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ABSTRACT

Close-form solutions of NMR Bloch equation with flow dependent magnetization are hitherto not available as such
solutions are truly nom-trivial. Using the Bloch equations and a time derivative of magnetization related to velocity
gradient we have developed a second erder differential equation whose solution using Laplace transform has provided a
velocity dependent CW NMR signal. It is hoped that the practical application of our theoretical investigation will provide
a better insight in blood vessel hemodynamics, estimation and elimination of static tissue signal in CW NMR flow

measurement which can be afforded by people in developing countries.

1. Intreduction

The understanding of blood flow dynamic is considered very important (Caro et al., 1978; Odoh,
2008) for a number of clinical applications. Nucléar magnetic resonance/magnetic resonance
imaging is currently one useful technique for obtaining information on blood flow in human vessels.
However, there has not been any satisfactory flow signal equation that has given a completely
correct and adequate understanding of the dependence of CW NMR signal on blood flow
characteristics in human even though it provides a cheaper mean of blood flow estimation (Odoh
and De, 2008). It is desirable to find suitable NMR techniques so that the measurement of NMR
signal strength can yield knowledge of blood flow rates in human patients despite the finite size of
biood vessels, small field inhomogeneity (= 1 mG), static tissue signal from tissues surrounding
the blood vessel, variation of effective time from patient to patient (Caro etal., 1978; Battocletti et
al., 1979). Using the techniques one would be able to obtain reliable estimate of blood flow rates
and other medically relevant parameters, such as blood cross-section and relaxation time.

However, literature does not abound in close-form solutions of NMR Bloch equations with flow
dependent magnetization. Such solutions are truly non-trivial. Several studies have attempted to
solve the Bloch equations as ways of exploring the benefits continuous wave nuclear magnetic
resonance has in structural studies of certain materials (Canet, 1996) and in quantitatively
explaining the estimation of blood flow rates (Battocletti, 1986 and Awojoyogbe, 1997. In trying
to do this they employed some assumptions and transformations. The use of integrating factor to
get the particular and general solution of the resulting differential equation using certain boundary
conditions (Stroud, 1996) arising from such transformation make their methods cumbersome and
lead to some errors. So far no satisfactory solution has been given that could reliably be used to
account for some physiological dysfunction of the heart and other cardiovascular disorders.
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2. The Laplace Transform Solution To The Bloch Equations

In our approach, we have tried to solve the Bloch equations using a Laplace transform method
which has the advantage of avoiding the problems stated above after the appropriate initial
conditions have been defined for the magnetized blood bolus entering into the NMR system. We
give below details of our approach.
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Figure 1 : Diagram Of The CW NMR Excitation Scheme With Separate Movable Detection
System For Accurate Estimation Of Steay Blood Velocity, The Pulse Flow Velocity And
Also The Total Cross-Section Of The Blood Vessel, L, Is The Length Of The Excitor Coil;
Al Is The Separation Of The Excitor And The Detector Coil Whose Length [s L.
It is assumed that the blood or fluid protons, prior to entering the excitor coil (Figure 1) are
magnetized by a static B, field to an equilibrium magnetization M, that is given by a well known
Briliouin Functions (Odoh and De, 2008). A similar has been used by De (1990) to investigate
pulsatile and steady flow of blood using CWNMR. The time dependent rF B, field is in the
laboratory X direction which coincides with the axis of the excitor and detector c0|ls
The Bloch equations in the laboratory frame of axes are given by

aM

T = y{M x B) + Relaxation terms '€}

with
M= iMy + jMy+ kM, 2

and
B=kBy + iB(1) (3)

The rF B,(r} field usually is of the form B,(f) = B,;5cos a¥

It can be viewed as two rotary magnetic fields (rotating with angular frequency @) and amplitude
B,¢/2, in clockwise counterclockwise directions (Slichhter, 1978). One of this does not ald F

absorption and at resonance and is so discarded.

