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ABSTRACT

L
A semi-mechanistic model for predicting the flow behaviour of
Fe-Mn-Mo steels displaying transformation-induced plasticity
is developed in this paper. The model, based on the law of
mixtures, takes into account the work-hardening of the
individual principal phases (namely, lath-martensite and
austenite/epsilon martensite;. The composite strength of
such a steel may be given by a modified 1law of mixtures
which incorporates a dislocation density effect. To test the
validity of the model, experiments have been performed using
a magnetic reluctance technique to determine the extent
of Y+ ¢+ a'transformation induced by tensile plastic

deformation at rocm temperature. As the Y +¢>al
transformation progressed the work-hardening of the steels
was found to increase rapidly. It is concluded that the

indufed lath-martensite 1n a work-hardened austenite/epsilon
matrix is most effective in enhancing strength and ductility.

1. INTRODUCTION

Some studies..of deformation of equivolumic ©phase mixtures
have been madé (e.gs Shelton and Ralph, 1983; Durand and
Coulomb, 1983, and" Durand, 1987) although most of these
investigations . have. involved deformation -of non-ferrous
alloys,, and have used uniaxial tensile testing procedures.
However; little seems to be known about the deformation of an
equivolumic phase mixture of ferrous alloys at roocmnm
temperature. The Fe-Mn-Mo steels display Ytransformation-
"a phenomenon similar to the one
encountered in TRIPE:steels. This is expected to have a
significant effect o9  the work-hardening behaviour of these
steels. The .aim of the present work 1is to develop a
theoretical model for the composite flow behaviour of these
steels containing initially approximately 50 volume % hard
lath-martensite and 50 volume % soft .- austenite/epsilon
martensite. The model will incorporate:-

(i) the effect of work-hardening of thﬁe individual
microconstituents;

(11) the effect of strain-induced transformation of
austenite/epsilon phase to lath martensite;

(iii) the effect of lath-martensite-induced dislocation
multiplication.
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Oppe =k [ln(1+0) I [1-(1, 7571 (4)
In equation (4) Ovy+e represents the ease with which an
austenite/epsilon structure c¢an undergo a strain-induced
transformation to lath-martensite.

2.3. The effect of lath-martensite strengthening. The true-
stress contribution of lath-martensite should be
proportional +to the volume fraction of lath-martensite Vg,
Using the same procedure as above for lath martensite
strengthening leads to the following equation:-

o = T(1 4 £57F (5)
In this equation (5}, the proportionality constant T
represents the flow stress of the steel extrapolated to a
fully lath-martensite structure, T is the lath-martensite
strengthening factor. The exponent P is a measure of how
effectively increasing amounts of 1lath-martensite in the
structure are translated into an increased stress

contribution from this lath-martensite.

2.4, The effect of the lath-martensite-induced dislocation
density. Equaticn 4 chows the ease with which an
austenite/epsilon structure can undergo a strain-induced
transformation to lath-martensite. This must be followed up
with extra dislocations generated'continuously as a result of
this strain-induced transformation which will contribute
further to lath-martensite strengthening throughout the
plastic deformation. If Aeis +the microstrain or effective
strain in austenite/epsilon due to - lath-martensite
transformation, formed over the strain intervalc to €+ Ae,
equation (4), can be re-written:- :

Oype = k[1n (1 +(e +ae) I [1 -(1 + 5571

and Ace = DbLU . (6)
where b is the Burgers vector, L is the 1length of free
dislocations per unit volume which contribute to the strain,
U is the mean distance crossed by each dislocation, As new
nuclei may be formed by straining the material, the number of
dislocations increases from about 10° §<? in a well-annealed
structure to about 10'?*m72 in a heavily cold-worked
material. If we assume that dislocations which.are induced
by the lath-martensite transformation are identical to this
hypothetical heavily cold-worked dislocations, it then
beconmes possible to wuse the parabolic, relationship fo
correlate mobile dislocation density with strain.

P ?Po + ng Hahn (1962) (7)
where P = total dislocation density, Po lateyz 0) = 1082 m=2;
€y = plastic strain, and C and a are measured parameters.

Now, if the lath-martensite-induced dislocation density P, is
summed with the existing dislocation density Py, then
according to the assumption that the plastic strain Ep in
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(7) may be replaced by 42 leads to .

a Py 3
(Py + Pp) = Py + CAE™; pp = Cac®; e = (202 (8)
Equation (8) shows a physical explanation of Ae in terms of
lath - martensite-induced dislocation density which can be
measured. Substituting equation (8) into equation (7) gives

4 -5 -1
£
°Y+E=k[ln(1+(e+p_é)_)a-)n[1—(1+K Y ) (9)
2.5, The expression for the composite flow stress of
meta-stable Fe-Mn-Mo alloys. If the expression for Sy+e

and 04tin equations (9) and (5) respgctively are taken into an
additivity expressioq we arrive at:-

a -8~ -§_-P
oq = k[In(1 + Ce + fgﬁ“ -+ 9 M+ ra £ (10)

This 1s the flow-curve equation relating true-stress to
strain of meta-stable Fe-Mn-Mo alloys.

