
Tool Support for Cascading Style Sheets’ Complexity
Metrics

Adewole Adewumi1, Onyeka Emebo1, Sanjay Misra2, and Luis Fernandez3

1 Department of Computer and Information Sciences, Covenant University, Ota, Nigeria
2 Department of Computer Engineering, Atilim University, Ankara, Turkey

3 Department of Computer Science, University of Alcala, Madrid, Spain
{wole.adewumi, onye.emebo}@covenantuniversity.edu.ng

smisra@atilim.edu.tr
luis.fernandezs@uah.es

Abstract. Tools are the fundamental requirement for acceptability of any
metrics programme in the software industry. It is observed that majority of the
metrics proposed and are available in the literature lack tool support. This is one
of the reasons why they are not widely accepted by the practitioners. In order to
improve the acceptability of proposed metrics among software engineers that
develop Web applications, there is need to automate the process. In this paper,
we have developed a tool for computing metrics for Cascading Style Sheets
(CSS) and named it as CSS Analyzer (CSSA). The tool is capable of measuring
different metrics, which are the representation of different quality attributes:
which include understandability, reliability and maintainability based on some
previously proposed metrics. The tool was evaluated by comparing its result on
40 cascading style sheets with results gotten by the manual process of
computing the complexities. The results show that the tool computes in far less
time when compared to the manual process and is 51.25% accurate.

Keywords: Cognitive complexity, CSS Metrics, Tool Support.

1 Introduction

In recent times, Cascading Style Sheets (CSS) have become indispensable in the
development of Web applications. They can be used for styling eXtensible Markup
Language (XML) or HyperText Markup Language (HTML) documents. To style an
HTML document, CSS can be applied in three ways namely: by placing them within
the <head> tags of HTML; by placing them as tag attributes within the various other
HTML tags that can be contained within the <body> tag of an HTML document; or
by creating them as a separate document with extension (.css) and linking them to the
<head> section of the HTML document. The latter of these procedures is a better
practice as it separates content from presentation thereby promoting maintainability.
Since CSS are an integral part of Web applications, they also add to the increasing
complexity of such applications. In a previous work [1], we presented a suite of
metrics to measure complexity in CSS at the International Conference on

Computational Science and Its Applications (ICCSA 2012). Prior to this, not much
had been done in this regard. The metrics were based on cognitive complexity and
were computed manually. This is a slow and tedious process that makes it of no
practical use to software engineers and Web developers. Though we carried out a
preliminary evaluation of the metrics and found them to be well structured, we
proposed as future work to provide a tool to simplify the measurement process. This
informs the motivation for this current paper.

Tool writing according to [2] is becoming a forgotten art. This is evidenced today
by a growing body of literature that consists mainly of proposed and validated
complexity metrics with no tools to measure them. Table I shows an in exhaustive list
of such literature. In the XML schema document (XSD) domain, a metric has been
proposed to measure complexity in XML schema documents (XSDs) [9]. The metric
does this by considering the internal building blocks of XSD. The metric was
demonstrated with examples and performed well in comparison to similar measures.
To compute the metric however, no tool was provided. Similar to this, a design
complexity metric was proposed for XSD in [17]. This metric covers all the major
factors that affect the complexity of XSD. In addition, due to the diversity in structure
of W3C XML schema languages, a metric based on the concept of entropy from
information theory was proposed in [23] for assessing the structural complexity of
XSDs. As for XSDs written in W3C Document Type Definition (DTD) language, a
metric also based on the entropy concept from information theory was proposed in
[14] to measure the structural complexity of XSDs written in DTD. The work was
extended in [24] to include Distinct Structured Element Repetition Scale (DSERS)
metric, which also measures the structural complexity of schemas in DTD language.
This metric exploits a directed graph representation of a schema document and
considers the complexity of schema due to its similar structured elements and the
occurrences of these elements. In the XML/Web services domain, a data complexity
metric for XML Web services was proposed in [16] which assesses the quality of
Web services in terms of maintainability. Similarly, a suite of metrics for XML Web
services was also proposed in [21] which includes: data weight of a web service
description language, distinct message ratio metric, message entropy metric and
message repetition scale metric. All the proposed metrics in the suite were evaluated
theoretically and validated empirically. A comparative study with similar measures
also proved the worth of the metric suite. In the coding language domain, a
complexity metric was proposed in [20] for evaluating object-oriented code with
emphasis on Python, Java and C++. The metric was validated empirically on real
projects but no tool was developed for the metric. Similarly, a complexity metric was
proposed in [19] called JavaScript Cognitive Complexity Measure (JCCM) for
measuring the complexity of JavaScript code. Again the metric was evaluated
theoretically and validated empirically but no tool support was made available. Other
metrics based mostly based on cognitive informatics include: Modified Cognitive
Complexity Measure [4], [5]; Complexity Measure based on Cognitive Weights [6];
Cognitive Program Complexity Measure [7]; Object Oriented Complexity Metric
Based on Cognitive Weights [8]; a New Complexity Metric Based on Cognitive
Informatics [10]; Object Oriented Programs Complexity Measure [11]; Unique
Complexity Metric [12]; Weighted Class Complexity [13]; Unified Complexity

