RESERVOIR CHARACTERIZATION, MODELLING AND LATERAL PREDICTIONS USING MULTIVARIATE ANALYSIS: A CASE STUDY OF HEMS FIELD, BOHAI BAY, LIAOHE FIELD, CHINA

BY

ROTIMI, OLUWATOSIN JOHN

B. Sc (Geology) Ilorin; M. Sc (Applied Geophysics) Ibadan

A THESIS SUBMITTED

то

THE DEPARTMENT OF PETROLEUM ENGINEERING, SCHOOL OF ENGINEERING AND TECHNOLOGY, COLLEGE OF SCIENCE & TECHNOLOGY, COVENANT UNIVERSITY, OTA

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF DOCTOR OF PHILOSOPHY (Ph.D) DEGREE IN PETROLEUM GEOPHYSICS

JULY, 2013

CERTIFICATION

We certify that the thesis titled "Reservoir Characterization, Modelling and Lateral Predictions Using Multivariate Analysis: A Case Study of Hems field, Bohai bay, Liaohe field, China." is an original work carried out by Mr. Rotimi Oluwatosin John (CUGP070197) in the Department of Petroleum Engineering, Covenant University, Ota, under the supervision of Prof. B. D. Ako and Dr. C. C. Uhuegbu. We have examined and found the work acceptable for the award of a degree of Doctor of Philosophy in Petroleum Geophysics.

Prof. B. D. Ako Department of Applied Geophysics, Federal University of Technology, Akure

Dr. C. C. Uhuegbu Department of Physics, Covenant University

Dr. O.D. Orodu Head, Department of Petroleum Engineering, Covenant University

Prof. A. I. Olayinka (External Examiner) Department of Geology, University of Ibadan

Prof. S.S. Adefila Dean, College of Science & Technology Covenant University Signature / Date

Signature / Date

Signature / Date

Signature / Date.....

Signature / Date.....

DEDICATION

This research work is dedicated to my Lord Jesus Christ, the wisdom and source of life. May His name be praised forever for his continual release of grace and mercies in divine revelations to conclude this study. I also dedicate this to my lovely family, especially to my adorable daughter - Delightful-Laughter for being the latest *Abidemi*.

ACKNOWLEDGEMENTS

To the owner of the universe, the almighty God who gave me all I needed – wisdom, sound health, grace, mercy and life to accomplish this task with outstanding success, to him I ascribe all praise. He alone is worthy.

I will like to appreciate my supervisor Prof. B. D. Ako, for his mentorship, immense contribution, interest, advice, correction and thorough scrutiny of this work, your efforts have added glamour to this work this much sir. I also want to thank Dr. C.C. Uhuegbu for accepting to co-supervise me when he least expected after the demise of Prof. E. B. Babatunde. I like to appreciate Prof. C. T. Ako for his continuous fatherly advice towards the completion of this work. The support of the Head of the Department of Petroleum Engineering – Dr. O. D. Orodu is well appreciated. I am also grateful for the support and assistance of my colleagues (academic and non-academic) in the Department.

I want to appreciate the Chancellor of Covenant University for the vision that birthed this great Institution. I also appreciate the Management of Covenant University for giving me the enabling environment to perform and excel. I am indebted to TWAS-CAS for granting me the postgraduate fellowship to undertake the research work. I like to appreciate the Management of the Institute of Geology and Geophysics, CAS, Beijing, China for giving me a congenial atmosphere to study and research. I thank the following persons for their roles in the completion of this work: Prof. Mme Fu, CAS head office, Beijing, Prof. T. Zhou, IGGCAS. This will be incomplete without mentioning and appreciating my co-supervisor in the Key laboratory of Petroleum Resources, IGGCAS - Prof. Wang Zhenli, thank you sir for creating space for me in your laboratory and to be

part of your research team. Special appreciation goes to the China National Oil Corporation (CNOC) for the release of data for this study.

Many thanks to the following persons; Shu Mengcheng, Liang Yao, Zhou, Xue, Dianbo Dai, Anna, Ella, Hyacinth Nnamchi, Ugochukwu Okoro, Dr. Adeoye Emmanuel, Martins Omorogie, Peter Okoli, Emeka Enebeli, Quentin of Sinopec in Beijing, Mrs Elozino Olaniyan of SNEPCO, the member of the worship team Haidian English fellowship, Beijing, Carol, Lesley, John, and Bode Matthew of Sahara Energy. A warm thanks to Dr. Abiodun Adebayo for assistance and encouragement all the way.

