RESEARCH NOTE

Studies on the Production of Protein Hydrolysates from Palm Kernel Meal and Jatropha curcas Seed Meal

R.A. OLOYO* AND N.O.A. ILELABOYE

Department of Science Laboratory Technology Federal Polytechnic, P.M.B. 50 Ilaro, Ogun State, Nigeria

Three trials were conducted to study the optimum conditions required for production of protein hydrolysates from palm kernel meal and *Jatropha curcas* seed meal. Hydrochloric (HCl) and sulphuric (H_2SO_4) acids of varying concentrations (2, 4, 6, 8, 10 moles dm³) were tested for hydrolysis of each of the two plant sources at different temperatures (65, 80, 95, 110, 125°C) and for different durations (6, 12, 18, 24, 30 h). Results indicated that with both acids, protein hydrolysates yield and amino acid decomposition were positively and significantly correlated with acid concentration, temperature and duration of hydrolysis. However, HCl produced higher yield of hydrolysates with lower decomposition of amino acids from both protein sources. High yield of hydrolysates coupled with higher degree of amino acid decomposition were observed in *J. curcas* seed meal than in palm kernel meal. Optimum yield of hydrolysates was obtained from *J. curcas* seed meal when hydrolysed with either 6 moles dm³ HCl or 8 moles dm³ H₂SO₄ at 95°C for 18 h. In case of palm kernel seed meal, optimum yield was achieved at 110°C with either 8 moles dm³ HCl or 10 moles dm³ H₂SO₄ for 24 h and 18 h, respectively.

Keywords : Palm kernel meal, Jatropha curcas seed meal, Protein hydrolysates.

Protein hydrolysates obtained from both animal and vegetable protein sources find useful applications in food industries where they are utilised as condiments and amino acid sources in diets (Meister 1965). High production cost of hydrolysates associated with animal protein sources particularly in developing countries including Nigeria where animal production is low has made popular the use of vegetable sources (Pham and del Rosario 1983). The study reported here concerned determination of optimum conditions of acid hydrolysis of palm kernel meal and *J. curcas* seed meal proteins. The vegetable protein sources reported were chosen in view of their relatively high availability in the country and the low cost protein advantage that they offer.

J. curcas, physic nut tree, is an oleaginous shrub that grows spontaneously and under cultivation in dry tropical countries and in humid equatorial regions. Although it prefers cool soils, it grows vigorously with little or no care on arid escarpments and can adapt to long periods without rain. The seed is a good source of curcas oil used as fuel oil and for manufacture of soap, illumination and lubricating tin wood industry. In Nigeria, the tree is planted only as hedging plant for demarcating boundaries in the households and as a windbreak and barrier against erosion on farm lands (Nir 1988).

Kernels and seeds of freshly harvested palm fruits and *J. curcas* fruits were oven dried at 80°C for 24 h, and ground in a Waring mill to produce powder, which passed through an 80 mesh (180 μ m). Milled samples were de-fatted by extracting their lipids with cold acetone 1:3 w/v in three successive times prior to total N determination by using the Micro Kjeldahl method (AOAC 1990). Protein contents were estimated by multiplying % N with 6.25. The bulk of each of the milled samples was divided into three batches and then used in three hydrolysis trials conducted to determine optimum conditions for production of protein hydrolysates.

* Corresponding Author

Determination of optimum acid concentration for hydrolysis - Trial 1: In the first batch each of the two milled vegetable samples was subdivided into twenty equal portions (i.e ten duplicate groups) and then randomly allotted to a 2 x 5 factorial treatment combination. The factors were acid type (HCI and H₂SO₄) and acid concentration (2, 4, 6, 8, 10 moles dm⁻³). Hydrolysis of proteins in samples was done with the respective acid types and concentrations at a fixed temperature of 110°C for 24 h. Yield of protein hydrolysates and the extent of decomposition of amino acid produced were measured as quantities of amino acid - N and ammonium - nitrogen (NH⁴⁺ - N) in hydrolysates, respectively (Pham and del Rosario 1983).