Measure [18]; and Inheritance Complexity Metric for Object-Oriented Code [22]. In
all, these measures have no tool support.

Since tools are a fundamental requirement for the acceptance of any metric in the
software industry, we are extending our previous work and developing a tool for
computing metrics of CSS. The tool is named CSS Analyzer (CSSA). The rest of the
paper is organized as follows: Section 2 gives a description of the tool developed.
Section 3 evaluates the tool by comparing its result with the manual approach to
measurement. Section 4 discusses the results of the comparison while Section 5
concludes the paper.

2 Description of CSSA

CSSA was developed using the Java programming language. In this section, we
describe CSSA based on the metrics that it measures.

2.1 Rule Length (RL)

CSS is made up of rules. This metric counts the number of lines of rules in a CSS
without taking into account white spaces or comment lines [1]. The pseudo code used
to implement this functionality in CSSA is given as:

Read a CSS file;

Initialize a line counter variable to zero;

While not End of CSS File

 If a line is not empty and is not a comment;

 Increment line counter variable by 1;

Table 1. Metrics proposed having no tool support

S/N Metrics name Reference
1 Cognitive Complexity Measure [3]
2 Modified Cognitive Complexity Measure [4], [5]
3 Complexity Measure Based on Cognitive Weights [6]
4 Cognitive Program Complexity Measure [7]
5 Object Oriented Complexity Metric Based on Cognitive

Weights
[8]

6 Complexity Metric for XML Schema Documents [9]
7 A New Complexity Metric Based on Cognitive

Informatics
[10]

8 Object Oriented Programs Complexity Measure [11]
9 Unique Complexity Metric [12]

10 Weighted Class Complexity [13]
11 Entropy Metric for XML DTD Documents [14]
12 Cognitive Functional Sizes [15]
13 Data Complexity Metrics for XML Web Services [16]
14 Design Complexity Metric for XML Schema Documents [17]
15 Unified Complexity Measure [18]
16 Complexity Metric for JavaScript [19]
17 Python Language Complexity Metric [20]
18 Metrics suite for maintainability of XML Web Services [21]
19 Inheritance Complexity Metric for Object-Oriented Code [22]
20 Entropy of XML Schema Document [23]
21 DTD Metrics [24]

2.2 Number of Rule Blocks

A rule block in CSS refers to a selector and its attributes depicted as:

/* Syntax of a rule block */

Selector [, selector2, ...] [:pseudo-class] {

 Property: value;

 [Property2: value2;

...]

}

The pseudo code used to implement this functionality in CSSA is given as:

Read a CSS file;

Initialize a brace counter variable to zero;

While not End of CSS File

 Increment brace counter variable by 1 every
time an open brace is read

2.3 Number of Attributes Defined per Rule Block (NADRB)

NADRB as defined in [1] determines the average number of attributes defined in
the rule blocks of a CSS file. The formula for calculating it is given in (1):

NADRB = Σ rule_block_attributes / Σ rule_blocks (1)

The pseudo code for computing this metric in CSSA is given as:

Read a CSS file;

Initialize a semi colon counter variable to zero;

Initialize a close brace counter variable to zero;