To Pastor (Dr.) Daniel Rotimi, thanks for being an encourager and a mentor, your family is blessed as always. This will be incomplete without thanking the family of Barr. Rotimi Jacobs (SAN) for being used of God to start this in 2004, your family is blessed and your generation will always experience help from God. To my siblings, Sister Mayowa, Dr. Muyiwa, Kayode, Fikemi, Bukola, Wisdom, IseOluwa, Cousins, nephews and nieces, you are dear to my heart and I appreciate your love.

To my amiable and wonderful family, I am grateful for your understanding and support all these years, my darling wife, Omolola - you are a jewel indeed and will surely enjoy Gods' favour on all sides. My beautiful children, David Titoluwalase and Gabriella Delightful-Laughter, you are ever loved and will surely surpass this in your own time. Daddy loves you as always!

Daddy and Mummy, once again, I am most fortunate and grateful to God for blessing me with such wonderful parents. I am very grateful for all you have done. May you live long to reap the fruits of your labour, amen.

LIST OF ABBREVIATIONS

AI	Acoustic Impedance
SP	Spontaneous Potential
LLD	Deep Laterolog
EI	Elastic Impedance (EI 10, 20, 30)
V _p	P wave-velocity
V _s	S wave-velocity
V_p/V_s	P-velocity/ S-velocity Ratio
φ	Porosity (PHI)
CAL	Caliper log
AC	Acoustic/Sonic log
GR	Gamma Ray
S _w , S _{hc}	Water Saturation, Hydrocarbon Saturation
Temp	Temperature Log
BVW	Bulk Volume Water
CNL	Compensated Neutron Log
R _w	Water Resistivity
TST	True Stratigraphic Thickness
TVT	True Vertical Thickness
N/G	Net to Gross
К	Permeability
Electrofacies	L_facies
ρ	Rho (DENSITY)

μ	Mu
λ	Lambda
μρ	Mu Rho
λρ	Lambda Rho
SMT	Seismic MicroTech Software (The Kingdom Suite)
IP	Interactive Petrophysics Software
HRS	Hampson Russell Suite (CGG Veritas)
SIS	Sequential Indicator Simulation
TGS	Truncated Gaussian Simulation
SGS	Sequential Gaussian Simulation
ROI	Region of Interest
RMS	Root Mean Square

Measuration and property Symbols

cm	Centimetre
m	Metre
°C	Degree Celsius
g	Gramme
ms/gcc	Milliseconds per Gramme per Cubic Centimetre
μ	Shear Modulus
к	Bulk Modulus
σ	Poisson Ratio

TABLE OF CONTENTS

TITLE PAGEi
CERTIFICATIONii
DEDICATIONiii
ACKNOWLEDGEMENTSiv
LIST OF ACRONYMS AND ABBREVIATIONSvi
LIST OF FIGURESxii
LIST OF TABLESxxv
ABSTRACTxxvi

CHAPTER ONE

INTRODUCTION

1.1	Overview of study	1
1.2	Basic Theory of data set	8
1.2.1	Well logs	9
1.2.2	Seismic data	10
1.3	Statement of the Problem	14
1.4	Aim and Objectives of Study	15
1.5	Methodology	16

CHAPTER TWO

LITERATURE REVIEW

2.1	Previous work done using well logs and seismic data for reservoir	
	characterization	17

2.2	Location of study area	1
2.2.1	Geology of study area2	1
2.3 S	tratigraphic sequence	6

CHAPTER THREE

MATERIALS AND METHODS

3.1	Location and data
3.2	Well logs workflow
3.3	Well logs normalization
3.4	Clustering analysis
3.5	Missing logs prediction and computation
3.6	Well logs upscaling
3.7	Variogram analysis and simulation algorithms56
3.8	Seismic inversion and volume prediction62
3.8.1	Seismic inversion
3.8.2	Multi-attribute volume prediction
3.9	Geomodel - 3D Grid model73
3.10	Formulae for the logs rock properties
3.11	Seismic stratigraphy analysis methods

