KINETICS AND EQUILIBRIUM OF THE REACTION OF ELLMAN'S REAGENT WITH DOMESTIC HORSE (*Equus caballus*) HAEMOGLOBIN

BY

OMOTOSHO, OMOLOLA ELIZABETH

(CUGP070201)

B. Tech., M. Tech. (FUTA)

APRIL, 2014.

KINETICS AND EQUILIBRIUM OF THE REACTION OF ELLMAN'S REAGENT WITH DOMESTIC HORSE (*Equus caballus*) HAEMOGLOBIN

OMOTOSHO, OMOLOLA ELIZABETH

(CUGP070201)

B. Tech., M. Tech. (FUTA)

A THESIS SUBMITTED TO THE

DEPARTMENT OF BIOLOGICAL SCIENCES, SCHOOL OF NATURAL AND APPLIED SCIENCES, COLLEGE OF SCIENCE AND TECHNOLOGY IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY (Ph.D) IN BIOCHEMISTRY

APRIL, 2014.

CERTIFICATION

This is to certify that Omolola Elizabeth OMOTOSHO (Matric. No: CUGP070201) carried out this research work in partial fulfilment of the requirements for the award of Doctor of Philosophy (Ph.D) degree in Biochemistry of Covenant University, Ota, under our supervision.

Dr. S. N. Chinedu		
(Supervisor)	Signature	Date
Department of Biological Sciences,		
Covenant University, Ota.		
Dr. I. S. Afolabi		
(Co-Supervisor)	Signature	Date
Department of Biological Sciences,		

Covenant University, Ota.

DECLARATION

It is hereby declared that this research work titled "Kinetics and Equilibrium of the Reaction of Ellman's Reagent with Domestic Horse (*Equus caballus*) Haemoglobin" was undertaken by Omolola Elizabeth OMOTOSHO.

Dr. S. N. Chinedu	
Supervisor	Signature and Date
Dr. I.S. Afolabi	
Co-Supervisor	Signature and Date
Prof. O. Ademuyiwa	
External Examiner	Signature and Date
Federal University of Agriculture, Abeokuta,	
Ogun State, Nigeria.	
Dr. I.S. Afolabi	
Dr. I.S. Afolabi Ag. Head, Department of Biological Sciences	Signature and Date
Ag. Head, Department of Biological Sciences	
Ag. Head, Department of Biological Sciences	
Ag. Head, Department of Biological Sciences Covenant University, Ota, Ogun State, Nigeria.	
Ag. Head, Department of Biological Sciences Covenant University, Ota, Ogun State, Nigeria. Prof. C.A. Loto	Signature and Date
Ag. Head, Department of Biological Sciences Covenant University, Ota, Ogun State, Nigeria. Prof. C.A. Loto Dean, College of Science and Technology,	Signature and Date
Ag. Head, Department of Biological Sciences Covenant University, Ota, Ogun State, Nigeria. Prof. C.A. Loto Dean, College of Science and Technology,	Signature and Date
Ag. Head, Department of Biological Sciences Covenant University, Ota, Ogun State, Nigeria. Prof. C.A. Loto Dean, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria.	Signature and Date

DEDICATION

To God alone be all the glory.

MY GLORY AND THE LIFTER UP OF MY HEAD.

This thesis is dedicated to God, my FATHER. All the glory and praise to Him for Whom nothing is impossible, the Omnipotent. Amen. Jesus, I love You. Holy Spirit, my Helper, thank YOU so much. I acknowledge You as my source of wisdom. Thank you for the breakthrough, strength and favour I receive daily and for the grace to complete this work.

I also dedicate this thesis to my earthly father, Overseer Matthew Omojola AYOADE, who has joined the spirit of the just men made perfect. It pained me so much that you are not here physically to witness this. I thank God your prayers are not in vain, for they are answered speedily. DAD, you are the best.

ACKNOWLEDGEMENTS

We are the sum total of what we have learned from all who have taught us, both great and small. I am grateful for the inspiration and wisdom of men and women God has brought my way in life. I give all glory to the Lord God Almighty for His grace, provision, help and favour that I enjoyed during the course of this project. May His name be exalted!

My Supervisor, Dr. Shalom N. Chinedu, I am very grateful for your encouragement and support all this while. I know the Lord will reward you accordingly. I have learnt a lot of lessons through your leadership and mentorship. Thank you for the rescue. The Lord bless you Sir.

My profound gratitude and appreciation go to the Departments of Biological Sciences and Chemistry, Covenant University. The Ag. Head of Department of Biological Sciences, Dr. I.S. Afolabi for his timely rescue mission and the role played as the Co-Supervisor. The Lord bless you and reward you accordingly and appropriately. To the entire members of staff, I pray that the Lord will reward you all. To every member of the Biophysical group, especially Dr. S.O. Rotimi, Mrs. Abiola Edobor-Osoh, Mrs. Christie O. Ajanaku, Mr. C. Ehi-Eromosele, Mr. Daniel Uche, I say "thank you".

