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ABSTRACT 

The synthesis of seed mediated AgM (M = Co, Ni, Ru, Pd and Pt) allied nanobimetallic 

particles was successfully carried out by simultaneous reduction in aqueous and non-aqueous 

solutions. The formation of novel monodispersed and unaggregated bimetallic nanoparticles 

capped by polymer and organic chelating agents was desirable for catalysis and photonic 

applications. As a result, wet chemical approach was successfully deployed to produce some 

novel bimetallic silver allied nanoparticles distinct in morphology from their monometal 

analogues. Optical and morphological investigation of the nanoparticles revealed that the 

shape, size and size distribution of the silver allied nanoparticles depended on the stabilizer or 

capping agent, mole ratio of inorganic sources, temperature and time of reaction. The 

analyses of the nanoparticles also showed that formation of uniformly distributed, highly 

crystalline and monodispersed/polydispersed silver allied bimetallic nanocomposites of 

different dimensions within the quantum realm had been achieved. Consequently, the alloy or 

core-shell crystalline structure of nanocomposites was also established. Furthermore, X-ray 

photoelectron spectrometer (XPS) scan established the surface elemental composition and the 

binding energy of the nanocomposites. As a result, a new morphology described as hybrid 

quasi nanocubes entangled in nanowebs was discovered for polyvinylpyrrolidone (PVP) 

stabilized AgPt nanoparticles passivated by diethylene glycol (DEG) and ethylene glycol 

(EG) which evolved a core-shell structure. The mean size of the nanocubes was 30.45 6.23 

nm, while XRD analysis strongly suggested that the nanocubes pertained to {111} plane of 

face-centered cubic Ag. Meanwhile, the nanoweb was formed as a result of phase contraction 

by Pt. Likewise, electron micrographs of Ag/Ru nanoparticles capped by 

dodecanethiol/polyol at 200⁰C; 3h showed the presence of novel well-ordered core-shell 

structures with particle size in the range of 8.2 ± 0.7-11.4 ±1.3 nm. In addition, novel core-

shell nanoparticles of AgPt capped by hexadecylamine (HDA) were discovered from their 

electron micrographs.  The X-ray diffraction spectra suggested dominance of face-centered 

cubic structure with 2θ reflections slightly shifted from silver peaks. This is reminiscent of 

noble metals forming alloy or core-shell morphology with silver. Similarly, AgCo and AgNi 

nanoparticles passivated by polyol particularly revealed the formation of nearly uniform, 

monodispersed core-shell structure which proved to be optically active by characteristic 

surface plasmon resonance band blue shifted for pentaerythritol (PET) and trisodium citrate 

trihydrate (SC) derived nanoparticles. Further optical characterization also revealed the 

fluorescent potential of AgCo, AgNi, AgPt, AgPd and AgRu sols as a result of their S1-S0 
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vibrational mode relaxation with appreciable emission of appropriate quantum yield. Finally, 

the catalytic potential of the nanocomposites investigated using 4-nitrophenol in the presence 

of sodium borohydride at 299 K indicated a pseudo-first-order kinetics which gave 

AgPd/PVPGLY a rate constant of 5.4 x 10
-3

 s
-1

. This value is significantly higher than 2.8 x 10
-

3
 s

-1
 reported for poly(ethylenimine)-stabilized Ag nanoparticles (Ag-HNP), but relatively 

lower than 9.2 ± 1.7 × 10
-3

 s
-1

  recorded for AuAg-HNP due to the fact that Au/Ag bimetallic 

nanoparticles have been shown to exhibit greater quantum size effect. These results strongly 

indicate the application of these materials for catalysis and optoelectronics.   

  