CHAPTER FOUR

RESULTS AND DISCUSSION

4.1	Surfaces and Zones	80
-----	--------------------	----

4.2	Stratigraphical patterns
4.3	Structural pattern
4.4	Well logs analysis and interpretations
4.4.1	Correlation
4.5	Facies model results
4.5.1	Surfaces103
4.5.2	Facies log103
4.5.3	Grid cell size
4.5.4	Zone partitions and Vertical boundaries105
4.6	Algorithm/variogram108
4.6.1	Quality control check of picked surfaces
4.7	Reservoir properties model results
4.8	Uncertainty analysis111
4.9	Facies model discussion
4.10	Geologic model (Geomodel)119
4.11	Validation of the facies model
4.12	Facies constrained structural styles and rock properties
4.12.1	Structural styles and features analysis
4.13	Stratigraphical analysis
4.13.1	Seismic stratigraphy and facies
4.14	Porosity and permeability model discussion
4.15	Application of seismic attributes for characterization146
4.16	Acoustic Impedance modeling discussion146

4.17	Relationship definitions	156
4.18	Offset correlation	173
4.19	Zone property maps	
4.20	Prediction beyond well control	
4.21	Sources of error	192

CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusion	193
5.2	Recommendations	

REFERENCES		

LIST OF FIGURES

Figure 1.1: Simple raypath diagram showing relationships between incidence,	
reflected and transmitted wave	12
Figure 2.1: Base-map of Hems field showing wells, inlines and crosslines	22
Figure 2.2: Location of the Bohai Basin	24
Figure 2.3: Distribution of Sags, Uplifts and main oil and gas fields in the	
distal portion of Bohai Bay	25
Figure 2.4: Stratigraphic column in part Bohai Bay Basin	27
Figure 3.1: Methodology chart for integrated reservoir characterization	
and modeling	31
Figure 3.2: Schematic presentation of Normalization parameters for the same	
curves (gamma ray). A is appearance before normalization, B is	
appearance after normalization	35
Figure 3.3: Normalization procedure (2 point) used for SP log	37
Figure 3.4: Histograms used for normalization showing full log in A and	
upper and lower zones in B and C	37
Figure 3.5: A normalization result panel showing the lower adjusted portion and	
respective histograms for upper and lower zones	37
Figure 3.6: Base map of Hems field with available wells and correlation line,	
inlines and crosslines	38
Figure 3.7: Clustering panel from Interactive Petrophysics [™] software (IP)	
VSH-volume of shale, PHI-porosity, SP-Spontaneous Potential	38
Figure 3.8: All populated cells in clustering run from IP software showing SP-	
Spontaneous potential, AC-Sonic and Rho-Density logs	41
Figure 3.9: All populated cells in clustering run from IP software showing	
VSH-volume of shale, PHI-porosity and SP-Spontaneous Potential logs	41
Figure 3.10: Cluster grouping dendrogram for cluster group 5	42
Figure 3.11: Cluster grouping dendrogram for cluster group 8	42
Figure 3.12: Cluster grouping dendrogram for cluster group 11	43
Figure 3.13: Cluster grouping dendrogram for cluster group 13	43

Figure 3.14: Cluster grouping dendrogram for cluster group 3	44
Figure 3.15: Cluster operational panel showing histograms and crossplots on	
model using 7wells and forming 11groups	44
Figure 3.16: Cluster operational panel showing histograms and crossplots on	
model using 8 wells and forming 15groups	45
Figure 3.17: Facies clustering model for all groups showing curve names,	
initial 15 seed clusters and all experimented clusters	47
Figure 3.18: Crossplots and histogram panels for clustering group 5	47
Figure 3.19: Crossplots and histogram panels for clustering group 3	48
Figure 3.20: Randomness plot for the groups in the clustering run for electrofacies	48
Figure 3.21: Multi well correlation panel of line 8 wells used in model building	
showing the result of the clustering run for all groups	49
Figure 3.22: Result of the unsupervised neural network that classified the	
acoustic impedance values from the inversion result into 2 classes	50
Figure 3.23: Histogram panel for predicted logs showing distribution within	
Gaussian fit	52
Figure 3.24: Variation of Bin distributions for predicted logs	52
Figure 3.25: Raw porosity logs from wells in the study area	55
Figure 3.26: Upscaled porosity logs in a simulation case for further analysis	55
Figure 3.27: Petrel data analysis panel showing different fields to be filled	
for proper anisotropic analysis of data. (Major direction)	58
Figure 3.28: Petrel data analysis panel showing different fields to be filled	
for proper anisotropic analysis of data. (Minor direction)	59
Figure 3.29: Petrel data analysis panel showing different fields to be filled	
for proper anisotropic analysis of data. (Vertical direction)	60
Figure 3.30: Closer view the search cone and variogram function panel	
in Petrel data analysis in the major direction	61
Figure 3.31: Closer view the search cone and variogram function panel	
in Petrel data analysis in the minor direction	61
Figure 3.32: Closer view the search cone and variogram function panel in	
Petrel data analysis in the vertical direction	61