I appreciate the Covenant University Staff Development Postgraduate Scholarship given to me. The scholarship tremendously aided my research work.

I am also grateful to the Covenant University Centre for Research and Development for the grant awarded to purchase equipment and consumables. This enabled me to carry out all my research in Nigeria.

I am sincerely grateful to Dr. T.V. Omotosho, my darling husband, for his support, love and understanding, and also to God's heritage, David Praise Iremitide, Timothy Wisdom Oluwademilade, Dorcas Opemipo and Daniel Ire-Ayowole IbukunOluwa Omotosho, for their love, understanding and support. They gave me peace and understood why I left them many times for the office and laboratory. My gratitude goes to my loving parents, Overseer Matthew Omojola Ayoade that went to GLORY in my year of waves of glory and Deaconess Grace Omolade Ayoade for their prayers and goodwill, and to my brothers (Dr. E.O Ayoade and Dr. J.O. Ayoade) and sister (Mrs. Omotola Akinloye - ACCE) and their spouses. The fifth but not the last, Dr.

Oluwayemisi Ayoade, I thank you especially for your support and help in collecting the horse blood when this work started. God bless you and your veterinary outlets. My parents-in-love, Elder and Deaconess I.B. Omotosho, and all my sisters- and brothersin-love, thank you all for all the help rendered to me in one way or the other.

I am very thankful to God for all my neighbours and friends, especially all the members of Block C, Winners Satellite Fellowship (W.S.F.) where the Lord made me the Minister and the District 1 Operators. Thank you for your prayers and love.

My special thanks go to Professor Kehinde O. Okonjo, for his rare mentorship, advice, encouragement and patience. His accessibility and availability are noteworthy. You are a rare gem and your work will soon announce you to the whole world. My appreciation also goes to the mother in Canaan, Mrs. C.A Adigwe, for the parental role, prayers, support, advice and helps rendered to me towards the success of this project. May God increase you abundantly.

My utmost gratitude goes to the visioner of Covenant University, to my father and mentor, Dr. David O. Oyedepo, whom the Lord has placed over me as a shepherd, prophet and deliverer. My special thanks go to the immediate past Vice-Chancellor, Prof. Aize Obayan, for her prayers, support and goodwill. God bless you, Ma.

Finally, I appreciate all my friends, colleagues and well wishers in the Faith Tabernacle Choir and in the Children's Church (Age 10 teachers) of Faith Tabernacle, God bless you all. You will never lack help, and may God shower His blessings upon you and your families continually. I LOVE YOU ALL. May the Lord reward you with His abundant blessings.

Omotosho, Omolola Elizabeth

TABLE OF CONTENTS

SUBJECT

Titlei
Certificationii
Declarationiii
Dedicationiv
Acknowledgementsv
Table of contentsvii
List of figuresxii
List of tablesxix
List of abbreviationsxxi
Abstractxxii

CHAPTER ONE: INTRODUCTION

1.1	Background of the Study	1
1.2	Types of haemoglobin	2
1.3	Justification for the Study	3
1.4	Aim of the Study	4
1.4.1	Objectives of the Study	4
1.4.2	Specific objectives of the study	5

CHAPTER TWO: LITERATURE REVIEW

2.0	Proteins	6
2.1.1	Levels of Protein structural Organisation	7
2.1.1.1	Protein primary structure	7
2.1.1.2	Protein secondary structure	13
2.1.1.3	Protein tertiary structure	16
2.1.1.4	Protein quaternary structure	16
2.2	The structure of haemoglobin	17
2.2.1	Haem	19
2.2.2	Globin	22
2.3	Structure-Function in Haemoglobin	23
2.4	The Bohr Effect	24

2.5	Monod, Wyman, Changeux model for Allosteric proteins	30
2.6	Cooperativity of haemoglobin	32
2.7	Reversible binding of oxygen to haemoglobin	33
2.8	Allosteric effectors of haemoglobin	35
2.8.1	Organic phosphate	35
2.9	The reactive sulphydryl groups	.39
2.9.1	The biological importance of cysteine and cystine	39
2.10	Sulphydryl groups in haemoglobin	.40
2.11	Sulphydryl reagents	43
2.11.1	Alkylation reaction	44
2.12	Ellman's reagent	46
2.13	Dependence of the reactivities of haemoglobin sulphydryl groups on pH	48

