2.4) we have

- $\frac{1}{2\pi}\int_0^{2\pi} \left(\overline{x}-\widetilde{x}(t)\right) \left[b^{-1}\left(x^{iv}+a\widetilde{x}+c\dot{x}\right)+\ddot{x}+V(t)x(t-\tau)\right]dt$
- $=-\tfrac{b^{-t}}{2\pi}\int_0^{2\pi} \ddot{\widetilde{x}}^2(t)dt + \tfrac{1}{2\pi}\int_0^{2\pi} \big(\overline{x}-\widetilde{x}(t)\big)\big[\ddot{x}+V(t)x(t-\tau)\big]dt$
- $\geq \tfrac{1}{2\pi} \int_{0}^{2\pi} \big(\overline{x} \widetilde{x}(t)\big) \big[\ddot{x}(t) + V(t)x(t-\tau) \big] dt$

Lite

Proceeding as in the proof of theorem 2.1, we get

$$\geq \int_{0}^{\varepsilon_{\pi}} \left(\dot{\tilde{x}}^{2}(t) - V(t) \tilde{x}^{2}(t) \right) dt \geq \frac{1}{2\pi} \int_{0}^{\varepsilon_{\pi}} \left(\dot{\tilde{x}}^{2}(t) - \Gamma(t) \tilde{x}^{2}(t) \right) dt - \frac{\varepsilon}{2\pi} \int_{0}^{\varepsilon_{\pi}} \tilde{\tilde{x}}^{2}(t) dt$$
$$\geq \delta \| \tilde{x} \|^{2} \|_{2\pi}^{1} - \varepsilon \| \tilde{x} \|^{2} \|_{2\pi}^{1} = (\delta - \varepsilon) \| \tilde{x} \|^{2} \|_{2\pi}^{1}$$

3. Main Result

Definition 3.1: Let $g:[0,2\pi] \times \Re \to \Re$ be such that g(.x) is measurable on $[0, 2\pi]$ for each $x \in \Re$ and g(t.) is continuous for a.e. $t \in [0, 2\pi]$. Assume moreover that for each r > 0, there exists $Y_r \in L^2_{2\pi}$ such that $|g(t, x)| \le Y_r$ for a.e $t \in [0, 2\pi]$ and all $x \in [-r, r]$. Then such a g is said to satisfy caratheodory's conditions.

We shall establish the existence of periodic solutions to the non-linear differential equation (1.1) when the non-linear term g(t, y) is a caratheodory function with respect to $L^{2}_{2\pi}$ and satisfies certain resonant conditions stated below.

Theorem 3.1: Let b < 0 and suppose g is a caratheodory function satisfying the inequalities

	$b \ge g(t, x) \ge 0 (x \ge r)$	(3.1)
$\operatorname{Lim} \operatorname{Sup} \frac{g(t,x)}{h_{X}} \leq \Gamma(t) \tag{3.2}$	$\operatorname{Lim} \operatorname{Sup} \frac{g(t,x)}{hx} \leq \Gamma(t)$	(3.2)

uniformly a.e $t \in [0, 2\pi]$ where r > 0 is a constant and $\Gamma \in L^{2}_{2\pi}$ is such that

 $0 < \Gamma(t) < 1$

 $\overline{P} = \frac{1}{2\pi} \int_{0}^{2\pi} p(t) dt = 0$

71

Suppose further that

13%

.

(3.3)

Then for arbitrary constant a and arbitrary continuous function h, the boundary value problem (1.1) has at least one 2π periodic solution for every fixed $\tau \in [0, 2\pi)$.

-

Proof: Let $\delta > 0$ be related to Γ as in theorem (2.1). By hypothesis (3.1) and (3.2) there exists r > 0 such that

$0 \le \frac{g(t,x)}{bx} \le \Gamma(t) + \frac{\delta}{2}$

for a.c $t \in [0, 2\pi]$ and $|\mathbf{x}| \ge \mathbf{r}$. Define

$$\widetilde{Y}(t,x) = \begin{cases} (bx)^{-1} g(t,x), & |x| \ge r \\ (br)^{-1} g(t,r), & 0 < x < r \\ -(br)^{-1} g(t,-r), & -r < x < 0 \\ \Gamma(t), & x = 0 \end{cases}$$

We have $0 \leq \widetilde{Y}(t, x) \leq \Gamma(t) + \frac{\delta}{2}$

(3.5)

(3.6)

(3.4)

For a.e $t \in [0,2\pi]$ and $x \in \Re$. Moreover the function $\widetilde{Y}(t, y)$ satisfies caratheodory's conditions and $\widetilde{g}: [0,2\pi] \times \Re \to \Re$ defined by

$$\widetilde{g}(t,x(t-\tau)) = g(t,x(t-\tau)) - bx(t-\tau)\widetilde{Y}(t,x(t-\tau))$$

is such that for a.e $t \in [0,2\pi]$ and all $x \in \Re$, $|\tilde{g}(t,x(t-\tau))| \le \alpha(t)$ for a.e $t \in [0,2\pi]$, $x \in \Re$ and some $\alpha(t) \in L^{2}_{2\pi}$. Let $\lambda \in [0,1]$ and $x \in H^{1}_{2\pi}$ be such that