Figure 3.33: Composite trace extraction panel by neighbourhood method	63
Figure 3.34: Statistical wavelet extracted for well 43 in the time domain	63
Figure 3.35: Statistical wavelet extracted for well 7 in the time domain	64
Figure 3.36: Statistical wavelet extracted for well 20 on the frequency domain	64
Figure 3.37: Panel showing stretch and squeeze applied to well m77 and	
correlation parameters	65
Figure 3.38: Panel showing correlation validation after stretch and squeeze	
operations	65
Figure 3.39: Root mean square (RMS) error plot between original log and	
inverted result	67
Figure 3.40: Single attribute correlation result panel	69
Figure 3.41: Multi-attribute correlation result panel	69
Figure 3.42: Multi-attribute regression cross-correlation plot for 3 attributes	70
Figure 3.43: Wells – attribute regression correlation for 3 attributes	70
Figure 3.44: Wells – attribute regression correlation for 4 attributes	71
Figure 3.45: Wells – attribute probabilistic neural network correlation for	
4 attributes	71
Figure 3.46: Multi-attribute probabilistic neural network cross-correlation	
plot for Figure 3.41	72
Figure 3.47: Average error plot for wells used in multi-attributes volume prediction	72
Figure 3.48: Log panel for well m34 showing various computed logs.	75
Figure 3.49: Different types of geological boundaries defining seismic sequences	77
Figure 3.50: Divers internal bedforms that typifies different seismic facies within	
sedimentary sequences identified on seismic section	77
Figure 3.51: Classification of internal reflection patterns of seismic data	78
Figure 3.52: Facies reflection patterns visually identified from seismic	
data (crossline 1390)	79
Figure 4.1: Seismic volume and horizons interpreted on the study area.	
Inline 2310 and crossline 1080 is shown on A and C	81
Figure 4.2: Horizons interpreted from the Hems field and presented in table 1	82
Figure 4.3: Thick wedge deposit observed on inline 2186 in the study area	84

Figure 4.4: Regional structural pattern of Liaohe oilfield and buried hill.	
Seismic section is inline 2186 shown on A	85
Figure 4.5: Regional structural pattern of Liaohe oilfield showing major	
strike-slip faults. A and B are results of geometric attribute	
enhanced structural attitude of Hems field. Location of Hems	
field captured in red oval	87
Figure 4.6: Normal vintage seismic showing inline 2125 prior to structural	
smoothing	89
Figure 4.7: Inline 2125 after subjecting to structural smoothing with Gaussian	
filter and edge enhanced operation	89
Figure 4.8: Trace amplitude constrained Quadrature trace on line 2130 with	
a time slice and fault planes interpreted	90
Figure 4.9: Seismic section showing mapped horizons (Givens, Hallux,	
Miller and Brisk)	91
Figure 4.10: Variance cube on volume amplitude data to enhance edge	
effect showing time slice and line 2070	92
Figure 4.11: PCA constrained to local structural dip showing time slice and	
line 2070	92
Figure 4.12: Field base map with 12 wells shown in figures $4.10 - 4.16$	94
Figure 4.13: Various logs interpreted for wells m34 and m36	95
Figure 4.14: Various logs interpreted for wells m47 and m52	97
Figure 4.15: Various logs interpreted for wells m77 and m255	98
Figure 4.16: Various logs interpreted for wells m256 and m531	99
Figure 4.17: Various logs interpreted for wells x7 and x43	100
Figure 4.18: Various logs interpreted for wells x109 and x428	101
Figure 4.19: Correlation line panel with 8wells, 4 logs each and well top	
delineating hydrocarbon zones interpreted	102
Figure 4.20: Surfaces built from horizon interpretation of the study area.	
The simulation case and zone inherits its attitude from it	104
Figure 4.21: Inline 2080 and the simulation case for the middle portion on	
depth property	106