CHAPTER THREE: MATERIALS AND METHODS

3.0	Materials and methods	51
3.1	Preparation of buffer solutions	53
3.1.1	Preparation of standard buffer solutions	53
3.1.2	Preparation of phosphate buffer solutions: pH 5.6 - 8.0	53
3.1.3	Preparation of borate buffer solutions: pH 8.0 - 9.0	55
3.2	Preparation of reagents and samples	57
3.2.1	Preparation of dialysis solutions	57
3.2.2	Preparation of saline solution for horse haemoglobin	57
3.2.3	Preparation of inositol hexakisphosphate (inositol-P ₆) solution	57
3.2.4	Preparation of carbon monoxide gas	57
3.2.5	Preparation of Drabkin's solution	58
3.2.6	Preparation of solution of Ellman's reagent (DTNB)	58
3.2.7	Preparation of p-hydroxymercuri(II)benzoate solution	59
3.2.8	Preparation of haemolysates	59
3.3	Separation of horse haemoglobins	60
3.4	Preparation of various haemoglobin derivatives	61
3.4.1	Preparation of carbonmonoxyhaemoglobin	61
3.4.2	Conversion of carbonmonoxyhaemoglobin to oxyhaemoglobin	61
3.4.3	Preparation of aquomethaemoglobin	62
3.5	Preparation of resins and packing of Dintzis column	62

3.5.1	Preparation of resins	62
3.5.2	Packing of Dintzis column	63
3.6	Determination of haemoglobin concentration	64
3.6.1	Determination of carbonmonoxyhaemoglobin concentration	64
3.6.2	Determination of oxyhaemoglobin concentration	65
3.6.3	Determination of aquomethaemoglobin concentration	65
3.7	Experimental Procedures	66
3.7.1	Titration of horse carbonmonoxyhaemoglobin sulphydryl groups with	
	p-hydroxymercuri(II)benzoate, pMB	66
3.7.2	Sulphydryl titration of horse carbonmonoxyhaemoglobin with 5,5'-dithi	obis(2-
	nitrobenzoate), DTNB	67
3.7.3	Kinetics of reaction of Ellman's reagent with horse haemoglobin sulp	phydryl
	groups	68
3.7.4	Equilibrium constant determination for the reaction of Ellman's reage	nt with
	sulphydryl groups	69

CHAPTER FOUR: RESULTS

4.0	Results	70
4.1	Number of sulphydryl groups in horse haemoglobin	70
4.2.1	Titration of the sulphydryl groups of horse haemoglobin with	
	p-hydroxymercuri(II)benzoate, pMB	70
4.2.2	Titration of the sulphydryl groups of horse haemoglobin with DTNB	73
4.3	Kinetic Studies	.76
4.3.1	Forward kinetics	76
4.3.2	Kinetics of the reaction of DTNB with horse haemoglobin	76
4.4	Theory of the kinetics	83
4.4.1	Determination of $k_{F,}$ the apparent forward second order	rate
	constant	85
4.4.2	pH dependence of $k_{\text{F}}\text{,}$ the apparent forward second order rate constant of	the
	reaction of horse haemoglobins with DTNB	.89
4.4.2.1	Stripped minor horse oxyhaemoglobin	.89
4.4.2.2	Effect of inositol-P ₆ on the pH dependence of k _F	.93
4.4.3	Effect of Inositol-P ₆ On The pH Dependence of k _F	101

4.4.4	Theoretical analysis of pH dependence of $k_{F_{i}}$ the apparent forward second
	order rate constant
4.5	Equilibrium Studies111
4.5.1	Theoretical basis of the equilibrium studies
4.5.2	Effect of pH on the equilibrium constant of the reaction of horse haemoglobin
	with DTNB116
4.5.3	Effect of inositol hexakisphosphate on the equilibrium constant124
4.5.4	Theoretical analysis of the pH dependence of K _{equ}
4.5.5	Equilibrium parameters for the reaction of Ellman's reagent with the
	CysF9[93]β sulphydryl groups of horse haemoglobins146
4.6	Comparison between the Equilibrium Data of the Stripped Minor and
	Major Haemoglobins in the Presence of Inositol-P ₆ 148
4.7	Comparison between the equilibrium data of the stripped Minor and
	Major haemoglobins in the presence of inositol-P ₆ 155
4.8	Reverse Kinetics
4.8.1	pH Dependence of the Apparent Second Order Reverse Rate Constant,
	k_R , for the Reverse of the Reaction of the CysF9[93] β Sulphydryl Groups
	of Horse Haemoglobin with DTNB156
4.8.2	Effect of inositol hexakisphosphate on the pH dependence of k_R : Horse
	Haemoglobin
4.8.3	Theoretical Analyses of the pH Dependence of k_R : Horse Haemoglobin167

CHAPTER FIVE: DISCUSSION

5.0	Number of sulphydryl groups in horse haemoglobin	
5.1	Reversibility of the reaction of DTNB with horse haemoglobins	.174
5.2	Effect of inositol-P ₆ on the kinetic parameters	.175
5.3	Equilibrium studies of the reaction of horse haemoglobins with DTNB	.175
5.4	pH Dependence of the Equilibrium Constant for the Reaction of Ellman's	
	Reagent with the CysF9[93] β Sulphydryl Groups of Horse Haemoglobin	176
5.4.1	Stripped Haemoglobins	176
5.4.2	Effect of pH on the Affinity of Haemoglobin for DTNB	177
5.4.3	Haemoglobins in the Presence of Inositol-P ₆	177
5.4.4	Comparing the Stripped Haemoglobins and Haemoglobins plus	
	Inositol-P ₆	.177

