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Abstract

This study is devoted to investigate the Buoyancy and thermal radiation effects on the laminar 
boundary layer about a flat-plate in a uniform stream of fluid (Blasius flow), and about a moving 
plate in a quiescent ambient fluid (Sakiadis flow) both under a convective surface boundary 
condition. Using a similarity variable, the governing nonlinear partial differential equations have been 
transformed into a set of coupled nonlinear ordinary differential equations, which are solved 
numerically by using shooting technique along side with the sixth order of Runge-Kutta integration 
scheme and the variations of dimensionless surface temperature and fluid-solid interface characteristics 
for different values of Prandtl number Pr, radiation parameter NR, parameter a and the local Grashof 
number Grx, which characterizes our convection processes are graphed and tabulated. Quite different 
and interesting behaviours were encountered for Blasius flow compared with a Sakiadis flow. A 
comparison with previously published results on special cases of the problem shows excellent 
agreement.

Keywords: Heat transfer; Blasius/Sakiadis flows; Thermal radiation; Thermal Grashof number; 
Convective surface boundary condition.

1. Introduction

Investigations of boundary layer flow and heat transfer of viscous fluids over a flat sheet are important 

in many manufacturing processes, such as polymer extrusion, drawing of copper wires, continuous 

stretching of plastic films and artificial fibers, hot rolling, wire drawing, glass-fiber, metal extrusion, and 

metal spinning. Among these studies, Sakiadis [1] initiated the study of the boundary layer flow over a 

stretched surface moving with a constant velocity and formulated a boundary-layer equation for two-

dimensional and axisymmetric flows. Tsou et al. [2] analyzed the effect of heat transfer in the boundary 

layer on a continuous moving surface with a constant velocity and experimentally confirmed the 

numerical results of Sakiadis [1]. Erickson et al. [3] extended the work of Sakiadis [1] to include blowing 

or suction at the stretched sheet surface on a continuous solid surface under constant speed and 

investigated its effects on the heat and mass transfer in the boundary layer. The related problems of a 
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stretched sheet with a linear velocity and different thermal boundary conditions in Newtonian fluids 

have been studied, theoretically, numerically and experimentally, by many researchers, such as Crane

[4], Fang [5-8], Fang and Lee [9]. The classical problem (i.e., fluid flow along a horizontal, stationary 

surface located in a uniform free stream) was solved for the first time in 1908 by Blasius [10]; it is still a 

subject of current research [11,12] and, moreover, further study regarding this subject can be seen in 

most recent papers [13,14]. Recently, Aziz [15], investigated a similarity solution for laminar thermal 

boundary layer over a flat plate with a convective surface boundary condition. Very more recently, 

Makinde & Olanrewaju [16] studied the effects of thermal buoyancy on the laminar boundary layer 

about a vertical plate in a uniform stream of fluid under a convective surface boundary condition. 

Olanrewaju & Makinde [17] presented the combined effects of internal heat generation and buoyancy 

force on boundary layer over a vertical plate with a convective surface boundary condition. 

On the other hand, convective heat transfer with radiation studies are very important in process 

involving high temperatures such as gas turbines, nuclear power plants, thermal energy storage, etc. In 

light of these various applications, Hossain & Takhar [18] studied the effect of thermal radiation using 

Rosseland diffusion approximation on mixed convection along a vertical plate with uniform free stream 

velocity and surface temperature. Furthermore, Hossain et al. [19,20] have studied the thermal 

radiation of a gray fluid which is emitting and absorbing radiation in a non-scattering medium. 

Moreover, Bataller [21] presented a numerical solution for the combined effects of thermal radiation

and convective surface heat transfer on the laminar boundary layer about a flat-plate in a uniform 

stream of fluid (Blasius flow), and about a moving plate in a quiescent ambient fluid (Sakiadis flow). This 

study is an extension of those analyses. It is aimed at analysing the effect of buoyancy parameter Grx, 

radiation parameter NR on both Blasius and Sakiadis thermal boundary layers over a horizontal plate 

with a convective boundary condition. This boundary condition scarcely appears in the pertinent 

literature. The most recent attempt for the Blasius and Sakiadis flows but without buoyancy parameter 

has been developed by Bataller [21] whose results we used for comparison including Aziz [15] and 

Makinde & Olanrewaju [16] which discussed Blasius flow. Interaction of thermal radiation and thermal 

Grashof number with wall convection is included. Our results have been displayed for range of given 

parameters. 

The aim of the present paper is to report the effects of thermal radiation and thermal Grashof number 

as well as Prandtl number Pr and convective parameter a on both Blasius and Sakiadis thermal boundary 

layers under a convective boundary condition.
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2. Problems formulation

Taking into account the buoyancy and the thermal radiation terms in the momentum and energy 

equations, the governing equations of motion and heat transfer for the classical Blasius flat-plate flow 

problem can be summarized by the following boundary value problem [15-16,21]
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  The boundary conditions for the velocity field are:
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for the Blasius flat-plate flow problem, and 
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for the classical Sakiadis flat-plate flow problem, respectively.

The boundary conditions at the plate surface and far into the cold fluid may be written as
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Here u and v are the velocity components along the flow direction (x-direction) and normal to flow 

direction (y-direction),  is the kinematic viscosity, k is the thermal conductivity, cp is the specific heat 

of the fluid at constant pressure,  is the density, g is the acceleration due to gravity, β is the thermal 

volumentric-expansion coefficient, qr is the radiative heat flux in the y-direction, T is the temperature of 

the fluid inside the thermal boundary layer, U is a constant free stream velocity and wU is the plate 

velocity. It is assumed that the viscous dissipation is neglected, the physical properties of the fluid are 

constant, and the Boussinesq and boundary layer approximation may be adopted for steady laminar 

flow. The fluid is considered to be gray; absorbing-emitting radiation but non-scattering medium.