H
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Even when M is not flow dependent solutions of the above equations in the laboratory frame of
axes is not easy. One therefore resorts 1o a rotating frame of axes, whose z axis coincides with Z
axis of the laboratory frame and xy axes of rotating frame rotates with angular frequency @ about
the x axis. The x axis of the rotating frame makes an angle @¢ with the X axis in the laboratory
frame. In this rotating frame B,(¢) is viewed as time independent and equation (3) is written as

B =kBy+ B o2 = kBy +iB/
and in the absence of blood flow,

(%)',,,, = (%)m, +(Qx M), @

where 2 = w— B,
At resonance € = 0 and

My _(dM
[?]mb B ( at /oo (3)
with tF B, field time independent in the rotating frame. When flow velocity is time independent,
i.e., for steady flow velocity, V,

%:-@%+V.grad - (6)
The B, field is time independent only when viewed from the rotating frame which is rotating about
the Z axis of the fixed laboratory frame with the angular frequency  of the field. The axis in the
latter frame coincides with the laboratory z-axis, the rotating frame x makes an angle, of at any
instant of time, ¢ with the laboratory X axis. The x, y, z components (in the rotating frame) of
magnetization of a fluid bolus are then given from equations (MNto (N

oM, -
M, _v.gradM, + = =—-—7"~f z 7

dt
dM, M -M
Yy _ My _ _TMy
—a-?——V.gTadMy+ ] erBl(x) Ti (8)
dM. oM. _ (M — M)
T:V.grmiM: + =—y M, B (x)+ T (9)

To calculate M,, M, and M, one needs to have initial boundary conditions. A reasonable boundary

condition is that before entering the excitor coil, the blood bolus has magnetization
M,=0,M,=0

[f B,(x)is large, B,(x) = 1G ormore so that M, of the fluid bolus changes appreciably from My, for

steady flow in X direction: 7 =0

From equation (8) we can write

vam, M) 1
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If we substitute for A, in equation (9) with B,(x) written simply as B, for a non-varying field, we
have

VdM i ld’My 202 - 1 YViM,
a3 g (o - 7 an
For convenience, we assume that 7282 >» —-L_
Lo
One can then write
M, (1 1)\, 5B YBM
v, (1,1 B, _rBM,
P +V(7i+75 & M, VT (12)
1, 1Y L. 1L_1,1
We define R,_T’{T :GJ_——O., 73—7i+75
Equation (12) can be written
d*M, du
% +R—dxy+PMy=Q (13)
where
et 3 ?'BIMO .

We shall solve equation (13) usmg Laplace Transf‘orm We then use the following relation

Am,}=-#, | 15)
i My}=s7y - M, (16)

(M, =M, -sM, - M, an
Substituting cquations (15), (16)and (17) in equation (13), we obtain

S M, ~sMy, - M, + RsH, - RM,_ + P, = £ )

We shall impose the following boundary conditions:
aMm,

x=0,M, =0and % =0atM, =0
In this case, equation (18) becomes :

M, + ks, + PH, = 2 19

— 72 0

M,(s* +Rs+ P)= p
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M=—92_
7 s(s’ + RS+ P) (20)
Using partial fraction approach,
ﬁ - o =4, Bs+C
s(s? +RS+P) S S +Rs+P
Or
M =A, Bste
P s T T Re+ P - @n
Multiplying equation (21) through by s(s? + Rs + P) gives
Q=A(s* + Rs + P} + s(Bs + C) (22)
If 5 = 0, equation (22) becomes O = AP
Therefore, A= %

By inspection of coefficients involving 52,
0=A+ B, so that B=_A=_%

Similarly, by in inspection of coefficients involving s,
ARs+ Cs=0ors(AR+C)=0

Therefore,
c=-ar=-£

Substituting the values of A, B and C in equation (15),

( Q)j ( ) (23)

s +Rs+ P )
To have equatlon (23) in a form of Laplace Transform, we make the denominator of the second

termn on the right side a perfect square.

_0), (2 |

Equation (24) can be written as

2 A BIn o (B

B A (reg) #2555
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which also can be written as

(+3) )

] s 2 _p?
(”_2@] +4P4R (‘H'g) +4P4R

M, =

o

) |-

2 4
Equation (26) will then be written as

7, =<

1__ _s+a ba
YOPS (seaf 45! (s +a)? +5?)
Taking the inverse Laplace Transform of equation (27),

1
. 2 Y2
Let Rogang 22K _j2 (o gy b=(ﬂ’§i)

St g
MJ’_PI e " coshx 5¢ sindx

Using equation (14),

2\3 2p202  \L
0 My ap (40-RY (487
4 4V2T°1
.