Determination of optimum temperature for hydrolysis -Trial 2 : In the second batch each of the milled vegetable samples was subdivided into twenty equal portions as in the first trial and then randomly allotted to a 2 x 5 factorial treatment combination. The factors in this case were acid type (HCI and H_2SO_4) and temperature (65, 80, 95, 110, 125°C). Acid concentration used for hydrolysis in each of the respective treatment group was based on the optimum concentration for each acid type and vegetable protein source resulting from the observations in the first trial. Duration of hydrolysis was maintained at 24 h. Yield of hydrolysates and decomposition of amino acid were measured as in the previous trial.

Determination of optimum duration of hydrolysis - Trial 3 : Ten duplicate groups (twenty equal subdivided portions) of the third batches of each of the milled samples were randomly assigned to a 2 x 5 factorial treatment combination in the third hydrolysis trial. The factors being acid type (HCI and H₂SO₄) and duration of hydrolysis (6, 12, 18, 24, 30 h). For each vegetable protein source, optimum temperature and acid concentration conditions resulting from the observations in the first and second trials were maintained for hydrolysis. Yield of hydrolysates and decomposition of amino acid were measured as in the two previous trials.

328

ABLE 1. EFFECT OF ACID CONCENTRATION AND TYPE ON YIELD OF PROTEIN HYDROLYSATES AND AMINO ACID DECOMPOSITION AFTER 24 H OF HYDROLYSIS OF PALM KERNEL MEAL (PKM) AND JATROPHA CURCAS (JC) AT 110°C.

Acid	Concentration, moles dm ³	Yield of hydrolys g amino acid-N		Decomposition of amino acid, mg NH _a * - N 100g ¹		
y dialog say		PKM	JC	РКМ ЈС		
HCI	2	71.15 ^d	.77.04 ^d	3.00° 6.00°		
	4	88.94°	91.34°	3.50° 6.50 ^{bc}		
	6	93.18 ^b	97.70 ^b	4.00 ^b 7.50 ^{ab}		
	8	96.56 ^{ab}	100.00ª	5.00 ^b 8.50 ^a		
	10	100.00ª	100.00ª	6.50ª 9.00ª		
	Mean1*	89.996	93.216	4.40 7.50		
H ₂ SO ₄	2	38.29'	50,92°	7.00 ^r 12.00 ^s		
1. Alexandre and the second se	4 .	59.64 ^s	79.72	9.50 ^r 17.00 ^s		
	6	74.74	90.359	12.50 ^q 41.00 ^r		
li de la companya de	. 8	85.70 ^q	97.05 ^p	14.50 ^q 71.00 ^q		
inina. Secto	10 Mean²+	98.25 ^p 71.324	100.00 ^p 83.608	17.50p97.00p12.2047.60		
the literate						

Mean values in a column within an acid type followed by different superscripts (a-d for HCl group; p-t for H₂SO₄ group) differ significantly at p<0.05 "mean values for the HCl group; ²⁺ mean values for the H₂SO₄ group

Statistical analysis : Results obtained were subjected to analysis of variance and regression and correlation analyses in accordance with the procedures of Steel and Torrie (1980). Significantly different treatment means were separated by multiple range test of Duncan (1955). palm kernel meal and *J. curcas* seed meal were 19.67 and 38.98%, respectively. The yield of protein hydrolysates from both vegetable protein sources were remarkably influenced by the type and concentration of acid used for the hydrolysis at 110°C (Table 1). Irrespective of the protein source and type of acid used, yield was positively and significantly correlated with acid concentration (Table 2). However, the rates of release

Effect of acid type and concentration - Trial 1 : Results of nitrogen determination showed that the protein contents of

TABLE 2. REGRESSION EQUATIONS (LINES) SHOWING RELATIONSHIP BETWEEN YIELD OF HYDROLYSATES (Y) OR DECOMPOSITION OF AMINO ACIDS (Y₀) AND CONDITIONS OF HYDROLYSIS-ACID CONCENTRATION, TEMPERATURE (θ) AND DURATION OF HYDROLYSIS (T).

