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Abstract—A chatter-free sliding mode controller (SMC) for 

synchronous generator excitation is presented in this paper. A 

linearized model of a single machine connected to an infinite bus 

is employed to design a variable-structure controller which not 

only stabilizes the system, but also ensures that this is maintained 

in the face of system parameter variations. Validating the 

robustness feature of an SMC, simulation results that show the 

dynamic performance of the system under both constant 

excitation and SMC-controlled excitation are presented.  

 

Index Terms—Excitation system control, robustness, sliding 

model control, synchronous generator model. 

 

I. INTRODUCTION 

lectric power systems have witnessed substantial growth—

more transmission networks have been built and greater 

interconnections among generation areas effected, with new 

measurement and monitoring devices (occasioned by 

advancements in technology) being added in various parts of 

the systems. This growth has resulted in high dimensionality 

and complexity of the power systems, thereby sparking off 

intense efforts to make them operate satisfactorily. Key to the 

operation of an electric power network is stability. And this 

stability principally is dependent on the ability of synchronous 

generators in the system to maintain synchronism with one 

another during both normal operating conditions and abnormal 

conditions. Principally, synchronism is a function of how the 

power system reacts to disturbances, i.e., whether it has 

sufficient restoring forces to balance the disturbing forces [1]. 

Synchronous generator excitation control design has gone 

through a range of techniques and strategies, such as linear 

lead/lag control [2], optimal control [3], [4], feedback 

linearization control [5], [6], [7], adaptive control [8], [9], 

[10], robust control [5], fuzzy logic control [11], [12], etc., all 

of which aimed at damping out oscillations and maintaining 

both small-signal and large-signal stability of power systems.  
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This paper examines the performance of a single-machine-

infinite-bus system under sliding mode excitation control 

action when the system is assumed to have both constant and 

variable parameters. Sliding mode control is known to provide 

robustness in face of parameter variations through a variable-

structure control action which drives the state of a dynamic 

system towards a surface, called the sliding surface, and causes 

the state, as it slides along to an equilibrium point, to remain 

on it [13], [14]. Although implementation of the SMC 

switching control is usually imperfect and the value of the 

switching surface is not known with infinite precision, thereby 

resulting in control signal chattering, several methods are 

available for providing smooth switching, such as the 

replacement of the switching function with a saturation 

function [15], the replacement of a sliding surface with a 

sliding sector [16], and the use of an asymptotic observer [17]. 

The saturation function is used to eliminate chattering in this 

paper. 

The rest of the paper is organized as follows. Section II 

presents the system modeling, stating the power system model 

used; Section III discusses the design of the switching surface 

and the control law. Results and discussion of simulation study 

are presented in Section IV, and conclusions drawn in Section 

V. 

 

II. SYSTEM MODELING 

A single-machine-connected to an infinite-bus system is 

used in this paper. The machine is represented by a third-order 

nonlinear model [18]: 
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where δ is the rotor angle, ω is the speed variation, and ψf  is 

the field flux linkage. Values of system parameters as well as 

expressions for A1, A2, B1, B2, C1, and C2 are given in 

Appendix A. 

Linearizing the system about the steady-state values [19] 
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III. SWITCHING SURFACE AND CONTROL LAW DESIGN 

The design problem here is to determine the switching 

surface, s, and the gain matrix K such that the system 

trajectory, from any initial position, is forced to hit the 

switching line s= 0 and stay on it as the states slide towards the 

equilibrium point. 

Equation (2) can be written in a form suitable for switching 

surface and control law design as: 
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and the control law 
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where C1 and K1 are 1 x 2 matrices, and C2 and K2 are 1 x 1 

matrices. 

Substitution of (4) into (3) results in the following equation for 

1Ω . 

1Ω1C
1

2C12A11A1Ω ][



              (6) 

This equation carries the property of a feedback-structure 

system in which A11 is the state matrix, A12 the input matrix, 

and 1

1

2 CC


 the gain matrix. 

Therefore, a pole-placement design technique can be applied 

to this reduced equation in order to obtain a suitable value 

for 1

1

2 CC


, and therefore, C1 when it is assumed that C2 is an 

identity matrix [8]. 

 

Therefore, the switching surface could be computed as 

321 7878.20294.8 xxxs                 (7) 

where [x1  x2  x3] = [Δδ  Δω  Δψf]. 