The radiative heat flux qr is described by Roseland approximation such that 
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where Kand * are the Stefan-Boltzmann constant and the mean absorption coefficient, 

respectively. Following Bataller [21], we assume that the temperature differences within the flow 

are sufficiently small so that the T4 can be expressed as a linear function after using Taylor series 

to expand T4 about the free stream temperature T and neglecting higher-order terms. This result 

is the following approximation:
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Using (7) and (8) in (3), we obtain
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In view of eqs. (9) and (8), eq. (3) reduces to 
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where 
pc

k


  is the thermal diffusivity.

From the equation above, it is clearly seen that the influence of radiation is to enhance the 

thermal diffusivity. If we take 
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We introduce a similarity variable η and a dimensionless stream function f(η) as 
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where prime denotes differentiation with respect to η and Rex is the local Reynolds number 
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And the equation of continuity is satisfied identically.

.;
2

2

2

f
x

U

y

u

x

U
fU

y

u 







(14)

Nothing that in eqs. (12)-(14) UU represents Blasius flow, whereas wUU  indicates Sakiadis 

flow, respectively. We also assume the bottom surface of the plate is heated by convection from 
a hot fluid at uniform temperature Tf which provides a heat transfer coefficient hf.

Defining the non-dimensional temperature )( and the Prandtl number Pr as 
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We substitute eqs. (12)-(14) into eqs. (2) and (11) we have:
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When k0 = 1, the thermal radiation’s effect is not considered.

The transformed boundary conditions are:
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for the Blasius flow, and 
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for the Sakiadis case, respectively. Where
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For the momentum and energy equations to have a similarity solution, the parameters Grx and a 
must be constants and not functions of x as in eq. (20). This condition can be met if the heat 
transfer coefficient hf is proportional to x-1/2 and the thermal expansion coefficient is proportional 
to x-1. We therefore assume 
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Where c and m are constants. Putting eq. (21) into eq. (20), we have 
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Here, a and Gr are defined by eq. (23), the solutions of eqs. (16)-(19) yield the similarity 
solutions, however, the solutions generated are the local similarity solutions whenever a and Grx

are defined as in eq. (20).

3. Numerical procedure

The coupled nonlinear eqs. (16) and (17) with the boundary conditions in eqs. (18) and (19) are 

solved numerically using the sixth-order Runge-Kutta method with a shooting integration 

scheme and implemented on Maple [22]. The step size 0.001 is used to obtain the numerical 

solution with seven-decimal place accuracy as the criterion of convergence.

4. Results and discussion

Numerical computations have been carried out for different embedded parameters coming into 

the flow model controlling the fluid dynamics in the flow regime. The Prandtl number used are 

0.72, 1, 3, 5, 7.1, 10 and 100; the convective parameters a used are 0.1, 0.5, 1.0, 5.0, 10, and 20; 

the radiation parameters NR used are 0.7, 5.0, 10, and 100; and the Grashof number (Grx) used 

are Gr > 0 (which corresponds to the cooling problem). The cooling problem is often 

encountered in engineering applications; for example, in the cooling of electronic components 

and nuclear reactors. Comparisons of the present results with previously works are performed 
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and excellent agreements have been obtained. We obtained the results as shown in Tables 1 - 6 

and figures 1-17 below.

Table 1 shows the comparison of Aziz [15] work with the present work for Prandtl numbers (Pr 

= 0.72, and 10) and it is noteworthy to mention that there is a perfect agreement in the 

absence of radiation parameter and the Grashof number. Table 2 shows the comparison of 

Makinde & Olanrewaju [16] work with the present work for Prandtl numbers (Pr = 0.72, 3.0 and 

7.1) and Grashof numbers (Grx = 0.1, 1.0 and 10) and there is a perfect agreement in the 

absence of radiation parameter. Table 3 shows the comparison of Bataller [21] work for Blasius 

and Sakiadis flows for Prandtl numbers (Pr = 0.72, 1.0, 5.0, 10 and 100) and radiation parameter 

(NR = 0.7, 5.0, 10 and 100) and it is noteworthy to mention that there is a perfect agreement in 

the absence of Grashof number. Accurately, the results at a = 0.5, Pr = 5 and NR = 0.7 for the 

missed plate temperature θ(0) values were numerically obtained as θ(0) = 0.55489763 for 

Blasius flow, and  θ(0) = 0.44474556 for Sakiadis flow, respectively (see table 3). In table 5, we 

show the influence of the embedded flow parameters on the temperature at the wall plate for 

the Blasius and Sakiadis flow. It is clearly seen that when Biot number a increases the wall

temperature for Blasius and Sakiadis flow increases while increase in Prandtl number Pr, 

radiation parameter NR, and local Grashof number Grx decreases the wall temperature for both 

Blasius and Sakiadis flow. Table 5 shows the influence of the flow parameters on the Nusselt 

number and the Skin friction for Blasius flow. Increase in the convective parameter a, Prandtl 

number Pr, thermal radiation parameter NR, and the local Grashof number Grx bring an increase 

in the Nusselt number. Skin friction increases with an increase in the convective parameter and 

the local Grashof number while increase in the Prandtl number and the radiation parameter 

decreases the Skin friction at the wall plate. In table 6, we show the effect of flow embedded 

parameters on the Nusselt number and the Skin friction for Sakiadis flow. Increase in all the 

flow parameters brings an increase in the Nusselt number and also in the Skin friction except 

the local Grashof number.
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Table 1: Values of Blasius)0( for different values of a without thermal radiation and thermal Grashof 

number. Parenthesis indicates results from Ref. [15].

a Pr = 0.72 Pr = 10
0.05 0.14466116 (0.1447) 0.06425568 (0.0643)
0.20 0.40352252 (0.4035) 0.21548442 (0.2155)
0.60 0.66991555 (0.6699) 0.45175915 (0.4518)
1.00 0.77182214 (0.7718) 0.57865638 (0.5787)
10.0 0.97128537 (0.9713) 0.93212791 (0.9321)
20.0 0.98543355 (0.9854) 0.96487184 (0.9649)

Table 2: Values of Blasius)0( for different values of a with thermal Grashof number and without thermal 

radiation. Parenthesis indicates results from Ref. [16].