5.5	Conclusion	
5.6	Recommendation	
5.7	Contributions to Knowledge	
REF	FERENCES	
APP	ENDIX I	
APP	ENDIX II	
APP	ENDIX III	

LIST OF FIGURES

FIGUI	FIGURE Page		
2.1	Levels of protein structure	7	
2.2	The Trans peptide group	8	
2.3	Structures of the 20 common amino acids	9	
2.4	The direction of amino acid sequences	11	
2.5	Amino acid sequences of horse haemoglobins	12	
2.6	The α -helix, a common basis of secondary protein structure	14	
2.7	(A) An Antiparallel β Sheet	15	
	(B) Structure of a Reverse Turn	16	
2.8	The $\alpha_2 \beta_2$ Tetramer of Human Haemoglobin	17	
2.9	The structure of haem	20	
2.10	The structure of pyrrole, porphyrin, and Fe-protoporphyrin IX	21	
2.11	The structure of a haemoglobin subunit	23	
2.12	Effect of pH on the binding of oxygen to haemoglobin	26	
2.13	A plot of Δh^+ against pH for the reaction of human haemoglobin with		
	oxygen	27	
2.14	Δh^+ released or taken up on oxygenation by solutions of		
	Different haemoglobins	27	
2.15	Transition from T to R state in haemoglobin	28	
2.16	Sigmoid oxygen binding curve of haemoglobin and hyperbolic		
	oxygen binding curve of myoglobin	28	
2.17	Hill plots for the binding of oxygen to myoglobin and haemoglobin	30	
2.18	The concerted-symmetry model of Monod, Wyman and Changeux	32	
2.19	Transition of T to R in haemoglobin with 15° rotation	34	
2.20	Structures of some organic phosphates	37	
2.21	Mode of binding of 2,3-BPG to human deoxyhaemoglobin	38	
2.22	Effect of 2,3-BPG on the oxygen binding of haemoglobin	38	
2.23a	The structures of 2,2'-dithiobispyridine, 4,4'- dithiobispyridine and Bis(p)-	
	nitrophenyldisulphide)	45	
2.23b	The reaction of 2,2'-dithiopyridine with haemoglobin thiolate ion	45	
2.24	Reaction of DTNB with a sulphydryl group	48	

FIGU	JRE Page	
3.1	Set-up for the preparation of carbon monoxide	8
3.2	Dintzis Column	4
4.1	Titration of the carbonmonoxy derivative of horse minor haemoglobin	
	with pMB at 250 nm	'1
4.2	Titration of the carbonmonoxy derivative of minor horse haemoglobin	
	with pMB at 250 nm	'2
4.3	Titration of major horse carbonmonoxyhaemoglobin with DTNB7	'4
4.4	Titration of minor horse carbonmonoxyhaemoglobin with DTNB	<i>'</i> 5
4.5	Major horse oxyhaemoglobin: Typical kinetic trace for the reaction of	
	5,5'-dithiobis (2-nitrobenzoate) with CysF9[93] β of the oxy derivative	
	in the presence of inositol-P ₆ 7	7
4.6	Major horse oxyhaemoglobin: Typical kinetic trace fitted with the Olis	
	Global Works software for the reaction of 5,5'-dithiobis(2-nitrobenzoate	
	acid) with CysF9[93]β7	'8
4.7	Major horse oxyhaemoglobin: Typical kinetic trace fitted with the Olis	
	Global Works software for the reaction of 5,5'-dithiobis(2-nitrobenzoate)	
	with CysF9[93] β + inositol-P ₆ 7	9
4.8	Major horse oxyhaemoglobin: Semi-logarithmic plot of the time course	
	for the reaction of 5,5'-dithiobis(2-nitrobenzoate) with CysF9[93] β in the	
	presence of inositol-P ₆ 8	0
4.9	Major horse oxyhaemoglobin: Semi-logarithmic plot of the time course	
	for the reaction of 5,5'-dithiobis(2-nitrobenzoate) with CysF9[93] β +	
	inositol-P ₆ 8	31
4.10	Major horse oxyhaemoglobin: Semi-logarithmic plot of the time course	
•	for the reaction of 5,5'-dithiobis(2-nitrobenzoate) with CysF9[93] β +	
	inositol-P ₆	2
4.11	Major horse oxyhaemoglobin: The dependence of the pseudo-first order	
	rate constant, k_{obs} , on the DTNB concentration for the reaction of 5,5'-	
	dithiobis (2-nitrobenzoate) with CysF9[93] β + inositol-P ₆ 8	6
4.12	Major horse oxyhaemoglobin: The dependence of the pseudo-first order	
	Rate constant, k_{obs} , on the DTNB concentration for the reaction of 5,5'-	
	dithiobis (2-nitrobenzoate) with the CysF9[93] β + inositol-P ₆ 8	57

