The Canadian Journal of Pure and Applied Sciences (CJ PAS-ISSN 1715-9997) is a peer reviewed multi-disciplinary specialist journal aimed at promoting research worldwide in Agricultural Sciences, Biological Sciences, Chemical Sciences, Computer and Mathematical Sciences, Engineering, Environmental Sciences, Medicine and Physics (all subjects).

Every effort is made by the editors, board of editorial advisors and publishers to see that no inaccurate or misleading data, opinions, or statements appear in this journal, they wish to make clear that data and opinions appearing in the articles are the sole responsibility of the contributor concerned. The CJ PAS accept no responsibility for the misleading data, opinion or statements.

Richard Callaghan
University of Calgary, AB, Canada

David T Cramb
University of Calgary, AB, Canada

Matthew Cooper
Grand Valley State University, AWRI, Muskegon, MI, USA

Anatoly S Borisov
Kazan State University, Tatarstan, Russia

Ron Coley
Coley Water Resource & Environment Consultants, MB, Canada

Chia-Chu Chiang
University of Arkansas at Little Rock, Arkansas, USA

Michael J Dreslik
Illinois Natural History, Champaign, IL, USA

David Feder
University of California, AB, Canada

David M Gardner
University of California, Irvine, CA, USA

Geoffrey J Hay
University of Calgary, AB, Canada

Chen Hasan
Guangdong Institute for Drug Control, Guangzhou, China

Hiroyoshi Ariga
Hokkaido University, Japan

Gongzhu Hu
Central Michigan University, Mount Pleasant, MI, USA

Moshe Inbar
University of Haifa at Qranim, Tivon, Israel

SA Isiordho
Indiana University - Purdue University, (IPFW), IN, USA

Bor-Luh Lin
University of Iowa, IA, USA

Jinfel Li
Guangdong Coastal Institute for Drug Control, Guangzhou, China

Collen Kelly
Victoria University of Wellington, New Zealand

Hamid M.KAL-Naimy
University of Sharjah, UAE

Eric L Peters
Chicago State University, Chicago, IL, USA

Roustam Latypov
Kazan State University, Kazan, Russia

Frances CP Law
Simon Fraser University, Burnaby, BC, Canada

Guanghan Lei
Ramsar Convention Secretariat, Switzerland

Atif M Memon
University of Maryland, MD, USA

SAR Nasyrov
Kazan State University,Kazan, Russia

Russell A Nicholson
Simon Fraser University, Burnaby, BC, Canada

Borislava Gutars
California State University, CA, USA

Sally Power
Imperial College London, UK

Gordon McGregor Reid
North of England Zoological Society, UK

Prabir K Chatteraj
Indian Institute of Technology, Kharagpur, India

Andrew Alek Tuen
Institute of Biodiversity, Universiti Malaysia Sarawak, Malaysia

Dale Wrubleski
Institute for Wetland and Waterfowl Research, Stonewall, MB, Canada

Dietrich Schmidt-Vogt
Asian Institute of Technology, Thailand

Diganta Goswami
Indian Institute of Technology Guwahati, Assam, India

M Iqbal Choudhary
HEJ Research Institute of Chemistry, Karachi, Pakistan

Daniel Z Sui
Texas A&M University, TX, USA

SS Alam
Indian Institute of Technology Kharagpur, India

Blago Ricceri
University of Catania, Italy

Zhang Heming
Chemistry & Environment College, Normal University, China

C Visvanathan
Asian Institute of Technology, Thailand

Indranil Das
Universiti Malaysia, Sarawak, Malaysia

Gopal Das
Indian Institute of Technology , Guwahati, India

Melanie LJ Stiassny
American Museum of Natural History, New York, NY, USA

Kumleesh K Dev
Bio-Sciences Research Institute, University College Cork, Ireland

Shakeel A Khan
University of Karachi, Karachi, Pakistan

Xiaobin Shen
University of Melbourne, Australia

Maria V Kalevitch
Robert Morris University, PA, USA

Xing J In
Hong Kong University of Science & Tech.