Bi Grx Pr )0(
0.1 0.1 0.72 0.24922837 (0.24922)
1.0 0.1 0.72 0.76249384 (0.76249)
10 0.1 0.72 0.96944035 (0.96944)
0.1 0.5 0.72 0.23862251 (0.23862)
0.1 1.0 0.72 0.22955153 (0.22955)
0.1 0.1 3.00 0.16954012 (0.16954)
0.1 0.1 7.10 0.13278839 (0.13278)

Table 3: Values of Blasius)0( and Sakiadis)0( for different values of a, Pr, and NR in the absent of thermal 

Grashof number Gr. Parenthesis indicates results from Ref. [21].

a Pr NR Blasius)0( Sakiadis)0(
0.1 5 0.7 0.19957406 (0.1996265) 0.13807609 (0.1380922)
0.5 5 0.7 0.55489763 (0.5548979) 0.44474556 (0.4447517)
1.0 5 0.7 0.71374169 (0.7137422) 0.61567320 (0.6156583)
10 5 0.7 0.96143981 (0.9614407) 0.94124394 (0.9412387)
20 5 0.7 0.98034087 (0.9803475) 0.96973278 (0.9697438)
1 0.72 0.7 0.83312107 (0.8334487) 0.84297896 (0.8623452)
1 1.0 0.7 0.81555469 (0.8156143) 0.81785952 (0.8281158)
1 5 0.7 0.71374169 (0.7137422) 0.61567320 (0.6156583)
1 10 0.7 0.66301284 (0.6630187) 0.51639994 (0.5163969)
1 100 0.7 0.47592614 (0.4759402) 0.23747971 (0.2374795)
5 5 0.7 0.92574298 (0.9257453) 0.88900927 (0.8890038)
5 5 5 0.90376783 (0.9037694) 0.83172654 (0.8317292)
5 5 10 0.90044458 (0.9004477) 0.82284675 (0.8228368)
5 5 100 0.89700322 (0.8970060) 0.81361511 (0.8136082)
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Table 4: Values of SakiadisBlasius and )0()0(  for several values of the parameters entering the problem.

a Pr NR Grx Blasius)0( Sakiadis)0(
0.1 5 0.7 0.1 0.19753138 0.13775550
0.5 5 0.7 0.1 0.54658747 0.44265532
1.0 5 0.7 0.1 0.70501920 0.61292892
10 5 0.7 0.1 0.95932704 0.94027601
20 5 0.7 0.1 0.97922106 0.96920391
1 0.72 0.7 0.1 0.82436476 0.83116411
1 1.0 0.7 0.1 0.80642320 0.80572810
1 5 0.7 0.1 0.70501920 0.61292892
1 10 0.7 0.1 0.65528104 0.51532923
1 100 0.7 0.1 0.47246774 0.23744803
5 5 0.7 0.1 0.92196930 0.88737565
5 5 5 0.1 0.89982474 0.83090242
5 5 10 0.1 0.89649412 0.82209565
5 5 100 0.1 0.89304899 0.81293145
5 5 0.7 0.2 0.91891118 0.88591024
5 5 0.7 0.3 0.91631148 0.88457452
5 5 0.7 0.4 0.91403503 0.88334270

Table 5: Values of BlasiusBlasiusBlasius andf )0()0(,)0(   for several values of the parameters entering 

the problem.

a Pr NR Grx Blasius)0( Blasius)0(  Blasiusf )0(
0.1 5 0.7 0.1 0.19753138 0.08024686 0.35549045
0.5 5 0.7 0.1 0.54658747 0.22670626 0.39549180
1.0 5 0.7 0.1 0.70501920 0.29498079 0.41312720
10 5 0.7 0.1 0.95932704 0.40672956 0.44083687
20 5 0.7 0.1 0.97922106 0.41557870 0.44297550
1 0.72 0.7 0.1 0.82436476 0.17563523 0.47982849
1 1.0 0.7 0.1 0.80642320 0.19357679 0.46710681
1 5 0.7 0.1 0.70501920 0.29498079 0.41312720
1 10 0.7 0.1 0.65528104 0.34471895 0.39495048
1 100 0.7 0.1 0.47246774 0.52753225 0.35527077
5 5 0.7 0.1 0.92196930 0.39015346 0.43680984
5 5 5 0.1 0.89982474 0.50087626 0.41431353
5 5 10 0.1 0.89649412 0.51752937 0.41156519
5 5 100 0.1 0.89304899 0.53475500 0.40886337
5 5 0.7 0.2 0.91891118 0.40544409 0.53184089
5 5 0.7 0.3 0.91631148 0.41844259 0.62020358
5 5 0.7 0.4 0.91403503 0.42982480 0.70358410
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Table 6: Values of SakiadisSakiadisSakiadis andf )0()0(,)0(   for several values of the parameters 

entering the problem.

a Pr NR Grx Sakiadis)0( Sakiadis)0(  Sakiadisf )0(
0.1 5 0.7 0.1 0.13775550 0.08622444 0.43350645
0.5 5 0.7 0.1 0.44265532 0.27867233 0.41073121
1.0 5 0.7 0.1 0.61292892 0.38707107 0.39814732
10 5 0.7 0.1 0.94027601 0.59723989 0.37420826
20 5 0.7 0.1 0.96920391 0.61592164 0.37210806
1 0.72 0.7 0.1 0.83116411 0.16883588 0.30704987
1 1.0 0.7 0.1 0.80572810 0.19427189 0.32277934
1 5 0.7 0.1 0.61292892 0.38707107 0.39814732
1 10 0.7 0.1 0.51532923 0.48467076 0.41618829
1 100 0.7 0.1 0.23744803 0.76255196 0.43957601
5 5 0.7 0.1 0.88737565 0.56312172 0.37805517
5 5 5 0.1 0.83090242 0.84548788 0.40210478
5 5 10 0.1 0.82209565 0.88952171 0.40463142
5 5 100 0.1 0.81293145 0.93534270 0.40703672
5 5 0.7 0.2 0.88591024 0.57044879 0.31474240
5 5 0.7 0.3 0.88457452 0.57712737 0.25349452
5 5 0.7 0.4 0.88334270 0.58328646 0.19398242

A. Velocity profiles

The effects of various thermophysical parameters on the fluid velocity are illustrated in Figs. 1 to 

8. Fig. 1 depicts the effect of local thermal Grashof number on the fluid velocity and we 

observed an increase in the fluid velocity as the Grashof number increases which resulted to 

thickening the boundary layer thickness across the plate. It is interesting to note that as Grx > 0, 

there is sudden increase in the fluid velocity before satisfying the boundary condition for Blasius 

flow. Fig. 2 depicts the influence of convective parameter a on the velocity profiles. It is 

interesting to note that increasing the convective parameter increases the fluid velocity also. Fig. 