While not End of CSS File

 Increment close brace counter variable by 1
every time an open brace is encountered

 Increment semi colon counter variable by 1
every time a semi colon is encountered

Divide the semi colon counter by the close brace
counter to get the NADRB value

2.4 Number of Cohesive Rule Blocks (NCRB)

NCRB measures the number of rule blocks in a CSS file possessing a single attribute.
The pseudo code for computing this metric in CSSA is given as:

Read a CSS file;

Initialize counter variable to zero;

While not End of CSS File

 If the number of semi colons within a rule
block is one

 Increment counter variable by 1;

 Else

 Do nothing;

3 Evaluation of the Tool

In this section, we present the evaluation of the tool by applying it on forty real CSS
files downloaded from the Internet. We compare the results obtained for each metric
with the results gotten by manual computation of the metrics. Table II presents the
CSS Ids and the web links from which they were downloaded. Table III shows a
comparison of the results obtained by applying CSSA to the CSS files as well as the
results obtained by manual computation.

Table 2. CSS IDs and Web Links

CSS ID Web Link
1 http://www.freecsstemplates.org/download/zip/argon
2 http://www.freecsstemplates.org/download/zip/boldness
3 http://www.freecsstemplates.org/download/zip/bolness2
4 http://www.freecsstemplates.org/download/zip/classifieds
5 http://www.freecsstemplates.org/download/zip/combinations
6 http://www.freecsstemplates.org/download/zip/compass
7 http://www.freecsstemplates.org/download/zip/consistent
8 http://www.freecsstemplates.org/download/zip/corporatestuff
9 http://www.freecsstemplates.org/download/zip/estatebroker
10 http://www.freecsstemplates.org/download/zip/flamingo
11 http://www.freecsstemplates.org/download/zip/flowering
12 http://www.freecsstemplates.org/download/zip/fotofolium
13 http://www.freecsstemplates.org/download/zip/fruityblue
14 http://www.freecsstemplates.org/download/zip/handcrafted
15 http://www.freecsstemplates.org/download/zip/igunalounge
16 http://www.freecsstemplates.org/download/zip/infrastructure
17 http://www.freecsstemplates.org/download/zip/inwild
18 http://www.freecsstemplates.org/download/zip/islandpalm
19 http://www.freecsstemplates.org/download/zip/lettering
20 http://www.freecsstemplates.org/download/zip/limitless
21 http://www.freecsstemplates.org/download/zip/networked
22 http://www.freecsstemplates.org/download/zip/officememo
23 http://www.freecsstemplates.org/download/zip/outdoor
24 http://www.freecsstemplates.org/download/zip/petalsandflowers
25 http://www.freecsstemplates.org/download/zip/redallover
26 http://www.freecsstemplates.org/download/zip/redandblack
27 http://www.freecsstemplates.org/download/zip/reinstated
28 http://www.freecsstemplates.org/download/zip/rifle
29 http://www.freecsstemplates.org/download/zip/simplified
30 http://www.freecsstemplates.org/download/zip/woodcrafting
31 http://www.freecsstemplates.org/download/zip/stampalike
32 http://www.freecsstemplates.org/download/zip/naturalprime
33 http://www.freecsstemplates.org/download/zip/grasstown
34 http://www.freecsstemplates.org/download/zip/fullycharge
35 http://www.freecsstemplates.org/download/zip/spikyflower
36 http://www.freecsstemplates.org/download/zip/simpledisplay
37 http://www.freecsstemplates.org/download/zip/modelling
38 http://www.freecsstemplates.org/download/zip/surround
39 http://www.freecsstemplates.org/download/zip/halcyonic

40 http://www.freecsstemplates.org/download/zip/bigbusiness2

Figs. 1 - 4 give a graphical comparison of the results gotten from the tool as well as

that computed by hand. The next section discusses this in detail.

Fig. 1. This figure shows the correlation between Rule Length values calculated by hand and
using the tool.

Fig. 2. This figure shows the correlation between NORB values calculated by hand and using
the tool.

Fig. 3. This figure shows the correlation between NADRB values calculated by hand and using
the tool.

Fig. 4. This figure shows the correlation between NCRB values calculated by hand and using
the tool.