Leszek Czuchajowski
Institute for Wetland and Waterfowl Research, Stonewall, MB, Canada

Andrew Alek Tuen
Institute for Wetland and Waterfowl Research, Stonewall, MB, Canada

Gordon McGregor Reid
North of England Zoological Society, UK

Prabir K Chatteraj
Indian Institute of Technology, Kharagpur, India

Andrew Alek Tuen
Institute of Biodiversity, Universiti Malaysia Sarawak, Malaysia

Dale Wrubleski
Institute for Wetland and Waterfowl Research, Stonewall, MB, Canada

Dietrich Schmidt-Vogt
Asian Institute of Technology, Thailand

Diganta Goswami
Indian Institute of Technology Guwahati, Assam, India

M Iqbal Choudhary
HEJ Research Institute of Chemistry, Karachi, Pakistan

Daniel Z Sui
Texas A&M University, TX, USA

SS Alam
Indian Institute of Technology Kharagpur, India

Blago Ricceri
University of Catania, Italy

Zhang Heming
Chemistry & Environment College, Normal University, China

C Visvanathan
Asian Institute of Technology, Thailand

Indranil Das
Universiti Malaysia, Sarawak, Malaysia

Gopal Das
Indian Institute of Technology , Guwahati, India

Melanie LJ Stiassny
American Museum of Natural History, New York, NY, USA

Kumleesh K Dev
Bio-Sciences Research Institute, University College Cork, Ireland

Shakeel A Khan
University of Karachi, Karachi, Pakistan

Xiaobin Shen
University of Melbourne, Australia

Maria V Kalevitch
Robert Morris University, PA, USA

Xing J In
Hong Kong University of Science & Tech.

Leszek Czuchajowski
Institute for Wetland and Waterfowl Research, Stonewall, MB, Canada

Andrew Alek Tuen
Institute for Wetland and Waterfowl Research, Stonewall, MB, Canada

Gordon McGregor Reid
North of England Zoological Society, UK

Prabir K Chatteraj
Indian Institute of Technology, Kharagpur, India

Andrew Alek Tuen
Institute of Biodiversity, Universiti Malaysia Sarawak, Malaysia

Dale Wrubleski
Institute for Wetland and Waterfowl Research, Stonewall, MB, Canada

Dietrich Schmidt-Vogt
Asian Institute of Technology, Thailand

Diganta Goswami
Indian Institute of Technology Guwahati, Assam, India

M Iqbal Choudhary
HEJ Research Institute of Chemistry, Karachi, Pakistan

Daniel Z Sui
Texas A&M University, TX, USA

SS Alam
Indian Institute of Technology Kharagpur, India

Blago Ricceri
University of Catania, Italy

Zhang Heming
Chemistry & Environment College, Normal University, China

C Visvanathan
Asian Institute of Technology, Thailand

Indranil Das
Universiti Malaysia, Sarawak, Malaysia

Gopal Das
Indian Institute of Technology , Guwahati, India

Melanie LJ Stiassny
American Museum of Natural History, New York, NY, USA

Kumleesh K Dev
Bio-Sciences Research Institute, University College Cork, Ireland

Shakeel A Khan
University of Karachi, Karachi, Pakistan

Xiaobin Shen
University of Melbourne, Australia

Maria V Kalevitch
Robert Morris University, PA, USA

Xing J In
Hong Kong University of Science & Tech.

Leszek Czuchajowski
Institute for Wetland and Waterfowl Research, Stonewall, MB, Canada

Andrew Alek Tuen
Institute for Wetland and Waterfowl Research, Stonewall, MB, Canada

Gordon McGregor Reid
North of England Zoological Society, UK

Prabir K Chatteraj
Indian Institute of Technology, Kharagpur, India

Andrew Alek Tuen
Institute of Biodiversity, Universiti Malaysia Sarawak, Malaysia

Dale Wrubleski
Institute for Wetland and Waterfowl Research, Stonewall, MB, Canada

Dietrich Schmidt-Vogt
Asian Institute of Technology, Thailand

Diganta Goswami
Indian Institute of Technology Guwahati, Assam, India

M Iqbal Choudhary
HEJ Research Institute of Chemistry, Karachi, Pakistan

Daniel Z Sui
Texas A&M University, TX, USA

SS Alam
Indian Institute of Technology Kharagpur, India

Blago Ricceri
University of Catania, Italy

Zhang Heming
Chemistry & Environment College, Normal University, China

C Visvanathan
Asian Institute of Technology, Thailand

Indranil Das
Universiti Malaysia, Sarawak, Malaysia

Gopal Das
Indian Institute of Technology , Guwahati, India

Melanie LJ Stiassny
American Museum of Natural History, New York, NY, USA

Kumleesh K Dev
Bio-Sciences Research Institute, University College Cork, Ireland

Shakeel A Khan
University of Karachi, Karachi, Pakistan

Xiaobin Shen
University of Melbourne, Australia

Maria V Kalevitch
Robert Morris University, PA, USA

Xing J In
Hong Kong University of Science & Tech.
HISTOLOGICAL STUDIES OF BREWERY SPENT GRAINS IN DIETARY PROTEIN FORMULATION IN DONRYU RATS