3 depicts the influence of Prandtl number Pr on the velocity boundary layer thickness. It 

decreases the velocity boundary layer thickness. Similar thing happens in fig. 4 for Blasius flow.

It is also interesting to note that the same effect was observed in the Sakiadis flow (see figs. 5-8). 

Temperature profiles

The influences of various embedded parameters on the fluid temperature are illustrated in Figs. 9 

to 17.  Fig. 9 depicts the effect of thermal Grashof number on the temperature profile for Blasius 
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flow and it is seen that increase in the local Grashof number decreases the thermal boundary 

layer thickness across the plate. We can see also that the same effect was seen for Sakiadis flow 

(see fig. 10). Fig. 10 depict the curve of temperature against spanwise coordinate η for various 

values of convective parameter a. It is clearly seen that increases in the convective parameter 

increases the temperature profile and thereby increase the thermal boundary layer thickness.

Similar effect was seen also in fig. 14 for Sakiadis flow. Fig. 11also represents the curve of 

temperature against Spanwise coordinate η for various values of Prandtl number. Increase in 

Prandtl number leads to a decrease in the thermal boundary layer thickness. At high Prandtl fluid 

has low velocity, which in turn also implies that at lower fluid velocity the specie diffusion is 

comparatively lower and hence higher specie concentration is observed at high Prandtl number.

In fig. 15 the same effect was observed. In fig. 12, there is a decrease in the thermal boundary 

layer thickness when the thermal radiation parameter is increased (see fig. 16). Finally in fig. 17, 

we display the curve of the temperature gradient against Spanwise coordinate η for various 

values of thermal Grashof number for Sakiadis flow and we observed that as Grx > 0.1, the 

thermal boundary layer thickness decreases which leads to a reverse flow.

Figure 1: Velocity profiles for embedded parameter Pr = 0.72, a = 0.1, NR = 0.7 for Blasius flow
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Figure 2: Velocity profiles for embedded parameter Pr = 0.72, Grx = 0.1, NR = 0.7 for Blasius flow

Figure 3: Velocity profiles for embedded parameter a = 0.1, Grx = 0.1, NR = 0.7 for Blasius flow
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Figure 4: Velocity profiles for embedded parameter a = 0.1, Grx = 0.1, Pr = 0.72 for Blasius flow

Figure 5: Velocity profiles for embedded parameter Pr = 0.72, a = 0.1, NR = 0.7 for Sakiadis flow
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Figure 6: Velocity profiles for embedded parameter Pr = 0.72, Grx = 0.1, NR = 0.7 for Sakiadis flow

Figure 7: Velocity profiles for embedded parameter a = 0.1, Grx = 0.1, NR = 0.7 for Sakiadis flow
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Figure 8: Velocity profiles for embedded parameter a = 0.1, Grx = 0.1, Pr = 0.72 for Sakiadis flow

Figure 9: Temperature profiles for embedded parameter Pr = 0.72, a = 0.1, NR = 0.7 for Blasius flow
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Figure 10: Temperature profiles for embedded parameter Pr = 0.72, Grx = 0.1, NR = 0.7 for Blasius flow

Figure 11: Temperature profiles for embedded parameter a = 0.1, Grx = 0.1, NR = 0.7 for Blasius flow
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Figure 12: Temperature profiles for embedded parameter a = 0.1, Grx = 0.1, Pr = 0.72 for Blasius flow

Figure 13: Temperature profiles for embedded parameter Pr = 0.72, a = 0.1, NR = 0.7 for Sakiadis flow
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Figure 14: Temperature profiles for embedded parameter Pr = 0.72, Grx = 0.1, NR = 0.7 for Sakiadis flow

Figure 15: Temperature profiles for embedded parameter a = 0.1, Grx = 0.1, NR = 0.7 for Sakiadis flow
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Figure 16: Temperature profiles for embedded parameter a = 0.1, Grx = 0.1, Pr = 0.72 for Sakiadis flow

Figure 17: Temperature – gradient profiles for embedded parameter Pr = 5, a = 5, NR = 0.7 for Sakiadis 
flow
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5. Conclusions

In this article an IVP procedure is employed to give numerical solutions of the Blasius and Sakiadis 
momentum, thermal boundary layer over a horizontal flat plate and heat transfer in the presence of 
thermal radiation and the thermal Grashof number under a convective surface boundary condition. The 
lower boundary of the plate is at a constant temperature Tf whereas the upper boundary of the surface 
is maintained at a constant temperature Tw. It is also noted that the temperature of the free stream is 
assumed as T and also we have Tf > Tw > T . The transformed partial differential equations together 

with the boundary conditions are solved numerically by a shooting integration technique alongside with 
6th order Runge-Kutta method for better accuracy. Comparisons have been analyzed and the numerical 
results are listed and graphed. The combined effects of increasing the thermal Grashof number, the 
Prandtl number and the radiation parameter tend to reduce the thermal boundary layer thickness along 
the plate which as a result yields a reduction in the fluid temperature. On the contrary, the values of 
θ(0)Blasius and θ(0)Sakiadis increase with increasing a and decreases with increasing Grx. In general, the 
Blasius flow gives a thicker thermal boundary layer compared with the Sakiadis flow, but this trend can 
be reversed at low values of embedded parameters controlling the flow model. Finally, in the limiting 

cases, )1.,.( 0  keiNR the thermal radiation influence can be neglected.
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Abstract

This study is devoted to investigate the Buoyancy and thermal radiation effects on the laminar boundary layer about a flat-plate in a uniform stream of fluid (Blasius flow), and about a moving plate in a quiescent ambient fluid (Sakiadis flow) both under a convective surface boundary condition. Using a similarity variable, the governing nonlinear partial differential equations have been transformed into a set of coupled nonlinear ordinary differential equations, which are solved numerically by using shooting technique along side with the sixth order of Runge-Kutta integration scheme and the variations of dimensionless surface temperature and fluid-solid interface characteristics for different values of Prandtl number Pr, radiation parameter NR, parameter a and the local Grashof number Grx, which characterizes our convection processes are graphed and tabulated. Quite different and interesting behaviours were encountered for Blasius flow compared with a Sakiadis flow. A comparison with previously published results on special cases of the problem shows excellent agreement.