 $b^{-1}x^{\prime\prime\prime}+b^{-1}a\ddot{x}+\ddot{x}+\lambda b^{-1}h(x)\dot{x}+(1-\lambda)\Gamma(t)x(t-\tau)+b^{-1}(1-\lambda)c\dot{x},$

$\lambda b^{-1}g(t,x(t-\tau)) - b^{-1}\lambda p(t) = 0$

For $\lambda = 0$, we obtain equation (2.1) which by theorem (2.1) admits only the trivial solution. For $\lambda = 1$, we get the original equation (1.1). To prove that equation (3.6) or equivalently (1.1) has at least one 2π periodic solution, it suffices according to the Leray-Schauder method to show that the possible solutions of the family of equations

$$b^{-1} \Big[x^{i\nu} + a\ddot{x} + \lambda h(x)\dot{x} \Big] + \ddot{x} + (1-\lambda)\Gamma(t)x(t-\tau) + \lambda \widetilde{Y}(t,x(t-\tau))x(t-\tau) \lambda b^{-1}\widetilde{g}(t,x(t-\tau)) + b^{-1}(1-\lambda)c\dot{x} - b^{-1}\lambda p(t) = 0$$
(3.7)

* are a priori bounded in $C^3[0,2\pi]$ independently of $\lambda \in [0,2\pi]$ Notice that by inequalities (3.5) one has

 $0 \le (1 - \lambda)\Gamma(t) + \lambda \widetilde{Y}(t, x(t - \tau)) \le \Gamma(t) + \frac{3}{2}$ (3.8)

for a.e $t \in [0, 2\pi]$ and all $x \in \Re$ and for $\lambda = 0$ equation (3.7) has only the trivial solution.

Hence using theorem (2.2) with

 $V(t) = (1 - \lambda)\Gamma(t) + \lambda \widetilde{Y}(t, x(t - \tau))$

and Cauchy-Schwartz inequality we get

 $0 = \frac{1}{2\pi} \int_{0}^{2\pi} \left(\overline{x} - \widetilde{x}(t) \right) \left\{ b^{-1} \left[x^{\prime \prime} + a \ddot{x} + \lambda h(x) \dot{x} \right] + \ddot{x} + \left((1 - \lambda) \Gamma(t) x(t - \tau) + \lambda \widetilde{Y}(t, x(t - \tau)) x(t - \tau) \right) \right\}$

 $\lambda b^{-1} \widetilde{g}(t, x(t-\tau)) + b^{-1}(1-\lambda)c\dot{x} - b^{-1}\lambda p(t)\}$

 $\geq \sqrt[n]{2} |\widetilde{x}|^2 H^{2_{2s}} - |b|^{-1} (|\alpha|_2 + |p|_2) (|\overline{x}| + |\widetilde{x}|_2)$

 $\geq \sqrt[3]{2} |\widetilde{x}|^{2} |\mathcal{U}_{2*} - \beta(|\widetilde{x}| + |\widetilde{x}|^{2} |\mathcal{U}_{2*})$

Thus

 $\left|\widetilde{x}\right|^{2} H_{2*}^{1} \leq \frac{2\beta}{\delta} \left(\left|\widetilde{x}\right| + \left|\widetilde{x}\right|^{2} H_{2*}^{1}\right)$

with $\beta > 0$ independently of x. Integrating (3.6) over $[0,2\pi]$ we obtain

 $(1-\lambda)\int_0^{2\pi}\Gamma(t)x(t-\tau)dt = -b^{-1}\lambda\int_0^{2\pi}g(t,(x(t-\tau)))dt$

(3.9)

(3.12)

73

Since $\Gamma(t) > 0$ we derive that $\frac{1}{2\pi} \int_{0}^{2\pi} \Gamma(t) dt = \overline{\Gamma} > 0$.

Hence if $x(t) \ge r$ for all $t \in [0, 2\pi]$, (3.1) and (3.9) imply that $(1 - \lambda)\overline{\Gamma}r < 0$ contradicting $\overline{\Gamma} > 0$.