*Ajanaku, K O1, Dawodu, F A2, James, O O1, Ogumniran, K O1, Ajani, O O1 and Nwinyi, O C3

1Department of Chemistry, College of Science and Technology, Covenant University
PMB. 1023, Ota, Ogun State
2Department of Chemistry, Faculty of Science, University of Ibadan, Oyo State
3Department of Biological Sciences, College of Science and Technology, Covenant University
P.M.B. 1023, Ota, Ogun State, Nigeria.

ABSTRACT

The increasing production of large tonnage of products in brewing industries continually generates lots of solid waste which includes spent grains, surplus yeast, malt sprout and cullet. The disposal of spent grains is often a problem and poses major health and environmental challenges, thereby making it imminently necessary to explore alternatives for its management. This paper focuses on investigating the effects of Brewery Spent Grain formulated diet on haematological, biochemical, histological and growth performance of Donryu rats. The rats were allocated into six dietary treatment groups and fed on a short-term study with diet containing graded levels of spent grains from 0, 3, 6, 9, 12 and 100% weight/weight. The outcome demonstrated that formulated diet had a positive effect on the growth performance of the rats up to levels of 6% inclusions, while the haematological and biochemical evaluation revealed that threshold limit should not exceed 9% of the grain. However, the histological study on the liver indicated a limit of 3% inclusion in feed without serious adverse effect. Thus invariably showing that blend between ranges 1-3% is appropriate for the utilization of the waste in human food without adverse effect on the liver organ. The economic advantage accruing from this waste conversion process not only solves problems of waste disposal but also handle issues of malnutrition in feeding ration.

Keywords: Brewery spent grains, waste utilization, donryu rats, dietary treatment.

INTRODUCTION

Brewery Spent Grains (BSG) is one of the voluminous solid residuals that remain after the mashing process. It has received little attention as a marketable commodity apart from being used primarily as ruminant feed and its disposal is often a problem. Its present disposal methods which include dumping, use as animal feed and biomass are no longer sustainable for the environment with devastating level of pollution. Nutritionally, the grain is far from spent since the residual protein level is in the range of 26-30% and crude fibre content up to 13% (Qzturk et al., 2002). BSG is a safe feed when it is used fresh or properly stored. The wet grain spoils quickly and should be used fresh or stored in an air tight compartment. However, BSG may vary with barley variety, time of harvest, characteristics of hops and other adjunct added as well as brewing technology. The waste management problems then require developing new ways to use the spent grains considering the adverse impacts on environment and health.

There have been advances on the importance of fibre in diets as well as protein being used as supplements in food (Trowell et al. (1975). Other researches Bays (1977); Tacon and Ferms (1978); Ahn (1979); Enweremada et al. (2008); and Bi-Yu et al. (1998) also focused on alternative uses of brewery by – products and waste minimization from brewery processes. There was also a growing interest in the use of BSG in human foods such as flour mixes, bread and meat product (Morgan et al., 1984; Chiou et al., 1995; Kellens and Church, 1998; Finley and Hanamoto, 1980). However not much has been carried out in the area of histopathological effect in human foods when used as protein supplement. In the light of the above findings, this study has been undertaken to determine the effect of using BSG as dietary feed and the histological effect it will have on human organs if utilized.

MATERIALS AND METHODS

Chemicals and Reagents
All chemicals and reagents were of analytical grade.

Sources of Materials
Brewery Spent Grains was obtained from Nigerian Breweries Plc, Ibadan, Nigeria. The spent grain was a mixture of sorghum and barley. Maize, soyabean meal, wheat offal, fish meal, bone meal, salt, lysine, methionine and premix (Growers) were obtained from International Institute of Tropical Agriculture (IITA) Ibadan, Nigeria to

*Corresponding author email: kolatooyin@yahoo.com
prepare the rats feed. The rats for the experiment were obtained from the animal farm of Cocoa Research Institute (CRIN) Ibadan having life average weight range of 49.92 ± 5.69g. The rats were in the family of Donryu species and were four weeks old before the commencement of the experiments. The ethnic use of the animals was also obtained from the Institute.

