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Abstract. The solutions of the Klein-Gordon equation with equal scalar and vector harmonic oscillator plus inverse 
quadratic potential for S-waves have been presented using the Nikiforov-Uvarov method. The bound state energy 
eigenvalues and the corresponding un-normalized eigenfunctions are obtained in terms of the Laguerre polynomials. 
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INTRODUCTION 

 The bound state solutions of the Klein-Gordon (KG) equation are only possible for some potentials of 
physical interest [1-5]. These solutions could be exact or approximate and they normally contain all the necessary 
information for the quantum system. Quite recently, several authors have tried to solve the problem of obtaining 
exact or approximate solutions of the KG equation for a number of special potentials using different methods [6–
20]. Some of these potentials are known to play very important roles in many fields of Physics such as Molecular 
Physics, Solid State and Chemical Physics [21]. When a particle is in a strong potential field, the relativistic effects 
must be considered, leading to the relativistic quantum mechanical description of such a particle [22–26]. In the 
relativistic limit, the particle’s motions are very often described using either the KG equation or the Dirac equation 
depending on the spin character of the particle [23–24]. The spin-zero particles like the mesons are satisfactorily 
described by the KG equation while the spin-half particles such as the electrons are described by the Dirac equation. 
It is therefore of interest in nuclear and high energy physics to obtain exact solutions of the KG and Dirac equations. 
The solution of the Klein-Gordon equation under different potentials model plays an important role in physics and 
chemistry since their solutions contain all necessary information governing the quantum mechanical system under 
consideration.  Among the most successful methods that have been used to solve the Schrödinger, Dirac and the 
Klein-Gordon equation are the NU [27], supersymmetric quantum mechanics methods[28], asymptotic interation 
method [29]  and others [30-39]. The purpose of the present work is to present the solutions of the Klein-Gordon 
equation with the harmonic oscillator plus inverse quadratic (HO+IQ) potential of the form [27-28]:  
     ,               (1) 

where  represents spherical coordinate,  is arbitrary constant and is the inverse quadratic potential strength. 
Dong and Lozada-Cassou [27] have used algebraic method to solve the Schrodinger equation in three dimensions 
with the potential in equation (1) and obtained eigen functions and eigen values of the Schrodinger equation. Also, 
Ikhdair and Sever [28] solved the D-dimensional radial Schrodinger equation with some molecular potentials and 
obtained the solution for (HO +IQ) potential as a special case of pseudoharmonic oscillator for  waves. 
However, not much has been achieved in the area of solving the Klein - Gordon equation for S-waves (i.e., for 

) with (HO + IQ) potential using Nikiforov-Uvarov method in the literature.  

Overview of the Nikiforov-Uvarov Method 

 The Nikiforov-Uvarov (NU) method is based on the solutions of a generalized second-order linear 
differential equation with special orthogonal functions [29]. The Schrodinger equation of the type as: 
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                                                                               (2)  

can be solved by this method. This can be done by transforming equation (2) into an equation of hypergeometric 
type with appropriate coordinate transformation  to get 

            (3) 

To find the exact solution to equation (3), we write  as 

      (4) 

Substitution of equation (4) into equation (3) yields equation (5) of hypergeometric type as 

     (5) 

In equation (4), the wave function  is defined as the logarithmic derivative [29] 

               (6) 

with  being at most first order polynomials. Also, the hypergeometric-type functions in equation (5) for a fixed 
integer  is given by the Rodrigue relation as 

            (7) 

where  is the normalization constant and the weight function  must satisfy the condition  

          (8) 

with 

               (9) 

In order to accomplish the condition imposed on the weight function  it is necessary that the polynomial  be 
equal to zero at some point of an interval  and its derivative at this interval at  will be negative [30]. 

The function  and the parameter  required for the NU method are then defined as [30] 

      (11) 

.         (12) 

The -values in equation (11) are possible to evaluate if the expression under the square-root be square of 
polynomials. This is possible if and only if its discriminant is zero. Therefore, the new eigenvalue equation becomes 
[31-32] 

     (13) 

A comparison between equations (12) and (13) yields the energy eigenvalues. 
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Solutions of the Klein-Gordon Equation 

The Klein-Gordon (KG) equation for equal scalar and vector harmonic oscillator plus inverse quadratic (HO+IQ) 
potential could be written as 

     (14) 

where the wave function is  and  

     (15) 

We can also rewrite equation (14) as 

.    (16) 

Equation (16) is then compared with equation (3) and the following expressions are obtained 

       (17) 

We then obtain the function  by substituting equation (17) into equation (11): 

.      (18) 

According to the NU method, the quadratic form under the square-root sign of equation (18) must be solved by 
setting the discriminant of this quadratic equation equal to zero, i.e., . This discriminant gives a 
new equation which can be solved for the constant  to get the two roots as 

       (19) 

Thus we have 

       (20)  

.                                             (21) 

When the two values of  given in equations (20) and (21) are substituted into equation (18), the four possible forms 
of  are obtained as 

 .                                (22) 

One of the four values of the polynomial  is just proper to obtain the bound state solution since  given in 
equation (1) must have negative derivative. Therefore, the most suitable expression of  is chosen as 

.      (23) 
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For . We obtain  from equation (9) and the derivative of this 

expression would be negative, i.e., . From equations (12) and (13) we obtain 

,                    (24) 

When we compare these expressions, , we obtain the energy of the harmonic oscilltor plus inverse quadratic 
potential for S-waves as 

.     (25) 

If we choose  in equation (1), we obtain the harmonic oscillator potential and its energy for the KG equation 
becomes 

.     (26) 

Let us now calculate the radial wave function, . Using  and  equations (6) and (8), the following expressions 
are obtained 

,         .        (27) 

Then from equation (7) one has  

                         (28) 

is a normalization constant. The wave function  can be obtained in terms of the generalized Laguerre 
polynomials as 

.      (29) 

is the normalization constant. 

TABLE 1. Energy Eigen Values of the Mixed Potential 
n,l Energy E for k=5, g=0, m=0.5 
0,0 2.367460025 
1,0 4.671641976 
1,1 7.159601932 
2,0 6,483289157 
2,1 8.673485853 
3,0 8.064098954 
3,1 10.06294280 
3,2 11.4053318 

 

CONCLUSION 

In conclusion, we have obtained the energy eigenvalues and the corresponding un-normalized wavefunction using 
the NU method for the Klein-Gordon equation with equal scalar and vectorharmonic oscillator plus inverse 
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quadratic potential for S-waves. We have also obtained a special case for  giving the energy of the harmonic 
oscillator potential. In the non-relativistic limits, our result reduced to the harmonic potential for   reported by 
Ita et al [33]. 
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