FIFU	RE Page
4.13	Major horse oxyhaemoglobin: The dependence of the pseudo-first order
	rate constant, k_{obs} , on the DTNB concentration for the reaction of 5,5'-
	dithiobis (2-nitrobenzoate) with CysF9[93] β + inositol-P ₆ 88
4.14	Stripped Major horse oxyhaemoglobin: Dependence of the apparent
	forward second order rate constant, k_F , on pH for the reaction of 5,5'-
	dithiobis (2-nitrobenzoate) with CysF9[93]β90
4.15	Stripped Major horse carbonmonoxyhaemoglobin: Dependence of the
	apparent forward second order rate constant, k_F , on pH for the reaction
	of 5,5'-dithiobis (2-nitrobenzoate) with the CysF9[93]β91
4.16	Stripped Major horse aquomethaemoglobin: Dependence of the apparent
	forward second order rate constant, k_F , on pH for the reaction of 5,5'-
	dithiobis (2-nitrobenzoate) with CysF9[93]β92
4.17	Major horse oxyhaemoglobin.: Dependence of the apparent forward
	second order rate constant, k_F , on pH for the reaction of 5,5'-dithiobis
	(2-nitrobenzoate) with CysF9[93] β + inositol-P ₆ 94
4.18	Major horse carbonmonoxyhaemoglobin: Dependence of the apparent
	forward second order rate constant, k_F , on pH for the reaction of 5,5'-
	dithiobis(2-nitrobenzoate) with CysF9[93] β + inositol-P ₆ 95
4.19	Major horse aquomethaemoglobin.: Dependence of the apparent forward
	second order rate constant, kF, on pH for the reaction of 5,5'-dithiobis
	(2-nitrobenzoate) with $CysF9[93]\beta$ + inositol-P ₆
4.20	Major horse oxyhaemoglobin.: Dependence of the apparent forward
	second order rate constant, k_F , on pH for the reaction of 5,5'-dithiobis
	(2-nitrobenzoate) with CysF9[93] β : stripped Hb (open symbols) Hb +
	inositol-P ₆ (filled symbols)97
4.21	Major horse carbonmonoxyhaemoglobin: Dependence of the apparent
	forward second order rate constant, k_F , on pH for the reaction of 5,5'-
	dithiobis (2-nitrobenzoate) with CysF9[93]β: stripped Hb (open symbols);
	$Hb + inositol-P_6$ (filled symbols)
4.22	Major horse aquomethaemoglobin: Dependence of the apparent forward
	second order rate constant, k_F , on pH for the reaction of 5,5'-dithiobis
	(2-nitrobenzoate) with CysF9[93] β : stripped (open symbols); Hb +
	inositol-P ₆ (filled symbols)

xiv

FIGURE Page		
4.23	Stripped Minor horse oxyhaemoglobin Dependence of the apparent	
	forward second order rate constant, k_F , on pH for the reaction of 5,5'-	
	dithiobis (2-nitrobenzoate) with CysF9[93]β100	
4.24	Minor horse oxyhaemoglobin.: Dependence of the apparent forward	
	Second order rate constant, k_F , on pH for the reaction of 5,5'-dithiobis	
	(2-nitrobenzoate) with CysF9[93] β + inositol-P ₆ 102	
SCHE	EME I	
4.25	Minor horse oxyhaemoglobin.: Dependence of the apparent forward	
	second order rate constant, k_F , on pH for the reaction of 5,5'-dithiobis	
	(2-nitrobenzoate) with CysF9[93] β + inositol-P ₆ 109	
4.26	Stripped major horse oxyhaemoglobin: Dependence of the equilibrium	
	constant, $-\log_{10}K_{equ}$, on pH for the reaction of 5,5'-dithiobis	
	(2-nitrobenzoate) with CysF9[93]β117	
4.27	Stripped major horse carbonmonoxyhaemoglobin: Dependence of the	
	equilibrium constant, on pH for the reaction of 5,5'-dithiobis	
	(2-nitrobenzoate) with CysF9[93]β118	
4.28	Stripped major horse aquomethaemoglobin: Dependence of the	
	equilibrium constant, on pH for the reaction of 5,5'-dithiobis	
	(2-nitrobenzoate) with CysF9[93] β	
4.29	Stripped minor horse oxyhaemoglobin: Dependence of the equilibrium	
	constant on pH for the reaction of 5,5'-dithiobis (2-nitrobenzoate) with	
	CysF9[93]β121	
4.30	Stripped minor horse carbonmonoxyhaemoglobin: Dependence of the	
	equilibrium constant, on pH for the reaction of 5,5'-dithiobis	
	(2-nitrobenzoate) with CysF9[93]β122	
4.31	Stripped minor horse aquomethaemoglobin: Dependence of the	
	equilibrium constant, on pH for the reaction of 5,5'-dithiobis	
	(2-nitrobenzoate) with CysF9[93] β	
4.32	Major horse oxyhaemoglobin: Dependence of the equilibrium constant	
	on pH for the reaction of 5,5'-dithiobis (2-nitrobenzoate) with CysF9[93] β	
	in the presence of inositol- P_6	