Parameters	JC			PKM		
	Regression line	R2'	r*	Regression line	R2*	1
Yield and acid concentration	Y = 14.825 Ln [HCI] + 68.746	0.9409	0.8885	Y = 17.4[HCI] + 61.244	0.9598	0.9150
	$Y = 30.782[H_2SO_4] + 32.747$	0.9698	0.9192	$Y = 36.471Ln [H_2SO_4] + 11.123$	0.9898	0.9907
Yield and temperature (0)	Y = -0.03440 ² + 7.81580 - 339.660 HCI hydrolysis)	in 0.9806	0.8929	Y = -0.01930 ² + 5.1440 - 237.95 (in HCl hydrolysis)	0.9166	0.9323
	$\begin{array}{l} Y = -0.0332\theta^2 + 7.64\theta - 335.67 \mbox{ (in } \\ H_2 SO_4 \mbox{ hydrolysis)} \end{array}$	0.9764	0.9025	$ Y = -0.00260^2 + 2.00530 - 105.51 $ (in H_2SO_4 hydrolysis)	0.9374	0.9677
Yield and time (t)	$Y = 0.1007t^2 + 4.7684t + 46.188$ (i HCl hydrolysis)	n 0.9659	0.8332	$Y = -0.1218t^{2} + 6.1019t + 24.382$ (in HCl hydrolysis)	0.9234	0.8580
	$ \begin{array}{l} Y = -0.1006t^2 + \ 4.764t \ + \ 45.918 \ (i \\ H_2 SO_4 \ hydrolysis) \end{array} $	n 0.9512	0.8268	Y = -0.1054t ² + 5.4897t $+$ 24.722 (in H_2SO_4 hydrolysis)	0.9890	0.9100
Decomposition and acid concentration	$Y_0 = 1.923Ln [HCI] + 4.3251$	0.9195	0.9923	$Y_0 = 2.3938e^{0.0952[HCI]}$	0.9795	0.9687
	Y _o = 6.6266e 0.2805[H2SO4]	0.974	0.9790	$Y_{0} = 4.5782[H_{2}SO_{4}]^{0.5637}$	0.9884	0.9985
Decomposition and temperature (0)	Y _o - 0.00360² - 0.53290 + 23.138 (i HCl hydrolysis)	n 0.9600	0.9007	Yo = 0.00380 ² - 0.59310 + 26.091 (in HCl hydrolysis)	0.9501	0.8584
	$Y_o = 0.8362e^{0.026[\theta]}$ (in H_2SO_4 hydroly	sis) 0.9641	0.9194	Yo = $0.8313e^{0.0251[0]}$ (in H ₂ SO ₄ hydrolysis) 0.9618	0.9280
Decomposition and time (t)	Y _o = 0.4444t² - 11.6t + 68.4 (in HCI hydrolysis)	0.8996	0.7708	$Y_o = 2.151e^{0.0548t}$ (in HCI hydrolysis)	0.9354	0.7862
	$Y_0 = 0.4609t^2 - 11.023t + 67.048$ (i H ₂ SO ₄ hydrolysis)	n 0.9820	0.8544	$Y_0 = 0.3081t^2 - 4.7768t + 22.16$ (in H_2SO_4 hydrolysis)	0.9107	0.9018
*Significant at p <0.05	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				5 e.,	