xv

Figure 4.22: Modelled middle portion of the Hems field with bounding	
horizon Hallux and Miller. Statistics: Top horizon – Hallux,	
Base horizon – Miller, Number of faults – 16, Number of	
3D nodes – 23339403, Number of layers – 400	107
Figure 4.23: 35 of 50 realizations of SIS facies model associations for Hems field	109
Figure 4.24: Mean of 50 realizations of facies model for Hems field	110
Figure 4.25: Intersection fence for facies associations in offset of m34 and m47	113
Figure 4.26: Intersection fence for porosity property in offset of m34 and m47	113
Figure 4.27: Partitioned facies model	115
Figure 4.28: Non-partitioned facies model	115
Figure 4.29: Correlation lines from mean of SIS facies model, lines 1-6	116
Figure 4.30: Correlation lines from mean of SIS facies model, lines 7-11	117
Figure 4.31: All correlation lines intersection and surface locations on	
SIS facies model	118
Figure 4.32: SIS facies model filtered visualization in direct and inverse cell units	118
Figure 4.33: Lenses of sand and shale facies traced from well m34 captured	
in red dotted ovals	120
Figure 4.34: Facies models (a.) validation model and (b.) original model	122
Figure 4.35: Lithofacies interpretation result from correlation line	
(a.) validation model, (b.) original model	122
Figure 4.36: Intersection surface projection of facies model showing hanging	
and footwall of reverse fault in the east-west direction	124
Figure 4.37: Intersection surface projection of facies model showing hanging	
and footwall of reverse fault in the east-west direction	124
Figure 4.38: Intersection surface projection of facies model in the east-west	
direction showing reverse fault blocks	125
Figure 4.39: Intersection surface projection of facies model in the east-west	
direction showing appearance and disappearance of fault planes	125
Figure 4.40: Intersection surface projection of facies model in the east-west	
direction showing isolated upthrown (horst) and downthrown	
fault blocks (graben)	126

xvi

Figure 4.41: Intersection surface projection of facies model in the east-west	
direction showing extended unfaulted surface but still faulted at	
the base	126
Figure 4.42: Intersection surface projection of facies model showing hanging	
walls and footwalls of reverse fault in the east-west direction	129
Figure 4.43: Intersection surface projection of anisotropic porosity model for	
zone showing values across fault blocks in the east-west direction	
and the variation within the modeled zone	129
Figure 4.44: Intersection surface projection of anisotropic permeability model	
for zone showing values variation across fault blocks in the	
east-west direction. Range between 0.35 and 3mD	130
Figure 4.45: Intersection surface projection of hydrocarbon saturation (S_{hc})	
model for zone showing values across fault blocks in the east-west	
direction and variation within modeled zone	130
Figure 4.46: Intersection surface projection of Volume of shale (V_{sh}) model	
for zone showing its values across fault blocks in the east-west	
direction and variation within the modeled zone	131
Figure 4.47: Intersection surface projection of Acoustic impedance (AI)	
model of zone showing rock property across fault blocks in the	
east-west direction and variation within the modeled zone	131
Figure 4.48: Crossline 1360 showing the parallel and conformable upper	
reflections on the field	133
Figure 4.49: Seismic stratigraphic volume attribute showing Chaos attribute	
for the vintage seismic volume	134
Figure 4.50: Crossline 1390 showing a broader view of the stratigraphy as	
interpreted from the reflection patterns in the study area	135
Figure 4.51: Crossline 1390 showing a broader view of the stratigraphy and	
sequence definitions as interpreted from the reflection patterns	
in the study area	137
Figure 4.52: Porosity volume prediction result from P-impedance inversion	139
Figure 4.53: 35 of 50 realizations of SIS property porosity model for Hems field	140