Keywords: Heat transfer; Blasius/Sakiadis flows; Thermal radiation; Thermal Grashof number; Convective surface boundary condition.

1. Introduction

Investigations of boundary layer flow and heat transfer of viscous fluids over a flat sheet are important in many manufacturing processes, such as polymer extrusion, drawing of copper wires, continuous stretching of plastic films and artificial fibers, hot rolling, wire drawing, glass-fiber, metal extrusion, and metal spinning. Among these studies, Sakiadis [1] initiated the study of the boundary layer flow over a stretched surface moving with a constant velocity and formulated a boundary-layer equation for two-dimensional and axisymmetric flows. Tsou et al. [2] analyzed the effect of heat transfer in the boundary layer on a continuous moving surface with a constant velocity and experimentally confirmed the numerical results of Sakiadis [1]. Erickson et al. [3] extended the work of Sakiadis [1] to include blowing or suction at the stretched sheet surface on a continuous solid surface under constant speed and investigated its effects on the heat and mass transfer in the boundary layer. The related problems of a stretched sheet with a linear velocity and different thermal boundary conditions in Newtonian fluids have been studied, theoretically, numerically and experimentally, by many researchers, such as Crane

[4], Fang [5-8], Fang and Lee [9]. The classical problem (i.e., fluid flow along a horizontal, stationary surface located in a uniform free stream) was solved for the first time in 1908 by Blasius [10]; it is still a subject of current research [11,12] and, moreover, further study regarding this subject can be seen in most recent papers [13,14]. Recently, Aziz [15], investigated a similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition. Very more recently, Makinde & Olanrewaju [16] studied the effects of thermal buoyancy on the laminar boundary layer about a vertical plate in a uniform stream of fluid under a convective surface boundary condition. Olanrewaju & Makinde [17] presented the combined effects of internal heat generation and buoyancy force on boundary layer over a vertical plate with a convective surface boundary condition. 

On the other hand, convective heat transfer with radiation studies are very important in process involving high temperatures such as gas turbines, nuclear power plants, thermal energy storage, etc. In light of these various applications, Hossain & Takhar [18] studied the effect of thermal radiation using Rosseland diffusion approximation on mixed convection along a vertical plate with uniform free stream velocity and surface temperature. Furthermore, Hossain et al. [19,20] have studied the thermal radiation of a gray fluid which is emitting and absorbing radiation in a non-scattering medium. Moreover, Bataller [21] presented a numerical solution for the combined effects of thermal radiation and convective surface heat transfer on the laminar boundary layer about a flat-plate in a uniform stream of fluid (Blasius flow), and about a moving plate in a quiescent ambient fluid (Sakiadis flow). This study is an extension of those analyses. It is aimed at analysing the effect of buoyancy parameter Grx, radiation parameter NR on both Blasius and Sakiadis thermal boundary layers over a horizontal plate with a convective boundary condition. This boundary condition scarcely appears in the pertinent literature. The most recent attempt for the Blasius and Sakiadis flows but without buoyancy parameter has been developed by Bataller [21] whose results we used for comparison including Aziz [15] and Makinde & Olanrewaju [16] which discussed Blasius flow. Interaction of thermal radiation and thermal Grashof number with wall convection is included. Our results have been displayed for range of given parameters. 

The aim of the present paper is to report the effects of thermal radiation and thermal Grashof number as well as Prandtl number Pr and convective parameter a on both Blasius and Sakiadis thermal boundary layers under a convective boundary condition.





2. Problems formulation

Taking into account the buoyancy and the thermal radiation terms in the momentum and energy equations, the governing equations of motion and heat transfer for the classical Blasius flat-plate flow problem can be summarized by the following boundary value problem [15-16,21]



									(1)



						(2)



						(3)

  The boundary conditions for the velocity field are:



						(4)

for the Blasius flat-plate flow problem, and 



	 						(5)

for the classical Sakiadis flat-plate flow problem, respectively.

The boundary conditions at the plate surface and far into the cold fluid may be written as



	 					(6)	









Here u and v are the velocity components along the flow direction (x-direction) and normal to flow direction (y-direction),  is the kinematic viscosity, k is the thermal conductivity, cp is the specific heat of the fluid at constant pressure, is the density, g is the acceleration due to gravity, β is the thermal volumentric-expansion coefficient, qr is the radiative heat flux in the y-direction, T is the temperature of the fluid inside the thermal boundary layer, 	is a constant free stream velocity and is the plate velocity. It is assumed that the viscous dissipation is neglected, the physical properties of the fluid are constant, and the Boussinesq and boundary layer approximation may be adopted for steady laminar flow. The fluid is considered to be gray; absorbing-emitting radiation but non-scattering medium.

The radiative heat flux qr is described by Roseland approximation such that 



										(7)





where  are the Stefan-Boltzmann constant and the mean absorption coefficient, respectively. Following Bataller [21], we assume that the temperature differences within the flow are sufficiently small so that the T4 can be expressed as a linear function after using Taylor series to expand T4 about the free stream temperature and neglecting higher-order terms. This result is the following approximation:



										(8)

Using (7) and (8) in (3), we obtain



										(9)

In view of eqs. (9) and (8), eq. (3) reduces to 



								(10)



where  is the thermal diffusivity.