3. EXPERIMENTAL METHOD AND TECHNIQUES

A1l tensile tests were carried out at a constant cross-head
speed of {0.5mm/min.) corresponding to an initial strain rate
of 8.33 x 10 ®s”'. The phase content of the steels was
determined using a commercial "Ferritescope" which quantifies
ferromagnetic phase contents by monitoring magnetic
reluctance. .

4. RESULTS

The vnlume fraction of lath-martensite before deformation
was approximately 50 volume percent. During deformation the

amount of @' increased as shown in figures 2 and 3. The
volume fraction of &' is a sigmoidal function of strain (c.f.
Angel, 1954; Olson ~and Cohen, 1972, and Hecker et al.,
1982). The values of the dislocation density were taken from

Roberts (1970), ‘
iron-manganese alloys. Tables

dislocation density values respectively. From the analysis

«of these data, the “automotive lath-martdensite ifidex "S"

values were closely grouped about "4.0". This finding
suggested that the automotive aspect of the strain-induced
transformation 1is insensitive to composition and conditions
of treatment. It is also indicative that the equal strain law
might be obeyed at these volume fractions (50%). Some of the
experimental data set is given in table 3. Figure 4 shows
the experimental curves and the curve calculated from the
model. It may be seen from the curves that the experimental
and model curves are very cfose, which suggests that the
composite flow stress {0;) obeys the modified law of mixtures
with equivolume phase proportions (see e.g. Durand, 1987).

4.1. Mechanical response. Examples of the true stress/true
plastic strain curves and tensile work-hardening rate/true
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TABLE 1 MODEL PARAMETERS

Alloys K A T S P n
c% Mn% Mo% {MPa] [MPa]l [MPa]
0.1 11.90 1.93% 2832 1244 1056 4 0.729 0.683 ¢
0.1 11.85 2.5 * 2829 1270 950 4 0.629 0.643 .
0.1 11.85 2.5 ** 2673 1339 850 4 1.026 O.§1O
0.1 11.85 2.5 *¥ 2585 1485 895 4 1.058 0.580
¥ as rolled %¥% sol.treated 850°C for 1 hour
¥%% gol.treated 950°C for 1 hour
- o
TABLE 2 DISLOCATION DENSITY PARAMETERS
References
*m? Hahn (1962)
2 x 10°m
g 0.7 Hahn (1962) | and vester
102 512m~2  Roberts (1970} and Vette
k 29 x 10°°m
° >x e et al., (1977}
TABLE 3 MECHAKNICAL PROPERTIES
. .
Elast - 0.2% Proof Elong. Reduct.
Alloys Limit Stress T.S. % in area .
C% Mn%  Mo% [MPal [MPFa] (vMpal  [MPa] % i
0.1 11.90 1.93* 422 1078 1480 ° 24 gg
0.1 11.85 2.5 ¥ 414 837 . 1276 20 25
0.1 11.85 2.5%% 424 788 9283 20 e
0.1 11.85 2.5%%% 441 882 1304 19 -
0.1 12.85 2.5%* 245 784 1230 12 I .
0.1 12.85 2.5%%% 245 - 833 1172 10 %
* as rolled #% so0l. treated 85020 for 1 hour
%x%%¥ gol. treated 950°C for 1 bour
350
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plastic strain curves obtained from the tension tests are
given in figures 5 and 6. The overall flow stress levels and
trends of the curves show how as the Y + e+a' transformation
progressed the work-hardening of the steels increased
rapidly, The mechanical behaviour of a certain number of
steels is drastically changed when these alloys can exhibit a
martensitic transformation induced by plastic deformation
(see Table 3).

5. DISCUSSION

The changing of phasg content along the stress-strain curve
may be linked to the model of Olson and Cohen (1975}). This
analysis provides a rationale for the formation of martensite
with plastic strain and how this is affected by stacking
fault energy and strain rate. During strain-induced
transformation, plastic deformation of the parent phase
creates the proper defect structures, which act as embryo
for the transformation products. This will result in higher
dislocation density 1in the end product. Therefore, this
rapid work-hardening in this low strain region will reflect

the continuous transition from a plastic deformation
mechanism involving transformation induced 1lath-martensite,
residual stresses and mobile dislocations to plastic

deformation by a dislocation generation/dislocation glide
mechanism. With these phenomena, this model based on the law

of mixtures is more attractive; this has been quantified in
figure 4 which gives the experimental curve and that
calculated from the model of the composite (o0s ) and

incorporates a dislocation density effect. If this mode of
deformation of these alloys is compared with steels with only
martensite as the second phase, which does not deform on
plastic straining, it could be seen that the induced lath-
martensite in a work-hardening matrix of austenite/epsilon is
most effective in enhancing strength and ductility
{Inegbenebor et al., 1987).

6. CONCLUSIONS

The model developed for predicting the flow behaviour of
metastable Fe-Mn-Mo steels displaying transformetion-induced
plasticity is based on the law of mixtures of microstructures
containing approximately 50 volume percent of soft phase
(austenite/epsilon martensite) and hard phase (lath-
martensite) as starting phases. It has been employed to
calculate the composite flow stress of these alloys. The
results of the calculations approach the actual behaviour of
the alloys tested.
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