Substituting for % end g— in equation (28),

= Mﬂ . 4 - i —-ag -
M, me[l e ™ coshx 2,“31,‘,'.].? sindx

The laboratory component, M?o is given by Myo =M, cos ox
The NMR signal detected in the receiver coil of length, L, is defined

EMF=lis=c00f" M, &

where ¢’ = instrument factor, £, is the blood vessel cross-section.
Substituting equation (30) in equation (32), gives

I

_ 'y My cosart {J:‘D(} ~ecoshx - Ke % sin bx)dr} where K = 2r BT,

fo=
ks Y8BT,

26)

27

(28)

(29}

(30)
€2))

(32)
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I = @c'(dp My coswt
T yBh
Equation (33) can now be integrated term by term with the last two terms on the right evaluated
using integration by parts. These two terms are of the form

L Ly _ ilp _ar .
[J'ooa‘x—j‘o"e “‘cosbxdr—KIooe sinbx dx (33)

jﬂ"” % cos B dx — xj:” ™ sin Bx dx 34

with a=-g, and =5,
The result of equation (34) when substituted in equation (33) is

wc'Sdp My coswi [x _ e™(Bsin fx + acos fir) % e™ (—Bcos fix + asinﬁx):rt”

fo=
” BT o + 2 Iy 69
The last two terms in the square bracket of equation (35) can be written as
Ze‘” [Alsin fx — K cos fx) + a(cos Bx + K sin fx))
a® + B
__e¥ . _ : (36)
= oF inAx(B+ aK) +cos (K] |
Let pS+ak=Acos ¥ (37
a—BK=Asin 8 (38)
Using equation (37) and (38) equation (36) becomes
a;:xﬁz [ 4sin Bxcos@+ acos fxsin 6] = a:fﬂz [ Asin(fx + 6)] (39)
Squaring equation (37) and (38) and adding them, we can write that
A2 =(B+aK) +(a- PK) = f +a’ + K (a® + f2) = (&® + B)1+ K?) (40)
A=(Ja2+,62)(J1+K2) (a1)
We now substitute the value of A in equation (39) to get
o5 - (\/a’z + )(Jl +K? )e“" sin(fAx + 6)
Iy [Asin(Bx +6)]= -
EIEY GRS WP (42)

- ;}az +

The signal as given by equation (35) can therefore be written as
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. =Lp
_oc'QpMycosat [

o V|1+K2 &
Iy = VBT Lx —We sin(Bx + 8) (43)

x=l}

we'Q p Mycosat Ji+ & ) )
fpg= ""’"‘W‘"[% - Ja2=+ﬂz-{eup sin{ ALy +6) - sin 9} (43)
From equation (38), sinf= a- AﬂK

The NMR signal detedted in the receiver coil of length, Ly, is therefore given as

_wc'QpMocosmtl- _ 1+ K2 IEL . _ a—pgK _
fpg= yBT L f_} Jaf.2+ﬂ_2 le D sin{ AL, + 6) Ja2+ﬁzJ1+K2 (44)

Equation (44) provides us with an NMR flow signal which clearly depends on the velocity of the
blood flowing in the blood vessel. The first term in equation (44) represents flow independent CW
NMR signal expected from static tissue from the blood vessels. The second term is flow dependent
and is also seen to depend on L. The actual signal would consist of another term due to static
tissue surrounding the blood vessels. The later part of the equation actually overwhelms the signal
due to blood flow, i.e., the second term of equation (44). However, with the above expression, an
algorithm can easily be formulated to eliminate the static tissue signal and quantify the blood flow
rate. The blood steady flow velocity, the blood vessel cross-section whose knowledge is very
important in case of atherosclerotic plaque for understanding of bicod haemodynamic, can
therefore readily be quantified. These are no doubt clinical parameters of important to human and
their knowledge is very necessary any time in any patient.

3. Conclusion

Using the Bloch equations and a time derivative of magnetization related to velocity gradient, we
have arrived at a second order differential equation. We have solved the developed equation using
Laplace transform. Our calculation provided once more a CW NMR signal for steady flow of
blood that relates to the velocity of blood in the human blood vessels. Using the derived relation
one can easily form algorithm to eliminate static tissue signal from the measured signal and extract
the signal that corresponds to blood flow rate. The blood flow information can then be obtained.
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