Treatment of Brewery Spent Grains Sample
The BSG samples were collected in wet form, sun-dried and later dried at 40°C for six hours in an electric oven. It was then stored in an airtight container till the time of use. The dried BSG was milled to increase the surface area. The moisture content, ash content, crude fat, crude protein, crude fibre and the nitrogen-free extract of the BSG were determined. The BSG were mixed with rats feed at levels of 0, 3, 6, 9, 12 and 100% w/w. The 0% was the control, while the 100% serves as the extreme use of BSG alone.

Treatment of Animals
The thirty six (Donryu) rats were allocated into six dietary treatment groups of six rats each and confined into individual cages during the experimental period. The animals were free from externals and internal parasites. The study was conducted during the rainy season and the cages were built for easy collection of the faeces and urine. They were weighed at the beginning of the experiment as zero (0) day; fed according to their group levels with the BSG compounded feeds and subsequently weighed at daily intervals in a short time study of fifteen days.

Preparation of Blood Samples
On the sixteenth day of the experiment, the rats were humanely slaughtered using cervical dislocation method of Euthanasia Klaunberg et al. (2004). Their blood samples were collected into two heparinized tubes for the studies; one tube contains ethylene diaminetetraacetic acid (EDTA) with calcium serving as anticoagulant in the blood samples for the haematology tests while the second tubes, which did not contain EDTA, were stored at -20°C for the biochemical studies. The internal organs of the rats (liver, heart and kidney) were collected and weighed. The microscopic slide of the liver organs were then prepared and observed.

Analysis of Haematological and Biochemical Parameters
Red blood Cell (RBC) and white blood cell (WBC) counts were determined using Neubauer haemocytometer. Packed cell volume (PVC) was determined using haematocrit centrifuge. Haemoglobin was determined by cyanmethemoglobin method (MCH), Mean Corpuscular Haemoglobin (MCH) and Mean Corpuscular Haemoglobin Concentration (MCHC) were determined according to the methods of Jain (1986). Glutamate Pyruvate Transaminose (GPT), Glutamate Oxaloacetate Transaminase (GOT), Globulin (GLB), Albumin (ALB) and Alkaline Phosphatase (ALP) were analysed spectrophotometrically by using commercially available diagnostic kits.

STATISTICAL ANALYSIS
The data collected were subjected to statistical analysis of variance and means compared by the Duncan’s Multiple Range Test (Steel and Torrie, 1980).

RESULT AND DISCUSSION
The proximate analysis of the Brewery Spent Grains (BSG) samples is presented in table 1. The carbohydrate level was high with value of 51.38% and coupled with the 38% of nitrogen-free extract and crude protein of 23.19% gives a clue of a balanced formulation if the BSG is compounded as feed blends. The high protein values observed in the sample was due to the protein rest and washing operation of the grains during the brewing process.

Table 1. Proximate Analysis of the Brewery Spent Grains (BSG) Samples.

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Percentage Mean Amount (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude Protein</td>
<td>23.20</td>
</tr>
<tr>
<td>Crude Fibre</td>
<td>12.85</td>
</tr>
<tr>
<td>Crude Fat</td>
<td>2.79</td>
</tr>
<tr>
<td>Moisture Content</td>
<td>6.14</td>
</tr>
<tr>
<td>Ash Content</td>
<td>16.99</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>51.39</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>3.71</td>
</tr>
<tr>
<td>Nitrogen – Free Extract</td>
<td>38.03</td>
</tr>
</tbody>
</table>

The ration formulation for the feed diet is shown in table 2 while the effect of spent grains on the weight of the rats and the average weights of the rats are shown in tables 3 and 4. The effect of BSG blend on the weight of the rats was commendable. The 3 and 6% BSG blends gave an average daily weight gain of 3.810 and 3.520g respectively, which was higher than the value of 3.706g obtained for the control (0% BSG). There was significance increase (p < 0.05) in the average weight gained by the rats fed in all the groupings except in the 100% group. This implied a high feed-efficiency due to increased level of blending of the spent grains. The statistical analysis shows that the results fits a linear model of 0.532024 - 0.154247 x Weight Gain in order to describe the relationship between the feed-efficiency and weight gain. This also revealed 84.58% of the variability in feed-efficiency while the correlation coefficient indicated a strong relationship between the variables. Since the p-value is < 0.05, there is a statistically
significant relationship between feed-efficiency and weight gained at the 95.0% confidence level. It was observed that increasing levels of BSG in the diet resulted in decreased body weight with threshold limit in the range of 9% (Fig. 1).