From the equation above, it is clearly seen that the influence of radiation is to enhance the thermal diffusivity. If we take  as the radiation parameter, (10) becomes 



										(11)







 It is worth citing here that the classical solution for energy equation, eq. (11), without thermal radiation influences can be obtained from the above equation which reduces to   as 

We introduce a similarity variable η and a dimensionless stream function f(η) as 



						(12)

where prime denotes differentiation with respect to η and Rex is the local Reynolds number 



(), we obtain by deriving eq. (12)



									(13)

And the equation of continuity is satisfied identically.



									(14)





Nothing that in eqs. (12)-(14) represents Blasius flow, whereas indicates Sakiadis flow, respectively. We also assume the bottom surface of the plate is heated by convection from a hot fluid at uniform temperature Tf which provides a heat transfer coefficient hf.



Defining the non-dimensional temperature and the Prandtl number Pr as 



									(15)

We substitute eqs. (12)-(14) into eqs. (2) and (11) we have:



										(16)



										(17)

When k0 = 1, the thermal radiation’s effect is not considered.

The transformed boundary conditions are:



							(18)

for the Blasius flow, and 



							(19)

for the Sakiadis case, respectively. Where



 							(20)

For the momentum and energy equations to have a similarity solution, the parameters Grx and a must be constants and not functions of x as in eq. (20). This condition can be met if the heat transfer coefficient hf is proportional to x-1/2 and the thermal expansion coefficient is proportional to x-1. We therefore assume 



										(21)

Where c and m are constants. Putting eq. (21) into eq. (20), we have 



								(23)

Here, a and Gr are defined by eq. (23), the solutions of eqs. (16)-(19) yield the similarity solutions, however, the solutions generated are the local similarity solutions whenever a and Grx are defined as in eq. (20).

3. Numerical procedure

The coupled nonlinear eqs. (16) and (17) with the boundary conditions in eqs. (18) and (19) are solved numerically using the sixth-order Runge-Kutta method with a shooting integration scheme and implemented on Maple [22]. The step size 0.001 is used to obtain the numerical solution with seven-decimal place accuracy as the criterion of convergence.

4. Results and discussion

Numerical computations have been carried out for different embedded parameters coming into the flow model controlling the fluid dynamics in the flow regime. The Prandtl number used are 0.72, 1, 3, 5, 7.1, 10 and 100; the convective parameters a used are 0.1, 0.5, 1.0, 5.0, 10, and 20; the radiation parameters NR used are 0.7, 5.0, 10, and 100; and the Grashof number (Grx) used are Gr > 0 (which corresponds to the cooling problem). The cooling problem is often encountered in engineering applications; for example, in the cooling of electronic components and nuclear reactors. Comparisons of the present results with previously works are performed and excellent agreements have been obtained. We obtained the results as shown in Tables 1 - 6 and figures 1-17 below. 

Table 1 shows the comparison of Aziz [15] work with the present work for Prandtl numbers (Pr = 0.72, and 10) and it is noteworthy to mention that there is a perfect agreement in the absence of radiation parameter and the Grashof number. Table 2 shows the comparison of Makinde & Olanrewaju [16] work with the present work for Prandtl numbers (Pr = 0.72, 3.0 and 7.1) and Grashof numbers (Grx = 0.1, 1.0 and 10) and there is a perfect agreement in the absence of radiation parameter. Table 3 shows the comparison of Bataller [21] work for Blasius and Sakiadis flows for Prandtl numbers (Pr = 0.72, 1.0, 5.0, 10 and 100) and radiation parameter (NR = 0.7, 5.0, 10 and 100) and it is noteworthy to mention that there is a perfect agreement in the absence of Grashof number. Accurately, the results at a = 0.5, Pr = 5 and NR = 0.7 for the missed plate temperature θ(0) values were numerically obtained as θ(0) = 0.55489763 for Blasius flow, and  θ(0) = 0.44474556 for Sakiadis flow, respectively (see table 3). In table 5, we show the influence of the embedded flow parameters on the temperature at the wall plate for the Blasius and Sakiadis flow. It is clearly seen that when Biot number a increases the wall temperature for Blasius and Sakiadis flow increases while increase in Prandtl number Pr, radiation parameter NR, and local Grashof number Grx decreases the wall temperature for both Blasius and Sakiadis flow. Table 5 shows the influence of the flow parameters on the Nusselt number and the Skin friction for Blasius flow. Increase in the convective parameter a, Prandtl number Pr, thermal radiation parameter NR, and the local Grashof number Grx bring an increase in the Nusselt number. Skin friction increases with an increase in the convective parameter and the local Grashof number while increase in the Prandtl number and the radiation parameter decreases the Skin friction at the wall plate. In table 6, we show the effect of flow embedded parameters on the Nusselt number and the Skin friction for Sakiadis flow. Increase in all the flow parameters brings an increase in the Nusselt number and also in the Skin friction except the local Grashof number.



 	





Table 1: Values of for different values of a without thermal radiation and thermal Grashof number. Parenthesis indicates results from Ref. [15].

		a

		Pr = 0.72

		Pr = 10



		0.05

		0.14466116 (0.1447)

		0.06425568 (0.0643)



		0.20

		0.40352252 (0.4035)

		0.21548442 (0.2155)



		0.60

		0.66991555 (0.6699)

		0.45175915 (0.4518)



		1.00

		0.77182214 (0.7718)

		0.57865638 (0.5787)



		10.0

		0.97128537 (0.9713)

		0.93212791 (0.9321)



		20.0

		0.98543355 (0.9854)

		0.96487184 (0.9649)









Table 2: Values of for different values of a with thermal Grashof number and without thermal radiation. Parenthesis indicates results from Ref. [16].