xvii

Figure 4.54: Porosity modeled with co-kriging using secondary property of	
Permeability (local varying mean)	141
Figure 4.55: Porosity modeled with collocated co-kriging using secondary	
property of permeability (constant correlation coefficient 0.7676)	141
Figure 4.56: Modeled porosity volume for middle of Hems field using vertical	
function (i.e. regression based linear correlation cross plot of	
porosity and permeability)	142
Figure 4.57: Porosity and permeability vertical property crossplot used in	
the Figure 4.48 model simulation	142
Figure 4.58: Facies constrained SGS porosity model (i.e. facies as	
secondary variable)	144
Figure 4.59: SIS modeled facies used as secondary property for the porosity	
model in Figure 4.57	144
Figure 4.60: Initial porosity model intersection view for line 8	145
Figure 4.61: Initial SP model intersection view for line 8	145
Figure 4.62: Facies model from using cutoffs. SP-105 and porosity-0.1 for line 8	145
Figure 4.63: Acoustic impedance inversion result from STRATA®	148
Figure 4.64: SGS modeled Acoustic impedance property for the middle zone	148
Figure 4.65: Comparison of acoustic impedance inversion output and well	
logs analysis for XL1355 and well m34	149
Figure 4.66: Comparison of acoustic impedance inversion output and well	
logs analysis for XL1351 and well m47	150
Figure 4.67: Acoustic impedance and Net to Gross	151
Figure 4.68: Acoustic impedance multiple histogram and cumulative distribution	
function	151
Figure 4.69: Acoustic impedance property model used for Net to Gross	153
Figure 4.70: Net to gross property derived from Acoustic impedance	
property using 8000m/s/gcc	153
Figure 4.71: Index filtered Acoustic impedance property model used for	
Net to gross	154
Figure 4.72: Index filtered Net to gross property derived from Acoustic	

	impedance property using 8000m/s/gcc cutoff value	154
Figure 4.73:	Index filtered SGS modeled Elastic impedance 10 (EI10)	155
Figure 4.74:	Index filtered SGS modeled Elastic impedance 20 (EI20)	155
Figure 4.75:	Surface maps of the three regions of interest horizon blocks	
	chosen for relation definitions. (1) Seismic RMS amplitude of	
	the ROI horizon surfaces, (2) hydrocarbon saturation property	
	of the ROI horizon surfaces	157
Figure 4.76:	Regions of interest (ROI) RMS amplitude volumes within the	
	larger survey for the field of study showing the encapsulated wells	157
Figure 4.77:	Regions of interest (ROI) porosity modelled property (middle	
	portion of volume) sampled into seismic resolution within the	
	larger survey for the field of study	158
Figure 4.78:	Sculptured horizon cubes of Regions of interest (ROI) for porosity	
	modelled property and RMS amplitude	158
Figure 4.79:	Enlarged view of ROI horizon cube A, showing wells and depth	
	values. The attitude of the horizon and zone is clearly seen here	159
Figure 4.80:	Enlarged view of the ROI horizon cube B, showing wells and depth	
	values. The attitude of the horizon and zone is clearly seen here	160
Figure 4.81:	Enlarged view of the ROI horizon cube C, showing wells and depth	
	values. The attitude of the horizon and zone is clearly seen here	161
Figure 4.82:	Rock property surface attribute extraction for horizon cube A at	
	90 m below surface	164
Figure 4.83:	Rock property surface attribute extraction for horizon cube A at	
	90 m below surface	165
Figure 4.84:	Rock property surface attribute extraction for horizon cube B	
	at 120 m below surface	166
Figure 4.85:	Rock property surface attribute extraction for horizon cube B	
	at 120 m below surface	167
Figure 4.86:	Rock property surface attribute extraction for horizon cube C	
	at 105 m below surface	168
Figure 4.87:	Rock property surface attribute extraction for horizon cube C	

at 105 m below surface	169
Figure 4.88: Well logs section and an intersection slice with facies model	
projection for wells within horizon cube A	174
Figure 4.89: Well logs section and an intersection slice with facies model	
projection for wells within horizon cube B	175
Figure 4.90: Well logs section and an intersection slice with facies model	
projection for wells m34 and m47 within horizon cube B	176
Figure 4.91: Well logs section and an intersection slice with facies model	
projection for wells m47 and m36 within horizon cube B	177
Figure 4.92: Combination of all wells in horizon block B and displayed in	
Figures 4.88, 4.89 and 4.90	178
Figure 4.93: Well logs section and an intersection slice with facies model	
projection for wells m47 and m69 within horizon cube C	179
Figure 4.94: Well logs section and an intersection slice with facies model	
projection for wells m69 and m255 within horizon cube C	180
Figure 4.95: Well logs section and an intersection slice with facies model	
projection for wells within horizon cube C	181
Figure 4.96: Combination of all wells in horizon block C and displayed in	
Figures 4.92, 4.93 and 4.94.	182
Figure 4.97: Average porosity map for modeled zone	184
Figure 4.98: Average permeability map for modeled zone	184
Figure 4.99: Average hydrocarbon saturation map for modeled zone	185
Figure 4.100: Average volume of shale map for modeled zone	185
Figure 4.101: Average Acoustic impedance (AI) map for modeled zone	187
Figure 4.102: Isopach map for sand facie in modeled	187
Figure 4.103: Basemap of study area showing locations outside well control	189
Figure 4.104: Intersection view of wedge structure from B part of	
Figure 4.102 showing Inline 2097 and wells	190
Figure 4.105: Intersection view of wedge structure from B part of	
Figure 4.102 showing continuity on Inline 2097 and wells	190
Figure 4.106: Intersection blocks from B part of figure 4.102	191