The rats in the 100% BSG group experienced daily weight loss of -2.080 g per day, and their metabolic wastes concentration was very high and toxic to inhale. The loss in the body weight might be due to low level of crude fat (2.79%) in the feed. These findings agreed with the reports of Ironkwo and Oriwari (2004) who reported that fat supplementation significantly improve feed conversion efficiently. The acceptable limit is in the range of 1% to 6% w/w of the blends. For obese patient, the range between 9-12% is a good recommendation. The acceptable limit is in the range of 9-12% is a good recommendation. The acceptable limit is in the range of 9-12% is a good recommendation.
The result of the mean internal organs weight of the rats fed with the blends is presented in Table 5. The mean liver weight for the control group was 5.41 ± 0.11 g, while those fed with only BSG dropped to 2.01 ± 0.685 g. The same was observed for the mean kidney weights, while others were within the range of the control 0.970 ± 0.05 g. Those fed in 100% BSG have their kidney weight reduced to 0.69 ± 0.09 g. Generally, the rats fed with 100% BSG have their liver, kidneys, lungs and heart weight reduced when compared with the control and other groups, because of the absence of enrichment that could sustain the blend. This implies that, if the blend is appropriately enriched, there could be a positive response as it was observed in the other groupings.

In Tables 6 and 7, the hemato logical and the biochemical studies of the rats used for the experiment were respectively presented. The normal packed cell volume

Table 4. Weight gain by rats for each feed formulation per day.

<table>
<thead>
<tr>
<th>Feeding</th>
<th>Weight at 0 day (g)</th>
<th>Weight at 15th day (g)</th>
<th>Weight difference (g)</th>
<th>Weight gain/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>52.55 ±2.250</td>
<td>108.15 ±4.551</td>
<td>55.60</td>
<td>3.706</td>
</tr>
<tr>
<td>3%</td>
<td>55.50 ±2.700</td>
<td>112.65 ±1.750</td>
<td>57.15</td>
<td>3.810</td>
</tr>
<tr>
<td>6%</td>
<td>49.55 ±3.350</td>
<td>102.40 ±2.70</td>
<td>52.85</td>
<td>3.520</td>
</tr>
<tr>
<td>9%</td>
<td>49.15 ±4.351</td>
<td>85.15 ±2.550</td>
<td>36.00</td>
<td>2.400</td>
</tr>
<tr>
<td>12%</td>
<td>44.10 ±3.900</td>
<td>57.70 ±2.400</td>
<td>13.6</td>
<td>0.907</td>
</tr>
<tr>
<td>15%</td>
<td>42.29 ±2.100</td>
<td>49.71 ±3.170</td>
<td>7.42</td>
<td>0.495</td>
</tr>
<tr>
<td>100% BSG</td>
<td>48.65 ±4.100</td>
<td>17.45 ±2.901</td>
<td>-31.20</td>
<td>2.080*</td>
</tr>
</tbody>
</table>

* Weight loss

Table 5. Mean internal organ weight (grammes) of the rats.

<table>
<thead>
<tr>
<th>Blends</th>
<th>Internal organs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Liver weight (g)</td>
</tr>
<tr>
<td>0%</td>
<td>5.41 ±0.11</td>
</tr>
<tr>
<td>3%</td>
<td>4.54 ±0.06</td>
</tr>
<tr>
<td>6%</td>
<td>5.01 ±0.59</td>
</tr>
<tr>
<td>9%</td>
<td>4.87 ±0.035</td>
</tr>
<tr>
<td>12%</td>
<td>5.11 ±0.685</td>
</tr>
<tr>
<td>15%</td>
<td>4.42 ±0.535</td>
</tr>
<tr>
<td>100% BSG</td>
<td>2.01 ±0.685</td>
</tr>
</tbody>
</table>

Fig. 1: Graph showing weight gain by rat against % BSG in the feed formulation.
Table 6. Haematological studies of BSG blended feed in Rats.

