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Abstract. By using the Nikiforov-Uvarov (NU) method, the Schrödinger equation has been solved for the interaction of 

inversely quadratic Hellmann (IQHP) and inversely quadratic potential (IQP) for any angular momentum quantum 

number, l. The energy eigenvalues and their corresponding eigenfunctions have been obtained in terms of Laguerre 

polynomials. Special cases of the sum of these potentials have been considered and their energy eigenvalues also 

obtained. 
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INTRODUCTION 

The Schrödinger equation (SE) is a total energy equation where the Hamiltonian operator acts on a suitable wave 

function of the system to give us the energy eigenvalues of the system. With the experimental verification of the 

Schrodinger equation, many physicists, mathematicians and chemists have devoted much interest now than before in 

solving the Schrodinger equation to obtain bound state solutions for some potentials of physical interest [1-5]. The 

use of some special potentials to obtain exact or approximate solutions of the Schrödinger equation has also been 

reported in the literature [6-10]. Some of these potentials are known to play very important roles in many fields of 

Physics such as Molecular Physics, Solid State and Chemical Physics [8].  

The purpose of the present work is to present the solution of the Schrodinger equation with the inversely 

quadratic Hellmann potential [11] and inversely quadratic potential [12] of the form     and 

, respectively. Where  is the inverse quadratic potential strength.  

The sum of these potentials (IQHIQP) can be written as 

                                       ,             (1) 

where  represents the internuclear distance,  and  are the strengths of the coulomb and Yukawa potentials, 

respectively, and  is the screening parameter. Equation (1) is then amenable to Nikiforov-Uvarov method. 

Researches involving the Hellman potential in the Schrodinger and Dirac formalisms have already been reported 

[13-15]. However, the solutions of radial Schrodinger equation for any angular momentum quantum number, , with 

IQHIQP using Nikiforov-Uvarov method which is the aim of this paper, has not yet been reported.   

Overview of the Nikiforov-Uvarov method 

     The overview of Nikiforov-Uvarov (NU) method has already been reported [16-17].  

The Schrödinger equation 

In spherical coordinate, Schrödinger equation with the potential  is given as [18-19] 
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                                 .                                                         (2) 

Using the common ansatz for the wave function: 

                                   (3) 

in equation (2) we get the following set of equations: 

            ,                       (4) 

 ,                                       (5) 

         ,       (6) 

where  and  are the separation constants.  is the solution of equations (5) 

and (6) and their solutions are well known as spherical harmonic functions [18]. 

Solutions to the radial equation 

     Equation (4) is the radial part of the Schrodinger equation which we are interested in solving. Equation (4) 

together with the potential in equation (1) and with the transformation  yields the following equation [19]: 

,         (7) 

where the radial wave function is  and  

.     (8) 

Following the Nikiforov-Uvarov method as reported in our previous paper [19] the energy eigenvalue equation with 

the IQHIQP is obtained as 

        (9)  

and the wave function  is obtained in terms of the generalized Laguerre polynomials as 

.                         (10) 

 is the normalization constant. 

RESULT AND DISCUSSION 

The energy eigenvalues and the corresponding un-normalized eigenfunctions have been obtained using the NU 

method for the Schrodinger equation with the inversely quadratic Hellmann plus inversely quadratic potential 

(IQHIQP). Special cases of the potential are considered: 
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Case 1:  If we set the parameters, , it is easy to show that equation (9) reduces to the bound state 

energy spectrum of a particle in the Coulomb potential, i.e., , where , is the 

principal quantum number.  

Case 2: Similarly, if we set equation (9) results in the bound state energy spectrum of a vibrating-

rotating diatomic molecule subject to the inversely quadratic Hellmann potential as follows: 

  .                                                                     (10) 

It is interesting to note that similar equation was obtained by Ita [11] when he carried out calculations on inversely 

quadratic Hellmann potential for the Schrodinger equation. The two deductions from equation (9) reveal that our 

calculations are exact. 

CONCLUSION 

The bound state solutions of the Schrodinger equation have been obtained for the inversely quadratic Hellmann plus 

inversely quadratic potential. Special cases of the potential are also considered and their energy eigen values 

obtained. 
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