FIGURE Page		
4.33	Major horse carbonmonoxyhaemoglobin: Dependence of the equilibrium	
	constant, on pH for the reaction of 5,5'-dithiobis (2-nitrobenzoate) with	
	CysF9[93] β in the presence of inositol-P ₆ 126	
4.34	Major horse aquomethaemoglobin: Dependence of the equilibrium	
	constant on pH for the reaction of 5,5'-dithiobis(2-nitrobenzoate) with	
	CysF9[93] β in the presence of inositol-P ₆	
4.35	Minor horse oxyhaemoglobin: Dependence of the equilibrium constant	
	on pH for the reaction of 5,5'-dithiobis(2-nitrobenzoate) with CysF9[93] β	
	in the presence of inositol- P_6	
4.36	Minor horse carbonmonoxyhaemoglobin: Dependence of the equilibrium	
	constant on pH for the reaction of 5,5'-dithiobis(2-nitrobenzoate)	
	with CysF9[93] β in the presence of inositol-P ₆	
4.37	Minor horse aquomethaemoglobin: Dependence of the equilibrium	
	constant on pH for the reaction of 5,5'-dithiobis(2-nitrobenzoate) with	
	CysF9[93] β in the presence of inositol-P ₆	
4.38	Major horse oxyhaemoglobin: Dependence of $-\log_{10}K_{equ}$ on pH for the	
	reaction of 5,5'-dithiobis (2-nitrobenzoate) with CysF9[93] β in the presence	
	of inositol-P ₆ 132	
4.39	Major horse carbonmonoxyhaemoglobin: Dependence of $-\log_{10}K_{equ}$ on	
	pH for the reaction of 5,5'-dithiobis(2-nitrobenzoate) with CysF9[93] β	
	of the in the presence of inositol- P_6	
4.40	Major horse aquomethaemoglobin: Dependence of $-\log_{10}K_{equ}$ on pH	
	for the reaction of 5,5'-dithiobis(2-nitrobenzoate) with CysF9[93] β in the	
	presence of inositol-P ₆	
4.41	Minor horse oxyhaemoglobin: Dependence of $-\log_{10}K_{equ}$ on pH for the	
	reaction of 5,5'-dithiobis (2-nitrobenzoate) with CysF9[93] β in the	
	presence of inositol-P ₆	
4.42	Minor horse carbonmonoxyhaemoglobin: Dependence of $-log_{10}K_{equ}$	
	on pH for the reaction of 5,5'-dithiobis(2-nitrobenzoate) with CysF9[93] β	
	in the presence of inositol-P ₆ 136	

FIGURE Page		
4.43	Major horse aquomethaemoglobin: Dependence of $-\log_{10}K_{equ}$ on pH	
	for the reaction of 5,5'-dithiobis(2-nitrobenzoate) with CysF9[93] β	
	in the presence of inositol-P ₆	
SCHE	EME II	
4.44	Stripped oxyhaemoglobin: A comparison of the dependence of $-log_{10}K_{equ}$	
	on pH for the reaction of 5, 5'-dithiobis(2-nitrobenzoate) with CysF9[93] β	
	of the minor (filled symbols) and major (open symbols) oxy derivative 149	
4.45	Stripped carbomonoxyhaemoglobin: A comparison of the dependence of	
	$log_{10}K_{equ}$ on pH for the reaction of 5,5'-dithiobis(2-nitrobenzoate) with	
	CysF9[93] β of the minor (filled symbols) and major (open symbols)150	
4.46	Stripped aquomethaemoglobin: A comparison of the dependence of	
	$-\log_{10}K_{equ}$ on pH for the reaction of 5,5'-dithiobis(2-nitrobenzoate) with	
	CysF9[93] β of the minor (filled symbols) and major (open symbols)151	
4.47	Oxyhaemoglobin in the presence of inositol-P ₆ : A comparison of the	
	dependence of $-\log_{10}K_{equ}$ on pH for the reaction of 5,5'-dithiobis (2-	
	nitrobenzoate) with CysF9[93] β of the stripped minor (filled symbols)	
	and major (open symbols)152	
4.48	Carbonmoxyhaemoglobin in the presence of inositol-P ₆ : A comparison	
	of the dependence of $-\log_{10}K_{equ}$ on pH for the reaction of 5,5'-dithiobis	
	(2-nitrobenzoate) - DTNB with CysF9[93] β of the stripped minor (filled	
	symbols) and major (open symbols)153	
4.49	Aquomethaemoglobin in the presence of inositol-P ₆ :A comparison of the	
	dependence of $-\log_{10}K_{equ}$ on pH for the reaction of 5, 5'-dithiobis (2-	
	nitrobenzoate) with CysF9[93] β of the stripped minor (filled symbols)	
	and major (open symbols)154	
4.50	Dependence of $log_{10}k_R$ on pH for the reverse of the reaction of	
	CysF9[93] β of Major stripped horse oxyhaemoglobin with DTNB at	
	25°C157	
4.51	Dependence of $log_{10}k_R$ on pH for the reverse of the reaction of	
	CysF9[93] β of Major stripped horse carbonmonoxyhaemoglobin with	
	DTNB at 25°C158	
4.52	Dependence of $log_{10}k_R$ on pH for the reverse of the reaction of CysF9[93] β	
	of Major stripped horse aquomethaemoglobin with DTNB at 25°C159	