<table>
<thead>
<tr>
<th>Parameter / Blends</th>
<th>0% BSG</th>
<th>3% BSG</th>
<th>6% BSG</th>
<th>9% BSG</th>
<th>12% BSG</th>
<th>15% BSG</th>
<th>Normal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb (g%)</td>
<td>10.90 ± 0.2</td>
<td>13.80 ± 0.6</td>
<td>13.80 ± 0.2</td>
<td>7.60 ± 0.3</td>
<td>11.60 ± 0.4</td>
<td>12.8 ± 0.1</td>
<td>16.1 ± 0.4</td>
</tr>
<tr>
<td>PCV (%)</td>
<td>31.70 ± 1.22</td>
<td>39.00 ± 1.18</td>
<td>38.00 ± 2.17</td>
<td>30.00 ± 1.11</td>
<td>24.00 ± 1.42</td>
<td>30.70 ± 2.23</td>
<td>40.6 ± 0.27</td>
</tr>
<tr>
<td>RBC ×10⁶/mm³</td>
<td>3.68 ± 0.42</td>
<td>5.52 ± 0.22</td>
<td>4.78 ± 0.45</td>
<td>3.80 ± 0.34</td>
<td>4.50 ± 0.23</td>
<td>3.85 ± 0.54</td>
<td>8.21 ± 0.14</td>
</tr>
<tr>
<td>MCV (μ³)</td>
<td>95.00 ± 6.10</td>
<td>87.00 ± 4.20</td>
<td>83.00 ± 3.02</td>
<td>82.00 ± 5.40</td>
<td>85.00 ± 3.25</td>
<td>91.00 ± 2.50</td>
<td>56.2 ± 0.6</td>
</tr>
<tr>
<td>MCH (g/dL)</td>
<td>33.00 ± 1.22</td>
<td>32.00 ± 3.10</td>
<td>29.00 ± 3.12</td>
<td>27.00 ± 1.12</td>
<td>30.00 ± 2.72</td>
<td>32.00 ± 1.11</td>
<td>14.7 - 15.9</td>
</tr>
<tr>
<td>MCHC (%)</td>
<td>33.00 ± 2.10</td>
<td>37.00 ± 2.11</td>
<td>36.00 ± 1.10</td>
<td>35.00 ± 3.11</td>
<td>34.00 ± 3.40</td>
<td>34.20 ± 3.25</td>
<td>32.4 ± 0.4</td>
</tr>
<tr>
<td>Neutro (%)</td>
<td>6.00 ± 0.15</td>
<td>20.00 ± 0.55</td>
<td>2.00 ± 0.18</td>
<td>4.00 ± 0.10</td>
<td>26.00 ± 0.49</td>
<td>12.00 ± 1.20</td>
<td>10 – 55</td>
</tr>
<tr>
<td>Lympho (%)</td>
<td>94.00 ± 5.35</td>
<td>80.00 ± 6.82</td>
<td>98.00 ± 6.82</td>
<td>96.00 ± 4.57</td>
<td>74.00 ± 3.45</td>
<td>88.00 ± 5.10</td>
<td>40 – 90</td>
</tr>
<tr>
<td>Eosino (%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mono (%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Baso (%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Platelets ×10⁶/mm³</td>
<td>155.00 ± 11.20</td>
<td>198.00 ± 10.30</td>
<td>210.00 ± 12.32</td>
<td>180.00 ± 13.16</td>
<td>184.00 ± 10.10</td>
<td>168.00 ± 11.12</td>
<td>54.5 ± 13.6</td>
</tr>
<tr>
<td>WBC ×10³/mm³</td>
<td>5.00 ± 0.11</td>
<td>7.20 ± 0.14</td>
<td>6.60 ± 0.17</td>
<td>7.10 ± 0.26</td>
<td>5.20 ± 0.13</td>
<td>6.20 ± 0.10</td>
<td>5.3 ± 0.5</td>
</tr>
</tbody>
</table>

Platelets(10⁶/mm³), Neutrophil (%) Eosinophil (%); Lymphocytes (%); Monocytes (%); Basophil (%) Hb = Haemoglobin, concentration (g%); PCV = Packed cell volume (%), RBC = Red Blood Cell Counts (x10⁶/mm³), WBC = White Blood cell count (x10⁢³/mm³), MCV = Mean Corpuscular Volume (μ³), MCH = Mean corpuscular Haemoglobin (Ug/dl); MCHC = Mean Corpuscular Haemoglobin Concentration (%). IU/L = International unit per litre;

Table 7. Biochemical studies of BSG blended feed in Rats.