Similarly, if $x(t) \le -r$ for all $t \in [0, 2\pi]$ we reach a similar contradiction. Consequently, there exists a $t_1 \in [0, 2\pi]$ such that $x(t_1) \le r$. From this point, we use exactly the arguments in [4] to obtain

$$|\mathbf{x}|_{U_{1,t}} \le C_1, \quad C_1 > 0$$
 (3.10)

Thus

 $|\dot{x}|_2 \leq C_2, \qquad C_2 > 0$

Now,

$$x(t) = x(t_1) + \int_1^t \dot{x}(s) ds$$
 (3.11)

1

Hence $|\mathbf{x}|_{\infty} \leq C_3, \quad C_3 > 0$

Multiplying (3.7) by $\dot{x}(t)$ and integrating over $[0,2\pi]$ we have

 $\|\ddot{x}\|^{2}_{2} \leq \|\mathbf{a}^{-1}\|\|\mathbf{h}(\mathbf{x})\|_{\pi} \|\dot{x}\|^{2}_{2} + \|\mathbf{1} + \frac{y_{2}}{2}\|\|\mathbf{x}\|_{\pi} \|\dot{x}\|_{2} \|\mathbf{a}^{-1}\| + \|\mathbf{a}^{-1}\|\|\boldsymbol{\alpha}\|_{2} \|\dot{x}\|_{2} + \|\mathbf{p}\|_{2} \|\dot{x}\|_{2}$

Therefore there exists $C_4 > 0$ such that

	ή¢.	$\ \ddot{x}\ _2 \le C_4,$	C ₄ > 0		(3.13)
1	Hence	$\ \dot{x}\ _{\infty} \leq C_5,$	C ₅ > 0		(3.14)
1	Multiplying (3.7) by -	x(t) and integra	ting over $[0,2\pi]$] we get	
		$\ \ddot{x}\ ^2 z \leq C_6,$	C ₆ > 0		(3.15)
	Hence	$\ \ddot{x}\ _{\infty} \leq C_7,$	C ₇ > 0		(3.16)
				[a.a.]	

Finally we multiply (3.7) by $x^{ir}(t)$ and integrating over $[0,2\pi]$ using (3.13), (3.15) to get

$\ x^{\prime\prime}\ _2 \leq C_{\rm R},$	C ₈ > 0	(3.17)
$\ \ddot{x}\ _{\infty} \leq C_9,$	C ₉ > 0	(3.18)

From (3.12), (3.14), (3.16) and (3.18), we conclude that the set of solutions of (3.7) are a priori bounded in $C^{3}[0,2\pi]$ by a constant independent of solutions and $\lambda \in [0,2\pi]$.

4. Uniqueness of Solution

74

٠

In the special case of (1.1) in which h(x) = C, C a constant, the following uniqueness result holds.

Theorem 4.1: Let a, b, c be constants with b < 0 and suppose that g is a caratheodory function satisfying

$$0 < \frac{g(x_1) - g(t, x_2)}{b(x_1 - x_2)} \le \Gamma(t)$$
(4.1)

(4.2)

for a.c $t \in [0, 2\pi]$ and all $x_1, x_2 \in \Re$, $x_1 \neq x_2$ where $\Gamma \in L^2_{2\pi}$ is such that

$$0 < \Gamma(t) < 1$$

Then for arbitrary constants a and c and every fixed $\tau \in [0, 2\pi)$ the bvp

$$x^{\prime \nu} + a \ddot{x} + b \ddot{x} + c \dot{x} + g(t, x(t-\tau)) = p(t)$$

$$x^{(i)}(0) = x^{(i)}(2\pi), i = 0, 1, 2, 3$$

has at most one solution.

Proof: Let $u = x_1 - x_2$ for any two solutions x_1, x_2 of (4.2). Then u satisfies the byp $b^{-1}[u^{iv} + a\ddot{u} + c\dot{u}] + \ddot{u} + \beta(t)u(t - \tau) = 0$

$$u^{(i)}(0) = u^{(i)}(2\pi), \quad i = 0, 1, 2, 3$$

where $\beta(t) \in L^{2}_{2\pi}$ is defined by

·· +

it.i

.

P.

.

inductor p(i) = D in is defined by

$$\beta(t) = \frac{g(t, x_2(t-\tau)) - g(t, x_1(t-\tau))}{b(x_1 - x_2)}$$

Since $0 < \beta(t) \le \Gamma(t)$ for a.e. $t \in [0, 2\pi]$ we use the arguments of theorem 2.1 to show that $x_1 = x_2$ a.e.

魚

75

References:

- [1] R. Gaines and J. Mawhin, Coincidence Degree and Non-linear Differential Equations. Lecture Notes in Math. No. 568 Springer Berlin (1977).
- [2] S.A. Iyase, Non-resonant Oscillations for Some Fourth-order Differential Equations with delay. Mathematical Proceedings of the Royal Irish Academy vol. 99A No 1. 1999. 113 – 121.
- [3] Oguztoreli and R. B. Stein, An Analysis of Oscillations in Neuromuscular systems, Journal of Mathematical Biology 2 (1975), 87 – 105.
- [4] E. De. Pascale and R. Iannaci, Periodic Solutions of a Generalised Lienard Equation with delay. Proceedings of the International Conference (Equadiff 82) Wurzburg 1982. Lecture Notes in Math No. 1017, Springer Verlag Berlin (1983).