FIGU	IRE	Page
4.53	Dependence of $log_{10}k_R$ on pH for the reverse of the reaction of	
	CysF9[93] β of major stripped horse oxyhaemoglobin with DTNB	
	+ inositol-P ₆ at 25°C	160
4.54	Dependence of $log_{10}k_R$ on pH for the reverse of the reaction of	
	CysF9[93] β of major stripped horse carbonmonoxyhaemoglobin	
	with DTNB + inositol- P_6 at 25°C	161
4.55	Dependence of $log_{10}k_R$ on pH for the reverse of the reaction of	
	CysF9[93] β of major stripped horse aquomethaemoglobin with	
	DTNB + inositol-P ₆ at 25° C	162
4.56	Dependence of $log_{10}k_R$ on pH for the reverse of the reaction of	
	CysF9[93] β of horse oxyhaemoglobin with DTNB + inositol-P ₆	
	at 25°C	164
4.57	Dependence of $log_{10}k_R$ on pH for the reverse of the reaction of	
	CysF9[93] β of horse carbonmonoxyhaemoglobin with DTNB in	
	the presence of inositol-P ₆ at 25°C	165
4.59	Dependence of $log_{10}k_R$ on pH for the reverse of the reaction of	
	CysF9[93] β of horse aquomethaemoglobin with DTNB in the	
	presence of inositol-P ₆ at 25°C	166
SCH	EME III	168

LIST OF TABLES

TAB	LE Page
2.1	Titratable sulphydryl groups and their positions in the haemoglobin
	molecule of various animal species42
3.1	List of reagents and chemicals with their manufacturer's names51
3.2	List of equipment used with model and manufacturer's name
3.3	The amounts of 0.4 mol dm^{-3} NaOH, 0.4 mol dm^{-3} , NaH ₂ PO4 and
	NaCl required for phosphate buffers pH 5.6 - 8.054
3.4	The amounts of 0.3 mol dm ⁻³ NaOH, 0.3 mol dm ⁻³ H_3BO_3 and NaCl
	required for borate buffers pH 8.0 – 9.056
4.1	Reaction of DTNB with CysF9[93]β of major horse (stripped) haemoglobin: Best-fit parameters used to fit the pH dependence of kF for the oxy, carbonmonoxy, and aquomet derivatives
4.2	Reaction of DTNB with CysF9[93] β of major horse haemoglobin +
	inositol-P ₆ : Best-fit parameters used to fit the pH dependence of k_F for
	the oxy, carbonmonoxy, and aquomet derivatives109
4.3	Reaction of DTNB with CysF9[93] β of stripped horse oxyhaemoglobin:
	raw data for the determination of K_{equ}
4.4	Reaction of DTNB with CysF9[93] β of stripped horse oxyhaemoglobin:
	raw data for the determination of K _{equ} 114
4.5	Stripped Major horse haemoglobin: Reaction of DTNB with CysF9[93] β
	of various derivatives
4.6	Minor Stripped horse haemoglobin: Reaction of DTNB with the
	CysF9[93] β sulphydryl group of various derivatives.+ inositol-P ₆ 141
4.7	Major haemoglobin: Reaction of DTNB with CysF9[93] β sulphydryl
	group of various derivatives of the horse + inositol-P ₆
4.8	Minor haemoglobin + inositol-P ₆ : Reaction of DTNB with CysF9[93] β
	of various derivatives
4.9	Minor haemoglobin + inositol-P ₆ : Reaction of DTNB with CysF9[93] β
	of various derivatives
4.10	Mean equilibrium parameters for the reaction of DTNB with the
	CysF9[93]β sulphydryl groups of horse haemoglobins147