		Bi

		Grx

		Pr

		





		0.1

		0.1

		0.72

		0.24922837 (0.24922)



		1.0

		0.1

		0.72

		0.76249384 (0.76249)



		10

		0.1

		0.72

		0.96944035 (0.96944)



		0.1

		0.5

		0.72

		0.23862251 (0.23862)



		0.1

		1.0

		0.72

		0.22955153 (0.22955)



		0.1

		0.1

		3.00

		0.16954012 (0.16954)



		0.1

		0.1

		7.10

		0.13278839 (0.13278)











Table 3: Values of and for different values of a, Pr, and NR in the absent of thermal Grashof number Gr. Parenthesis indicates results from Ref. [21].

		a

		Pr

		NR

		



		





		0.1

		5

		0.7

		0.19957406 (0.1996265)

		0.13807609 (0.1380922)



		0.5

		5

		0.7

		0.55489763 (0.5548979)

		0.44474556 (0.4447517)



		1.0

		5

		0.7

		0.71374169 (0.7137422)

		0.61567320 (0.6156583)



		10

		5

		0.7

		0.96143981 (0.9614407)

		0.94124394 (0.9412387)



		20

		5

		0.7

		0.98034087 (0.9803475)

		0.96973278 (0.9697438)



		1

		0.72

		0.7

		0.83312107 (0.8334487)

		0.84297896 (0.8623452)



		1

		1.0

		0.7

		0.81555469 (0.8156143)

		0.81785952 (0.8281158)



		1

		5

		0.7

		0.71374169 (0.7137422)

		0.61567320 (0.6156583)



		1

		10

		0.7

		0.66301284 (0.6630187)

		0.51639994 (0.5163969)



		1

		100

		0.7

		0.47592614 (0.4759402)

		0.23747971 (0.2374795)



		5

		5

		0.7

		0.92574298 (0.9257453)

		0.88900927 (0.8890038)



		5

		5

		5

		0.90376783 (0.9037694)

		0.83172654 (0.8317292)



		5

		5

		10

		0.90044458 (0.9004477)

		0.82284675 (0.8228368)



		5

		5

		100

		0.89700322 (0.8970060)

		0.81361511 (0.8136082)









Table 4: Values of for several values of the parameters entering the problem.

		a

		Pr

		NR

		Grx

		



		





		0.1

		5

		0.7

		0.1

		0.19753138

		0.13775550



		0.5

		5

		0.7

		0.1

		0.54658747

		0.44265532



		1.0

		5

		0.7

		0.1

		0.70501920

		0.61292892



		10

		5

		0.7

		0.1

		0.95932704

		0.94027601



		20

		5

		0.7

		0.1

		0.97922106

		0.96920391



		1

		0.72

		0.7

		0.1

		0.82436476

		0.83116411



		1

		1.0

		0.7

		0.1

		0.80642320

		0.80572810



		1

		5

		0.7

		0.1

		0.70501920

		0.61292892



		1

		10

		0.7

		0.1

		0.65528104

		0.51532923



		1

		100

		0.7

		0.1

		0.47246774

		0.23744803



		5

		5

		0.7

		0.1

		0.92196930

		0.88737565



		5

		5

		5

		0.1

		0.89982474

		0.83090242



		5

		5

		10

		0.1

		0.89649412

		0.82209565



		5

		5

		100

		0.1

		0.89304899

		0.81293145



		5

		5

		0.7

		0.2

		0.91891118

		0.88591024



		5

		5

		0.7

		0.3

		0.91631148

		0.88457452



		5

		5

		0.7

		0.4

		0.91403503

		0.88334270









Table 5: Values of  for several values of the parameters entering the problem.

		a

		Pr

		NR

		Grx

		



		



		





		0.1

		5

		0.7

		0.1

		0.19753138

		0.08024686

		0.35549045



		0.5

		5

		0.7

		0.1

		0.54658747

		0.22670626

		0.39549180



		1.0

		5

		0.7

		0.1

		0.70501920

		0.29498079

		0.41312720



		10

		5

		0.7

		0.1

		0.95932704

		0.40672956

		0.44083687



		20

		5

		0.7

		0.1

		0.97922106

		0.41557870

		0.44297550



		1

		0.72

		0.7

		0.1

		0.82436476

		0.17563523

		0.47982849



		1

		1.0

		0.7

		0.1

		0.80642320

		0.19357679

		0.46710681



		1

		5

		0.7

		0.1

		0.70501920

		0.29498079

		0.41312720



		1

		10

		0.7

		0.1

		0.65528104

		0.34471895

		0.39495048



		1

		100

		0.7

		0.1

		0.47246774

		0.52753225

		0.35527077



		5

		5

		0.7

		0.1

		0.92196930

		0.39015346

		0.43680984



		5

		5

		5

		0.1

		0.89982474

		0.50087626

		0.41431353



		5

		5

		10

		0.1

		0.89649412

		0.51752937

		0.41156519



		5

		5

		100

		0.1

		0.89304899

		0.53475500

		0.40886337



		5

		5

		0.7

		0.2

		0.91891118

		0.40544409

		0.53184089



		5

		5

		0.7

		0.3

		0.91631148

		0.41844259

		0.62020358



		5

		5

		0.7

		0.4

		0.91403503

		0.42982480

		0.70358410









Table 6: Values of  for several values of the parameters entering the problem.

		a

		Pr

		NR

		Grx

		



		



		