LIST OF TABLES

 Table 3.1: Types and descriptions of well logs
 32

 Table 4.1: Horizons interpreted defining the different hydrocarbon zones
 82

 in the study area
 82

ABSTRACT

Qualitative and quantitative predictions of reservoir properties and geometries beyond well control are vital to understanding the intrinsic characteristics of subsurface formations. Using well log data, 3D Seismic data, Geostatistical simulations, reservoir characterization, modeling via multivariate analysis was carried out for and lateral predictions on data set obtained from Liaohe field, western sag, Bohai Bay, Northern China. This sag is an intra-cratonic basin of Archean to Recent age.

Stratigraphic analysis, structural analysis, geomodel building and geostatistical methods were used. Well logs methods include conventional interpretation by picking sand units based on Self potential log (SP) and Resistivity logs (LLD) in addition to computation of volume of shale and other petrophysical properties. Unavailable logs like Density and Neutron were predicted from a cored well whilst missing logs sections were predicted using neural networks and fuzzy logic. Clustering technique was employed to predict facies (electrofacies) occurrences based on various log types. Sand tops earlier picked from well logs were laterally traced on seismic sections after well to seismic tie. Structural interpretation was done to map the architectural pattern of the rock units. The poststack seismic inversion was done and calibrated with logs from 12 wells producing acoustic impedance and elastic impedance volumes. Multi-attribute analysis was used to predict rock properties like porosity from inversion results and vintage seismic data. Modeling of variogram and structural elements was done, after which suitable geostatistical simulation algorithms were used to populate cells and realize multiple equiprobable rock properties for the zone of interest after upscaling all needed rock properties into the earlier built non-partitioned simulation case. These were achieved using standard software such as Petrel[®]2008, CGGVeritas[™] Hampson Russell suite (2008). Interactive Petrophysics v3.5, Kingdom Suite (SMT) 2008, GeoGraphix[®] 2008 and Surfer 9 (Golden Software).

Results show that clustering models converged to 2 classes namely sand and shale. Sand and shale sequences are fairly mixed and vertically inconsistent as a result of rapid deposition amidst unconsolidation on the toe of the sag structure. Petrophysical values viz hydrocarbon saturation is above 70%, porosity between 0.1 and 0.4, permeability between 0.6 and 3.0mD and volume of shale between 0.3 and 0.8. Structurally, 35 major and minor faults were mapped with 15 used for modeling. Prevailing fault orientation is northeast/southwest, dipping south-easterly and trending northwest-southeast direction. Bedforms are complex with gradual lateral changes in lithofacies. Sharp boundaries in horizontal direction define different depositional facies with a flexible non-partitioned model adopted. The lithofacies model result showed continuous lithological units with inconsistencies of stratigraphic and structural truncations which were also replicated on the rock properties model with clear heterogeneity seen in the observed values. Horizon cubes produced in regions of interest defined relationships that are clearly correlative with rock properties than with seismic attributes/properties. Majority, some of the properties predicted from multiattribute analysis of seismic data calibrated with computed logs correlated well with the simulated rock property volumes.

In conclusion, successful prediction has been done for rock properties at inter-well points and locations beyond well control. The heavy hydrocarbon in reservoir units of the field can be recovered by steam injection method (SAGD). The methodology and interpretation approach adopted in this work can be implemented initially with very few wells for multiattribute volume prediction, seismic inversion and on a larger scale with more wells for geostatistical simulations and modeling.