Table 3. Comparison between results obtained using CSSA and manual computation

ID CSSA MANUALLY
RL NORB NADRB NCRB RL NORB NADRB NCRB

1 224 48 2.68 19 224 48 2.67 20
2 329 65 2.95 14 329 65 3.06 16
3 368 74 3.02 16 368 74 2.96 19
4 300 63 2.76 16 300 63 2.84 16
5 463 89 3.25 20 463 89 3.20 22
6 363 73 1.63 17 364 73 2.97 18
7 280 59 2.79 19 280 59 2.75 21
8 349 77 3.00 21 362 77 2.66 23
9 205 48 2.31 14 205 48 2.27 15
10 340 69 2.94 15 340 69 2.93 15

11 298 62 2.85 16 298 62 2.81 18
12 258 52 3.01 13 258 52 2.96 11
13 336 65 3.23 15 336 65 3.19 15
14 292 62 2.75 15 292 62 2.71 15
15 359 73 3.00 18 359 73 2.92 17
16 299 62 2.87 16 300 62 2.82 18
17 248 48 3.12 8 248 48 3.08 8
18 340 69 2.98 16 360 69 2.87 17
19 296 62 2.85 18 296 62 2.77 17
20 305 63 2.82 14 305 63 2.84 16
21 339 69 2.97 16 339 69 2.91 17
22 298 63 2.77 16 298 63 2.73 16
23 343 69 3.02 16 343 69 2.97 17
24 332 70 2.78 20 332 70 2.73 22
25 348 74 2.75 19 348 74 2.70 20
26 306 61 3.04 15 307 61 3.02 16
27 253 54 2.74 17 253 54 2.69 20
28 373 77 2.90 20 373 77 2.84 21
29 249 50 3.04 12 249 50 2.98 13
30 276 60 2.65 17 276 60 2.60 19
31 309 65 2.78 15 309 65 2.77 16
32 349 70 3.02 15 349 70 2.99 15
33 302 61 3.00 16 302 61 2.92 18
34 260 53 2.96 14 260 53 2.91 12
35 349 74 2.77 19 349 74 2.72 20
36 395 79 3.03 18 302 79 3.00 18
37 374 73 3.16 15 374 73 3.11 15
38 475 94 3.07 20 475 94 3.00 20
39 711 121 2.11 44 628 121 2.07 44
40 354 69 3.17 18 354 69 3.13 20

4 Discussion

The comparison in Table III shows that for the RL metric only 7 (17.5%) of the CSS
files analyzed do not give same results for the manual and automated complexity
computation process. In other words, 82.5% of the CSS files match when computed
using both automated and manual process. It is easy to identify the files that do not
match by looking at the chart in Fig. 1. For instance, CSS file with ID 36 has an RL
value of 395 when the tool is used but when calculated by hand the value obtained is
302 a sharp difference.

For the NORB metric, we observe that the results obtained by the tool and by
manual computation are exactly alike for all 40 (100%) CSS files analyzed. This
explains why the graph in Fig. 2 seems to have only one (red) color. A direct opposite
of this is the case of NADRB metric where none of the 40 (0%) CSS files analyzed

give same results for the manual and automated computation process. This is
supported by the irregular lines seen in Fig. 3 notable among them is the sharp
difference between the automated and manual computation for CSS ID 6 (1.63 and
2.97 respectively).

As for the NCRB metric, only 9 (22.5%) out of the 40 CSS files analyzed have the
same results. The differences in value for both automated and manual computation is
not significant as can be seen in Fig. 4. To this end, summing the percentage match
for each metric and dividing the total by the number of metrics considered helps to
determine the percentage accuracy of the tool given as:

(82.5 + 100 + 0 + 22.5)/4 = 51.25% accuracy
The tool takes an average of 11 seconds to compute all four metrics while a manual

computation takes an average of 390 seconds. This implies that the tool is 35 times
faster than the manual computation process.

5 Conclusion

This paper presented the description and evaluation of CSSA - a tool for computing
RL, NORB, NADRB and NCRB metrics for a CSS file. CSSA was implemented to
alleviate the cumbersome process of determining the complexity of CSS by hand. The
result from the comparison to the manual computation approach shows that CSSA is
35 times faster with an accuracy of 51.25%. Web developers and engineers can utilize
the tool in its current form. As future work, we intend to improve on the accuracy of
CSSA and also extend it to compute entropy of CSS files.