		0.1

		5

		0.7

		0.1

		0.13775550

		0.08622444

		0.43350645



		0.5

		5

		0.7

		0.1

		0.44265532

		0.27867233

		0.41073121



		1.0

		5

		0.7

		0.1

		0.61292892

		0.38707107

		0.39814732



		10

		5

		0.7

		0.1

		0.94027601

		0.59723989

		0.37420826



		20

		5

		0.7

		0.1

		0.96920391

		0.61592164

		0.37210806



		1

		0.72

		0.7

		0.1

		0.83116411

		0.16883588

		0.30704987



		1

		1.0

		0.7

		0.1

		0.80572810

		0.19427189

		0.32277934



		1

		5

		0.7

		0.1

		0.61292892

		0.38707107

		0.39814732



		1

		10

		0.7

		0.1

		0.51532923

		0.48467076

		0.41618829



		1

		100

		0.7

		0.1

		0.23744803

		0.76255196

		0.43957601



		5

		5

		0.7

		0.1

		0.88737565

		0.56312172

		0.37805517



		5

		5

		5

		0.1

		0.83090242

		0.84548788

		0.40210478



		5

		5

		10

		0.1

		0.82209565

		0.88952171

		0.40463142



		5

		5

		100

		0.1

		0.81293145

		0.93534270

		0.40703672



		5

		5

		0.7

		0.2

		0.88591024

		0.57044879

		0.31474240



		5

		5

		0.7

		0.3

		0.88457452

		0.57712737

		0.25349452



		5

		5

		0.7

		0.4

		0.88334270

		0.58328646

		0.19398242







A. Velocity profiles

The effects of various thermophysical parameters on the fluid velocity are illustrated in Figs. 1 to 8. Fig. 1 depicts the effect of local thermal Grashof number on the fluid velocity and we observed an increase in the fluid velocity as the Grashof number increases which resulted to thickening the boundary layer thickness across the plate. It is interesting to note that as Grx > 0, there is sudden increase in the fluid velocity before satisfying the boundary condition for Blasius flow. Fig. 2 depicts the influence of convective parameter a on the velocity profiles. It is interesting to note that increasing the convective parameter increases the fluid velocity also. Fig. 3 depicts the influence of Prandtl number Pr on the velocity boundary layer thickness. It decreases the velocity boundary layer thickness. Similar thing happens in fig. 4 for Blasius flow. It is also interesting to note that the same effect was observed in the Sakiadis flow (see figs. 5-8). 

Temperature profiles

The influences of various embedded parameters on the fluid temperature are illustrated in Figs. 9 to 17.  Fig. 9 depicts the effect of thermal Grashof number on the temperature profile for Blasius flow and it is seen that increase in the local Grashof number decreases the thermal boundary layer thickness across the plate. We can see also that the same effect was seen for Sakiadis flow (see fig. 10). Fig. 10 depict the curve of temperature against spanwise coordinate η for various values of convective parameter a. It is clearly seen that increases in the convective parameter increases the temperature profile and thereby increase the thermal boundary layer thickness. Similar effect was seen also in fig. 14 for Sakiadis flow. Fig. 11also represents the curve of temperature against Spanwise coordinate η for various values of Prandtl number. Increase in Prandtl number leads to a decrease in the thermal boundary layer thickness. At high Prandtl fluid has low velocity, which in turn also implies that at lower fluid velocity the specie diffusion is comparatively lower and hence higher specie concentration is observed at high Prandtl number. In fig. 15 the same effect was observed. In fig. 12, there is a decrease in the thermal boundary layer thickness when the thermal radiation parameter is increased (see fig. 16). Finally in fig. 17, we display the curve of the temperature gradient against Spanwise coordinate η for various values of thermal Grashof number for Sakiadis flow and we observed that as Grx > 0.1, the thermal boundary layer thickness decreases which leads to a reverse flow.
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Figure 1: Velocity profiles for embedded parameter Pr = 0.72, a = 0.1, NR = 0.7 for Blasius flow
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Figure 2: Velocity profiles for embedded parameter Pr = 0.72, Grx = 0.1, NR = 0.7 for Blasius flow
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Figure 3: Velocity profiles for embedded parameter a = 0.1, Grx = 0.1, NR = 0.7 for Blasius flow
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Figure 4: Velocity profiles for embedded parameter a = 0.1, Grx = 0.1, Pr = 0.72 for Blasius flow
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Figure 5: Velocity profiles for embedded parameter Pr = 0.72, a = 0.1, NR = 0.7 for Sakiadis flow
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Figure 6: Velocity profiles for embedded parameter Pr = 0.72, Grx = 0.1, NR = 0.7 for Sakiadis flow
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Figure 7: Velocity profiles for embedded parameter a = 0.1, Grx = 0.1, NR = 0.7 for Sakiadis flow
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Figure 8: Velocity profiles for embedded parameter a = 0.1, Grx = 0.1, Pr = 0.72 for Sakiadis flow



[image: ]

Figure 9: Temperature profiles for embedded parameter Pr = 0.72, a = 0.1, NR = 0.7 for Blasius flow
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Figure 10: Temperature profiles for embedded parameter Pr = 0.72, Grx = 0.1, NR = 0.7 for Blasius flow
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Figure 11: Temperature profiles for embedded parameter a = 0.1, Grx = 0.1, NR = 0.7 for Blasius flow
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Figure 12: Temperature profiles for embedded parameter a = 0.1, Grx = 0.1, Pr = 0.72 for Blasius flow
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Figure 13: Temperature profiles for embedded parameter Pr = 0.72, a = 0.1, NR = 0.7 for Sakiadis flow
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Figure 14: Temperature profiles for embedded parameter Pr = 0.72, Grx = 0.1, NR = 0.7 for Sakiadis flow
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Figure 15: Temperature profiles for embedded parameter a = 0.1, Grx = 0.1, NR = 0.7 for Sakiadis flow
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Figure 16: Temperature profiles for embedded parameter a = 0.1, Grx = 0.1, Pr = 0.72 for Sakiadis flow

[image: ] 

Figure 17: Temperature – gradient profiles for embedded parameter Pr = 5, a = 5, NR = 0.7 for Sakiadis flow 





5. Conclusions







In this article an IVP procedure is employed to give numerical solutions of the Blasius and Sakiadis momentum, thermal boundary layer over a horizontal flat plate and heat transfer in the presence of thermal radiation and the thermal Grashof number under a convective surface boundary condition. The lower boundary of the plate is at a constant temperature Tf whereas the upper boundary of the surface is maintained at a constant temperature Tw. It is also noted that the temperature of the free stream is assumed as and also we have Tf > Tw >. The transformed partial differential equations together with the boundary conditions are solved numerically by a shooting integration technique alongside with 6th order Runge-Kutta method for better accuracy. Comparisons have been analyzed and the numerical results are listed and graphed. The combined effects of increasing the thermal Grashof number, the Prandtl number and the radiation parameter tend to reduce the thermal boundary layer thickness along the plate which as a result yields a reduction in the fluid temperature. On the contrary, the values of θ(0)Blasius and θ(0)Sakiadis increase with increasing a and decreases with increasing Grx. In general, the Blasius flow gives a thicker thermal boundary layer compared with the Sakiadis flow, but this trend can be reversed at low values of embedded parameters controlling the flow model. Finally, in the limiting cases, the thermal radiation influence can be neglected.
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