

DEPARTMENT OF CHEMICAL ENGINEERING COLLEGE OF SCIENCE AND TECHNOLOGY COVENANT UNIVERSITY, CANAANLAND, OTA

2010-2011 ALPHA SEMESTER EXAMINATION

COURSE:CHEMICAL PROCESS ANALYSIS [CHE 310]EXAMINER:Prof. S.S. Adefila, Adewale A. AdeosunINSTRUCTION:Answer all questions.

Time: 2.5 hours

3 MARKS

Gas Constant, R = 8314 J/kgmol-K, 1 atm= 101325Pa. Van der Waals parameters, in S.I. units, are:

a =	$\left(\frac{27}{64}\right)\frac{R^2T_c^2}{P_c}$	<i>b</i> = ($\left(\frac{1}{8}\right)\frac{RT_c}{P_c}$
-----	--	--------------	--

Antoine Equation parameters for pressure in mmHg and temperature in K.

	A	В	С
Ethyl Alcohol	18.5242	3578.91	- 50.50
Water	18.3036	3816.44	- 46.13

- 1. The density in kg/m³ of an ideal gas that has a molecular weight of 0.123kg/kgmol at 27°C and 1 bar is:
 - A. 0.00202 B. 0.00547 C. 0.00183 D. 0.00493 3 MARKS

INSTRUCTION: Use Figure 1. to answer question 2 to 3

Figure 1. Compressibility Chart

- 2. The real volume (in m³) of 100kg of ideal hydrogen gas at 200°C under 150 atm is:

 A. 1.423
 B. 0.1423
 C. 14.23
 D. 0.01423
 3 MARKS
- 3. Calculate the real volume (in m³) of 50kgmol of methane at 273K at 200 atm:

 A. 7.48
 B. 5.48
 C. 4.48
 D. 3.48

4.	. Given Van der Waal's Equation as (P+ an^2/V^2) × (V-nb) = nRT, R= 8.314J/mol-K, P _c =42.5bar and T _c = 96.6°C, calculate the temperature of 66g of propane in 5 ft ³ cylinder at 0.4 bar.						
	А. 456К	B. 644K	С. 922К	D. 788K	4 MARKS		
5.	5. Calculate the saturated pressure of ethyl alcohol in (mmHg), using Antoine's equation, at 300K.						
	A. 4.2	B. 2.4	C. 66	D. 11	3 MARKS		
6.	The ethyl alcohol pressure of 165m	vapour mole pe mHg in a 75 mol	ercent in a binary mixtu e percent ethyl alcohol	re with air at 300K temper liquid feed to a flash distilla	ature and a total ation still is:		
	A. 15	B. 30	C. 45	D. 45	3 MARKS		
Pro in an: 7.	Propylene, an important monomer in packaging industry, has its thermodynamic properties represented in Figure 2. Assuming the gas stream exist under a pressure of 250 psia and specific entropy of 1.42, answer Questions 7 to 11.						
	A. 120	B. 140	C. 160	D. 180	2 MARKS		
8.	8. The inlet enthalpy of the gas stream is:						
	A. 515	B. 615	C. 715	D. 415	2 MARKS		
9.	9. If the inlet stream is expanded at constant enthalpy to a specific volume of 6.0, the specific entropy is:						
	A. 1.44	B. 1.46	C. 1.52	D.1.60	3 MARKS		
10	10. The Degree of Saturation of the inlet stream is:						
	A. 30	B. 50	C. 60	D. 80	2 MARKS		
11	11. If the inlet stream undergoes an isobaric change from inlet enthalpy to 420 BTU/Lb, what is the vanour quality of the resulting stream:						

A. 0.5 B. 0.6 C. 0.7 D. 0.9 3 MARKS

Figure 3 is a heat engine working on the Carnot cycle principle. Answer Questions 12 to 14 using information provided.

Figure 3. A Typical Heat Engine

12. Given that the hot reservoir temperature is 77°C and the cold reservoir is at 17°C and work at the pump is negligible, the efficiency of the engine is:

A. 0.78 B. 0.17 C. 0.87 D. 0.37 3 M

- 13. Assuming the work input at the pump is 125 kJ/kg with Q_H and Q_C being 450kJ/kg and 150 kJ/kg respectively, the work output in turbine is:
 A. 475 B. 425 C. 175 D. 225 2 MARKS
 14. Assuming no work input to the pump, with Q_H, T_H and T_C 450kJ/kg, 137°C and 37°C respectively, the
 - A. 340 B. 122 C. 430 D. 212 2 MARKS

Pick True (T) or False (F) for questions 15 to 16

cold reservoir heat is:

15. At dew point,
$$\sum x_i = 0$$
 2 MARKS

 16. At bubble point, $\sum x_i = 1$
 2 MARKS

Suppose that a liquid mixture of 4% n-hexane and n-octane is vaporized and using the data given below:

$$\ln\left(p^*\right) = A - \frac{B}{C+T}$$

where p^* is in mm Hg and T is in K:

	A	В	С
n-hexane (C6):	15.8737	2697.55	-48.784
n-octane (C ₈):	15.9798	3127.60	-63.633

17.	lf t	he total pressure	e is 760mmHg, calculate	the bubble point temp	erature:	
	Α.	293	B. 493	C. 193	D. 393	4 MARKS
18.	The	e saturated vapo	our pressure of n-octane	in mmHg is:		
	Α.	661	B. 561	C. 698	D. 654	3 MARKS
19.	The	e n-octane vapo	ur mole fraction is:			
	Α.	0.536	B. 0.636	C. 0.726	D. 0.826	3 MARKS
~~	~					

20. Show that the equation below is true for flash vaporization:

$$1 = \sum_{i=1}^{n} \frac{x_{F_i}}{1 - \frac{L}{F}\left(1 - \frac{1}{K_i}\right)}$$

7 MARKS

21. A heat engine 280°C and 12	e, using water as worl 0ºC, respectively. The	king fluid, operates betv temperature drop is:	veen boiler and condens	ser temperatures of
A. 400	B. 160	C. 120	D. 280	1 MARKS
22. The efficienc	y of the heat engine is	:		
A. 0.71	B. 1.41	C. 0.41	D. 0.29	3 MARKS
INSTRUCTION: U	Jse Figure 13.11 to and	swer Questions 23 to 25		
23. Write the ma	aterial balance equation	on around the absorber		2 MARKS
24. Write the en	3 MARKS			

25. The Generator-Absorber Unit serves the same purpose as a turbine. TRUE or FALSE 2 MARKS