of amino acids from the hydrolysis of test protein sources differ with type and concentration of acid. With both test protein sources, mean yields of protein hydrolysates were more in case of HCI than H2SO4. Whereas 6 moles dm3 HCI was optimum for hydrolysis of J. curcas seed meal protein, 8 moles dm³ HCl was optimum for hydrolysis of palm kernel meal. Complete hydrolysis of J. curcas seed meal and palm kernel meal proteins was achieved with 8 and 10 moles dm³ HCI, respectively. While complete hydrolysis of J. curcas was achieved with 10 moles dm⁻³ H₂SO₄, the highest acid concentration tested was inadequate for complete release of amino acids from palm kernel meal. However, 8 and 10 moles dm³ of the acid appeared optimum for the hydrolysis of the proteins of the test sources. It appeared therefore that J. curcas was more susceptible to acid hydrolysis than palm kernel meal. Lawrence and Moore (1951) reported that the higher the protein concentration in the source the higher the rate of acid hydrolysis of protein. Furthermore, the authors noted that impurities such as fat and carbohydrate in the source inhibited the hydrolytic reaction of the acid and the peptide bonds of protein. Pham and del Rosario (1983) observed higher resistance to acid hydrolysis of protein from coconut compared with that of soybean due to higher fat and carbohydrate contents of the former. Lower protein content of palm kernel meal coupled with its higher carbohydrate content (Oyenuga 1968) might have accounted for the higher resistance of its protein to acid hydrolysis The higher mean yield of hydrolysates recorded with HCI as the medium over H_aSO, at the same concentration and for the same duration of hydrolysis is indicative of achievement of higher rate of hydrolysis with the former; and this finding confirmed earlier finding of Light and Smith (1963).

A serious problem associated with acid hydrolysis of protein is the destruction of some amino acids. Harfenist (1953) and Hirs et al (1954) showed that the degree of destruction is a function of the composition of the protein, the temperature, the time, and the concentration of protein used for hydrolysis. In the present study, the degree of decomposition of amino acids of the hydrolysates of both vegetable protein sources was significantly and positively correlated with the acid concentration, temperature and time used for the hydrolysis irrespective of the type of acid used. The regression equations describing the relationships, coefficients of estimation, and correlation coefficients are given in Table 2. Heating with H_sSO, caused more destruction of amino acids in the hydrolysates of both protein sources than when HCI was used for the hydrolysis. Also, greater losses of amino acids were noted in J. curcas seed meal protein hydrolysates than in the palm kernel meal protein hydrolysates when either of the acid types was used (Table 1). However, for both vegetable protein sources while 6 moles dm³ HCl kept amino acid decomposition at marginal level, 4 moles dm³ of the acid maintained the destruction at a low level. With H₂SO₄, 8 moles dm⁻³ caused marginal loss of amino acid in palm kernel meal protein hydrolysates, whereas 6 moles dm⁻³ of the acid caused marginal destruction in J. curcas. Low level of destruction in both protein sources was observed at 4 moles dm3 of H2SO4.

Effect of temperature - Trial 2 : In order to optimise the energy utilisation for production of hydrolysates from the two

TABLE 3. EFFECT OF TEMPERATURE ON YIELD OF PROTEIN HYDROLYSATES AND AMINO ACID DECOMPOSITION AFTER 24 H OF HYDROLYSIS OF PALM KERNEL MEAL (PKM) AND JATROPHA CURCAS (JC) USING OPTIMUM CONCENTRATIONS OF HCI AND H₂SO₄.

Acid type	Temperature, °C	Yield of hydrolysa g amino acid - N	-	Decomposition of amino acid, mg NH ₄ - N 100g ⁻¹		
	1.5	PKM	JC	PKM	JC	
HCI	65	. 21.25d	24.50s	3.10b	3.30b	
	80	32.90c	59.85b	3.50b	4.00b	
1-3	95	87.40b	98.80a	4.20b	5.40b	
	110	95.73a 🕴	100.00a	5.40b	6.70b	
	125	100.00a	100.00a	11.50a	13.10a	
Mean ¹⁺		67.456	76.63	5.54	6.50	
H ₂ SO ₄	65	19.02s	22.85r	4.00r	4.60r	
	80	28.50r	55.70q	7.45r	7.70r	
	95	58.60q	97.36p	8.35r	9.25r	
	110	96.60p	100.00p	11.50q	13.10q	
	125	98.00p	100.00p	21.20p	25.35p	
Mean ²⁺		60.144	75.182	10.50	12.00	