To design the control law, a Lyapunov function [5], [13], [14] 

2

2

1
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is chosen such that (9) (given below) is satisfied. This ensures 

that the system state trajectory reaches and remains on the 

switching surface. 
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By substituting for s and combining eqns. (4) and (6), the 

following condition can be written: 
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Let the control law which satisfies this condition be given as 

 KΩeu                      (11)     

where  
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An equivalent control law, ueeq, can be computed from (3) as 
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Therefore, by combining (11) and (12), (10) can be reduced to 
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By introducing a signum function, the general control law can 

be formed as: 
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By solving (12) completely, Keq could be found as 

 

Keq = [-177.6183 7.2767 -22.4068]  
 

(10) 

(11) 
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(15) 
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Since p1, p2, and p3 are usually chosen to be positive and large 

[19], their values are given here to be about twice the absolute 

values of equivalent control gains.  

 

The control law is now given as: 

 

 

  33

22

11e

)ssgn(6102.334068.22              

)ssgn(9151.102767.7          

)ssgn(4275.2666183.177u

x x

x x

x x







    (16)               

     

To reduce the level of signal chattering, sgn(xi.s) is replaced 

with sat{(xi.s)/ ε}, where i = 1, 2, 3; sat{(xi.s)/ε }= sgn(xi. 

s) if abs(xi.s) > ε, and sat{(xi .s)/ε} = xi.s if abs(xi s) < ε. 

And ε = 0.7 is used for the simulation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. SIMUATION RESULTS AND DISCUSSION 

The performance of the synchronous generator, when 

connected to an infinite bus, is verified through simulation 

under the control action of the chatter-free sliding mode 

controller. Two simulation scenarios are considered—when all 

the system parameters are assumed to be fixed, and also, when 

they are arbitrarily varied. Fig. 1 shows the result of the system 

response for the first case, whereas Figs. 2 to 4 show the 

results for the second case. In the later situation, parameters 

A2, B2, and C2 are varied independently in turn. These graphs 

reflect the robustness feature of the sliding mode control, as 

the system responses observed for the various scenarios bear 

only slight differences. The results also show that the system 

oscillations are well damped out and that the controller 

performs well on the non-linear system—very small steady-

state error, and restoration of system to the steady-state within 

0.5s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Nonlinear system response under SMC-controlled excitation 
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Fig. 2. Nonlinear system behavior under SMC-controlled excitation for 

29% reduction in A2. 
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Fig. 3. Nonlinear system behavior under SMC-controlled excitation for 42% 

reduction in B2. 
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V. CONCLUSIONS 

A linearized model of third-order nonlinear synchronous 

generator equations has been employed in this paper to design 

an SMC-based control system for the excitation of a 

synchronous generator connected to an infinite bus.  

With the aid of an appropriate saturation function, the signal 

chattering in the system is eliminated. The designed controller 

guarantees system stability and consistent performance even in 

the face of parameter uncertainty, although the initial control 

effort, which can be reduced significantly with proper 

selection of p1, p2, and p3 in (15), is a bit high.  

 

APPENDIX A 

The system parameters in pu are given as [13]: 

Xd = 1.25      X’d = 0.3 

Xq = 0.7         T’do = 9.0 

M = 0.0185    D = 0.005 

Xe = 0.2         E = 1.0 

 

Expressions for parameters A1, A2, B1, B2, C1, and C2 in the 

system model are [12]: 
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where 

 D = damping coefficient 

 M = inertial constant 

 Pm = mechanical power input 

 E = infinite bus bar voltage 

 Xe = transmission line impedance 

dX = d-axis synchronous reactance 

qX = q-axis synchronous reactance 

'

dX = d-axis transient reactance 

'

doT = d-axis transient open-circuit time constant 
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Fig. 4. Nonlinear system behavior under SMC-controlled excitation for 

29% reduction in C2. 
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APPENDIX B 
function out1=satfun(y,a) 
dm=length(y); 
if dm==1 
    if abs(y)<a 
       out1=y; 
    else 
       out1=sign(y); 
    end 
else 
    out1=zeros(dm,1); 
    for j=1:dm 
        if abs(y(j))<a 
            out1(j)=y(j); 
        else 
            out1(j)=sign(y(j)); 
        end 
    end 
end 
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