References

1. Adewumi, A., Misra, S., Ikhu-Omoregbe, N.: Complexity metrics for cascading style sheets,
Lecture Notes in Computer Science, vol. 7336, (2012) 248-257

2. Spinellis, D.: Tool writing: a forgotten art?, IEEE Software, vol. 22, (2005) 9-11
3. Misra, S., Misra, A. K.: Evaluating cognitive complexity measure with Weyuker Properties,

in Proc. 3rd IEEE International Conference on Cognitive Informatics, Victoria, Canada,
(2004) 103-108.

4. Misra, S.: Modified cognitive complexity measure, in 21st International Symposium on
Computer and Information Sciences, (2006) 1050-1059.

5. Misra, S.: Validating modified cognitive complexity measure, ACM SIGSOFT Software
Engineering Notes, vol. 32, (2007) 1-5.

6. Misra, S.: Complexity measure based on cognitive weights, International Journal of
Theoretical and Applied Computer Sciences, vol. 1, (2006) 1-10

7. Misra, S.: Cognitive program complexity measure, in Proc. 6th IEEE Int. Conf. on
Cognitive Informatics, Lake Tahoe, CA, (2007) 120-125.

8. Misra, S.: An object oriented complexity metric based on cognitive weights, in Proc. 6th
IEEE Int. Conf. on Cognitive Informatics, Lake Tahoe, CA, (2007) 134-139.

9. Basci, D., Misra, S.: Complexity metric for XML schema documents, in Proc. International
Conference on SOA and Web services, (2012) 1-14.

10. Misra, S., Akman, I.: A new complexity metric based on cognitive, Rough Sets and
Knowledge Technology, vol. 5009, (2008) 620-627.

11. Misra, S., Akman, I.: Measuring complexity of object oriented programs, in Proc.
Computational Sciences and Its Application – ICCSA ’08, Perugia, Italy, 2008 652-667.

12. Misra, S., Akman, I.: An unique complexity metric, in Proc. Computational Sciences and Its
Application – ICCSA ‘08, Perugia, Italy, (2008) 641-651.

13. Misra, S., Akman, I. K.: Weighted class complexity: a measure of complexity for object
oriented system, Journal of Information Science and Engineering, vol. 24, (2008) 1689-1708

14. Basci, D., Misra, S.: Entropy metric for XML DTD documents, ACM SIGSOFT Software
Engineering Notes, vol. 33, (2008) 1-6

15. Misra, S.: Cognitive functional sizes, Int. J. of Software Science and Computational
Intelligence, IGI-Global, 2009.

16. Basci, D., Misra, S.: Data complexity metrics for XML Web Services, Advances in
Electrical and Computer Engineering, vol. 9, (2009) 9-15

17. Basci, D., Misra, S.: Measuring and evaluating a design complexity metric for XML schema
documents, Journal of Info. Sci. and Engineering, vol. 25, (2009) 1405-1425

18. Misra, S., Akman, I.: Unified complexity measure: a measure of complexity, in Proc. Nat.
Acad. Sci., (2010) 167-176.

19. Misra, S., Cafer, F.: Estimating quality of JavaScript, The International Arab Journal of
Information Technology, vol. 9, (2012) 535-543

20. Misra, S., Cafer, F.: Estimating complexity of programs in Python Language, Technical
Gazette, vol. 18, (2011) 23-32

21. Basci, D., Misra, S.: Metrics suite for maintainability of eXtensible markup language Web
services, IET Software, vol. 5, (2011) 1-22

22. Misra, S., Akman, I., Koyuncu, M.: An inheritance complexity metric for object-oriented
code: A cognitive approach, Sadhana, vol. 36, (2011) 317-337

23. Basci, D., Misra, S.: Entropy as a measure of quality of XML schema document, The
International Arab Journal of Information Technology, vol. 8, (2011) 75-83

24. Basci, D., Misra, S.: Document Type Definition (DTD) metrics, Romanian Journal of Info.
Science and Technology, vol. 14, (2011) 31-50