* Mean values in a column within an acid group followed by different letters (i.e. a - d for HCI group; p - t for H₂SO₄ group) differ significantly at P>0.05

¹⁺ Mean values for the HCl group;²⁺ mean values for the H₂SO₄ group, optimum concentrations of HCl is 8 and 6 moles dm³ and H₂SO₄ is 10 and 8 moles dm³ for PKM and JC, respectively under both yield of hydrolysates and decomposition of amino acid.

protein sources, hydrolysis were carried out with each of the sources at the optimum acid concentration that resulted from the trial 1, that is, J. curcas (6 mole dm³ HCI; 8 moles dm³ H_sSO₂) and palm kernel meal (8 moles dm³ HCl; 10 moles dm³ H₂SO₄). Duration of hydrolysis was maintained at 24 h in all cases. Regardless of the acid type, the temperature of hydrolysis significantly affected rate of release of amino acids from both protein sources (Table 3) and the yield of hydrolysates and the temperature of hydrolysis were positively and significantly correlated (Table 2). Whereas complete hydrolysis of palm kernel meal protein was achieved at 125°C with 8 moles dm³ HCl, lower acid concentration (6 moles dm⁻³) at 110°C brought about complete hydrolysis of J. curcas protein in 24 h (Table 3). However, optimal yields of the hydrolysates were obtained from hydrolysis carried out at 110°C and 95°C with the respective acid strengths for palm kernel meal and J. curcas, respectively. In case of H2SO4, while 10 moles dm⁻³ was unable to bring about complete hydrolysis of palm kernel meal protein at the highest temperature tested (125°C) in 24 h, a lower strength of the acid (8 moles dm⁻³) caused complete release of amino acids from J. curcas protein at 110°C within the same duration of hydrolysis. However, hydrolysis of palm kernel meal protein with 10 moles dm3 H₂SO₄ at 110°C appeared adequate. For J. curcas, 8 moles dm⁻³ H₂SO₄ at 95°C seemed adequate.

Results of decomposition of the amino acids (Table 3) showed that hydrolysing protein from the two sources with HCl at the optimum concentrations as determined in trial 1 and heating at temperature up 110°C kept amino acid decomposition

at a low level. On the other hand, hydrolysing proteins from both sources with H_2SO_4 at temperature up to 95°C using the respective optimum acid concentrations maintained low-level destruction of amino acids. Heating the hydrolysates at 110°C with H_2SO_4 resulted in marginal destruction of amino acids.

Effect of time - Trial 3 : In this experiment, hydrolysis trials were carried out for duration ranging from 6 to 30 h using the optimal acid concentrations and temperatures of hydrolysis observed for each protein source in the previous two trials. Irrespective of the protein source, acid type and concentration and temperature, yield of hydrolysates was significantly affected by the time (Table 4). Both variables were positively and significantly correlated (Table 2). The result seemed to suggest that yield of amino acid in acidic hydrolysis of protein is a function of time, and it is a view supported by earlier finding (Light and Smith 1963). With HCI as the medium, complete hydrolysis of J. curcas seed meal and palm kernel meal proteins were achieved in 24 and 30 h, respectively. However, optimum vields of hydrolysates were achieved in 18 h (J. curcas) and in 24 h (palm kernel meal). With this acid (i.e. HCI) at the optimum concentration and temperature, destruction was maintained at remarkably low level when continued for up to 24 h. In case of H2SO, complete hydrolysis was achieved in 30 h in both test protein sources. Optimum yields were obtained in 18 h in both cases. Results of decomposition of the amino acids also indicated that least destruction was maintained when heating lasted 18 h.