<table>
<thead>
<tr>
<th>Parameter / Blends</th>
<th>0%</th>
<th>3%</th>
<th>6%</th>
<th>9%</th>
<th>12%</th>
<th>15%</th>
<th>Normal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALP (IU/L)</td>
<td>250.00 ± 35.10</td>
<td>302.00 ± 30.12</td>
<td>300.00 ± 12.20</td>
<td>298.00 ± 16.30</td>
<td>275.00 ± 28.20</td>
<td>213.00 ± 30.11</td>
<td>43.2 ± 0.38</td>
</tr>
<tr>
<td>GOT (IU/L)</td>
<td>66.00 ± 5.40</td>
<td>72.00 ± 4.90</td>
<td>71.00 ± 3.20</td>
<td>70.00 ± 2.50</td>
<td>68.00 ± 4.50</td>
<td>57.00 ± 3.11</td>
<td>7.3 ± 0.4</td>
</tr>
<tr>
<td>GPT (IU/L)</td>
<td>46.00 ± 4.22</td>
<td>36.00 ± 3.61</td>
<td>44.00 ± 1.84</td>
<td>46.00 ± 2.61</td>
<td>48.00 ± 2.22</td>
<td>46.00 ± 2.62</td>
<td>NA</td>
</tr>
<tr>
<td>AP (g/dL)</td>
<td>65.00 ± 4.80</td>
<td>68.00 ± 2.56</td>
<td>67.00 ± 1.68</td>
<td>66.00 ± 3.22</td>
<td>59.00 ± 3.81</td>
<td>62.00 ± 1.12</td>
<td>NA</td>
</tr>
<tr>
<td>TP (g/dL)</td>
<td>7.30 ± 0.57</td>
<td>6.60 ± 0.77</td>
<td>6.90 ± 0.83</td>
<td>6.40 ± 0.10</td>
<td>6.50 ± 0.22</td>
<td>7.10 ± 0.45</td>
<td>0.65 ± 0.02</td>
</tr>
<tr>
<td>ALB (g/dL)</td>
<td>3.90 ± 0.71</td>
<td>4.30 ± 0.90</td>
<td>4.10 ± 0.21</td>
<td>4.00 ± 1.00</td>
<td>3.80 ± 0.51</td>
<td>3.80 ± 0.60</td>
<td>0.43 ± 0.02</td>
</tr>
<tr>
<td>GLB (g/dL)</td>
<td>3.40 ± 0.55</td>
<td>2.30 ± 0.11</td>
<td>2.80 ± 0.30</td>
<td>2.40 ± 0.41</td>
<td>2.70 ± 0.12</td>
<td>3.30 ± 0.45</td>
<td>NA</td>
</tr>
<tr>
<td>ALB/GLB RATIO</td>
<td>1.15 ± 0.01</td>
<td>1.87 ± 0.12</td>
<td>1.46 ± 0.11</td>
<td>1.46 ± 0.55</td>
<td>1.67 ± 0.35</td>
<td>1.41 ± 0.31</td>
<td>1.15 ± 0.50</td>
</tr>
</tbody>
</table>

ALP = Alkaline phosphatase (IU/L); g/dL = grammne per deciliter; GOT = Glutamate Oxalacetae Transaminase (IU/L); ALB = Albumin (g/dL); GLB = Globulin (g/dL); ALB/GLB = Albumin – Globulin ratio; GPT = Glutamate Pyrovate Transaminase (IU/L); TP = Total Protein (g/dL); AP = Acid Phosphatase (IU/L).

(PCV) of the Donryu rat was in the range of 36 – 54%. The lower end of the range is normal in juveniles, but not in adult rats. The rats fed with 3% and 6% BSG blends experienced a significant increase in haemoglobin concentration of 13.8 ± 0.6 and 13.8 ± 0.2 g% respectively. The observed value for packed cell volume (PCV), 39.00 ± 1.18% for 3% blend and 38.00 ± 2.17% for 6% blend; red blood cell counts (RBC) was 4.78 ± 0.45 10⁶/mm³ as against the control 3.68 ± 0.42 10⁶/mm³; white blood cell counts (WBC) was in the range of 7.20 – 7.10 10³/mm³ in 3% to 9% respectively.