Æ	Page
Reverse of the reaction of DTNB with CysF9[93] β of stripped horse	
haemoglobin at 25°C	171
Reverse of the reaction of DTNB with CysF9[93] β of horse haemoglobin	n
+ inositol- P_6 at 25°C	173

LIST OF ABBREVIATIONS

α	Alpha subunit of haemoglobin
β	Beta subunit of haemoglobin
γ	Gamma subunit of haemoglobin
ATP	Adenosine triphosphate
2,3-BPG	2,3 – Biphosphoglycerate
2-DTP	2,2-dithiobispyridine
Inositol-P ₅	Inositol-pentakisphosphate
Inositol-P ₆	Inositol hexakisphosphate
Mb	Myoglobin
Hb	Haemoglobin
DTNB	Ellman's reagent: 5,5'-dithiobis (2-nitrobenzoate)
pMB	p-hydroxymercuri(II)benzoate
P ₅₀	Pressure at which haemoglobin is half saturated with O_2
PO ₂	Partial pressure of oxygen
AMP	Adenosine monophosphate
ADP	Adenosine diphosphate
HbO ₂	Oxyhaemoglobin
HbCO	Carbonmonoxyhaemoglobin
metHb	Aquomethaemoglobin
RBC	Red blood cells or erythrocytes
MWC	Monod, Wyman and Changeux
Y	Fractional Saturation
TNB-	Chromophoric product of DTNB reaction; 5-thio (2-nitrobenzoate)
TNBH	Protonated form of TNB ⁻ , the chromophoric product of the DTNB
	reaction
k _{obs}	Values of the observed rate constant

ABSTRACT

CysF9[93] β exists in two tertiary conformations, r and t, which are in dynamic equilibrium. The reactivity of the CysF9[93]ß sulphydryl group and the oxygen affinity of haemoglobin (Hb) are affected by protons (H^+) and organic phosphates such as inositol hexakisphosphate (inositol- P_6). This study was aimed at determining the effects of inositol-P₆ and pH on the relative populations of the two conformations. The major and minor haemoglobins in horse haemolysate were separated using a column of Whatman's carboxymethylcellulose (CMC 52). Equilibrium studies of the reaction of CysF9[93] β with Ellman's reagent, 5,5'-dithiobis(2-nitrobenzoate) (DTNB), equilibrated for six hours in the presence and absence of inositol- P_6 were carried out at 25°C. The absorbance of the product of DTNB reaction, 5-thio-2nitrobenzoate, at different concentrations of DTNB and 50 µmol (haem) dm⁻³ was read at 412 nm. The absorbance was then substituted into an appropriate equation derived for the determination of the equilibrium constant, K_{equ} , for the reaction. These experiments were carried out on the oxy, carbonmonoxy and aquomet derivatives of each haemoglobin in the pH range of 5.6 to 9.0. The number of sulphydryl groups in haemoglobin was determined by titrations with p-hydroxymercury(II)benzoate (pMB) and DTNB. The effects of these relative populations on the equilibrium and the kinetics of the reaction of CysF9[93]β of horse haemoglobin with Ellman's reagent were determined. The pseudo-first order kinetics, with the [DTNB] in excess of the Hb concentration, were studied in the presence and absence of inositol-P₆. Values of the observed rate constant, k_{obs} , were plotted against [DTNB] to obtain the apparent second order forward rate constant, k_F. K_{equ} decreased the orders of magnitude between pH 5.6 and 9.0 in the absence and presence of inositol-P₆. Inositol-P₆ increased the affinity of the major and minor Hb for DTNB but decreased the affinity of the minor oxy- and aquomet- Hb. Theoretical calculations from the pH dependence of K_{equ} showed that the pK_a values of the ionisable groups coupled to the DTNB reaction vary between 5.0 and 8.9. The equilibrium constants, K_{rt} , for the r = ttertiary structure transition, were 0.143 ± 0.05 and 0.446 ± 0.22 for the major and minor stripped horse haemoglobins respectively. In the presence of inositol-P₆, K_{rt} for the major and minor were 2.219 \pm 0.79 and 2.214 \pm 0.83 respectively. Theoretical calculations from the pH dependence of k_F showed that the pK_a values of the ionisable groups coupled to the DTNB reaction vary between 5.0 and 8.9. The plot of k_{obs} against [DTNB] was linear at each pH, with a non-negligible positive intercept. This is an indication that the reaction of CysF9[93] β of horse haemoglobins with DTNB is reversible. In the presence of inositol-P₆, values of k_F increased across the pH range. Under the same experimental conditions, the binding of inositol-P₆ to horse haemoglobin shifted the tertiary conformation in favour of the t state; the minor Hb has a higher affinity for DTNB than the major Hb except for aquomet with inositol- P_{6} .

Keywords: Haemoglobin, Equus caballus, Ellman's reagent, kinetics, equilibrium