From the foregoing, it may be concluded that hydrolysis of *J. curcas* seed protein was achieved with minimal amino

TABLE 4.	EFFECT OF DURATION OF HYDROLYSIS ON	N YIELD OF PROTE	N HYDROLYSATES AND	DECOMPOSITION OF AMINO ACID
	FROM PALM KERNEL MEAL (PKM) AND JATE	ROPHA CURCAS (JC)	USING OPTIMUM CONCE	NTRATION OF HCI AND H, SO, AND
2010 B	TEMPERATURE			

	3. S.				12	e., -				
Acid type		Т	Time, h			Yield of hydrolysates, g amino acid - N 100g ⁻¹			Decomposition of amino acid, mg NH ₄ +'- N 100g ⁻¹	
					PKM		JC		PKM	JC
	HCI		6.		53.11c	2.5.0	69.58c		5.00b	6.00b
			12		88.33b		92.28b		6.70b	8.00b
	a		18		90.91b		98.82a		10.00b	12.00b
10			24		97.48a		100.00a		20.00b	20.00b
			30	• •	100.00a		100.00a		110.00a	132.00a
	Mean1+				85.966		92.136		30.34	35.60
	H ₂ SO ₄		6.		59.33r	· .	69.97r		8.00r	12.00r
			12		78.61q		92.61q	`	10.12r	12.80r
	5		18	1. C. 19	97.06p		98.49p	11 M 11	12.80r	16.00r
			24		99.04p		99.06p	1	115.00q	58.92q
			30		100.00p		100.00p	1.0	145.00p	156.00p
	Mean ²⁺			2	86.808		91.826		58.184	51.14

* Mean values in a column within an acid / temperature group followed by different letters (i.e. a - d for HCl group; p - t for H₂SO₄ group) differ significantly at p>0.05

¹⁺ Mean values for the HCI / θ group,²⁺ mean values for the H₂SO₄/ group. Optimum concentration of HCI is 8 and 6 moles dm³ for PKM and JC respectively and H₂SO₄ is 10 and 8 moles dm³ for PKM and JC respectively under both yield and decomposition. Optimum temperature of HCI and H₂SO₄ is 110°C for PKM and 95°C for JC under both yield and decomposition.

destruction using 6 moles dm³ HCI at 95°C for 18 h or with 6 moles dm³ H₂SO₄ at 95°C for 18 h. Optimum yield was obtained from hydrolysing palm kernel meal protein with 8 moles dm³ HCI at 110°C for 24 h or with 10 moles dm³ H₂SO₄ at 110°C for 18 h. The choice of the acid depends on the availability and cost.

References

- AOAC (1990) Official Methods of Analysis. 15th edn. Association of Official Analytical Chemists. Washington DC
- Duncan DB (1955) Multiple range and multiple F test. Biometrics, 2: 1-42
- Harfenist EJ (1953) The amino acid compositions of insulins isolated from beef, pork and sheep glands. J Am Chem Soc 75: 5528-5530
- Hirs CHW, Stein WH, Moore S (1954) The amino acid composition of ribonuclease. J Biol Chem 211: 941-950

Lawrence L, Moore WJ (1951) Kinetics of the hydrolysis of simple

glycine peptides. J Am Chem Soc 73: 3973-3977

- Light A, Smith EL (1963) 1. Amino acid analysis of peptides and proteins. In: The Protein I - Composition, Structure and Function. Hans Neurath (ed) 2nd edn. Academic Press, New York, Vol. 1 pp 32-39
- Meister A (1965) Biochemistry of Amino Acids. 2nd edn. Academic Press, New York. pp 101-105
- Nir LA (1988) The astonishing resources of the physic nut tree. Cerescope No. 122.
- Oyenuga VA (1968) Nigeria's Foods and Feeding-stuffs Their Chemistry and Nutritive Value. Ibadan University Press, Ibadan, Nigeria. pp 12-16
- Pham CB, del Rosario RR (1983) The preparation of protein hydrolysates from defatted coconut and soybean meals. I. Effect of process variables on the amino nitrogen released and flavour development. J Food Technol 18: 21-34
- Steel RGD, Torrie JH (1980) Principles and Procedures of Statistics. McGraw-Hill Book Company, New York

Received 25 June 2001; revised 2 July 2002; accepted 8 April 2003