Platelets had the highest value of 210 ± 12.32 10⁶/mm³ in 6% as against 155.00 ± 11.20 10⁶/mm³ observed in the control. Mean corpuscular haemoglobin concentration (MCHC) of the entire group was higher than the control group. Alkaline phosphatase (ALP), glutamate oxalacetae transminase (GOT), acid phosphatase (AP), and albumin (ALB) also showed significant increase as compared with the 0% BSG blend. The resistance of the body system to infection in 3% and 6% rats' blood was high because there are direct actions of antibodies attacking the antigenic invaders, due to antibodies or anti infection properties that is present in the blood. Blood of the rats fed with 9% BSG blend had a reduced haemoglobin concentration, packed cell volume, but there was high value in WBC, lymphocytes, platelets, alkaline phosphates and albumin, compared with the 0% blend.
The rats fed with 12% blend had a low value in PCV, MCV, MCH, lymphocytes, AP, but increased value in ALP, Hb, RBC and WBC in comparison with the control. The 15% blends had a reduced MCV, MCH, ALP and lymphocytes values but an increased PCV, Hb, RBC, MCHC, WBC and platelets values. This result revealed that BSG presence activates oxygen in the blood cell thereby making the haemoglobin in the red blood cell inactive, a state which is termed hypoxia, and this enhances increase in the production of red blood cell counts and haemoglobin stimulating synthesis. It was observed that the histopathology result varies with the weather, climate, and region under which the experiment was carried out. The temperate and tropical region may have slight difference from each other in their blood result. In spite of this, it was observed that the rats fed with high concentration was adversely affected, hence low concentration of the blend is appropriate without side effects. Eosinophils count, monocytes and basophils counts are not significantly different in the blood of the rats, hence no significant change. The statistical significance of the histopathology on blood of the different blends at the 0.01 level (2-tailed) of 99% confidence interval showed significant difference, but they are not significantly different at 0.05 level (2-tailed) at 95% confidence interval, p<0.05, when compared with the control.

The histopathology study of the liver of the rats used as experimental model is shown in Plate 1 and Table 8. This revealed that the control blend cell looks normal, the central vein was seen and there was no visible lesion, the sinusoids were normal and the epithelium lining remained. In the 3% blend; the cell appeared normal but the sinusoids became larger and the space between sinusoids was bigger when compared to the control. There were mild periportal lymphocytic infiltrates noticed in the central vein. In 6% blend, the sinusoids became widened which encloses the central vein and the epithelia lining was affected too. The sinusoids almost disappeared and the hepatic cells were affected when the 9% blend was observed. For 12% blend, the central vein was seen and

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Sinusoids</th>
<th>Central Vein</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>Normal</td>
<td>No visible lesions</td>
</tr>
<tr>
<td>3%</td>
<td>Normal</td>
<td>Mild periportal lymphocytic infiltrates</td>
</tr>
<tr>
<td>6%</td>
<td>Widening</td>
<td>Epithelia lining affected</td>
</tr>
<tr>
<td>9%</td>
<td>Almost disappeared</td>
<td>Epithelia lining affected</td>
</tr>
<tr>
<td>12%</td>
<td>Inflammatory</td>
<td>Hepatitis</td>
</tr>
<tr>
<td>15%</td>
<td>Compacted</td>
<td>Hepatitis</td>
</tr>
</tbody>
</table>

Plate 1. Microscopic view of rats’ liver fed with BSG compounded feeds.
the sinusoids experienced a hepatitis alteration. The sinusoid was more compacted and there was serum hepatitis in the central vein in the categories of 15% blend. The histological study of the kidney also showed that the kidneys of the control, 3, 6, 9 and 12% are all normal, while the kidney of 100% blend had a nephrotoxic effect, which is fatty degradation in the cellular tubules and glomerular region. This could be attributed to high protein, though the basis was not understood and the phenomenon that it was due to high protein was not confirmed. It could be due to some other substances that are present in BSG. The summary of the histopathology result suggest that the use up to 3% concentration will not have adverse effect on human liver and that the concentration of the blend should be kept minimal.

CONCLUSION

In this study, it has been shown that blends from 1-3% BSG could be used as protein supplement with 3% BSG as the threshold limit by virtue of the histological effect on rats liver. Thus invariably showing that blend between ranges 1-3% is appropriate for the utilization of the waste in human food without adverse effect on the liver organ. These levels of incorporation will reduce the number of people suffering from micronutrient deficiency related disease in developing nations as well as propose an additional utilization alternative to the disposal of brewery spent grains worldwide.

REFERENCES


Received: Aug 5, 2009; Accepted: April 19, 2010