Volume 8 December 22 2002

TECHNOLOGY AND DEVELOPMENT

(A Journal of Scientific and Technological Research, ISSN. 1115-6775)

Published by : Federal University of Technology, Yola.

TECHNOLOGY AND DEVELOPMENT VOLUME 8, 1-73 (DECEMBER 2002) (A Journal of Scientific and Technological Research ISSN 1115-6775)

Co	ntents: Titles & Authors	Page
1.	Treatment of water effluent obtained during crude oil production- Semiu A Kareem	1
2.	Planning successful Fadama development in northern Nigeria- Adamu Idama	6
3.	An innovative technique of rapid analysis of petroleum contamination in kerosene- Dilip Kumar De, M. A. Sheikh and Y. T. Usman	13
4.	Antimicrobial effects of components of the bark extract of neem (<i>Azadirachta indica</i> A. Juss)- Nandita De and E. Ifeoma	23
5.	Antimicrobial spectrum of hexane extract of <i>Commiphora Kerstingii</i> (Burseraceae)- D. Kubmarawa, G. Ajoku and D. A. Okorie	29
6.	Preliminary studies of epicentral map in the western sector of the Gulf of Eden- J.B. Yerima	33
7.	Quality assessment of stored soybean flour (<i>Glycine max.</i> (L). marr)- Nandita De	38
8.	Petrological studies of Cretaceous limestone beds of north east- Dadiya Syncline in the Yola Arm of Upper Benue Trough, Nigeria- S. A. Opeloye, S. S. Dada and G. Obaje	42
9.	The relationship between occupational skills required in manufacturing industries and those acquired in polytechnics- M. Ubale Cyril	49
10.	A Survey of Savanna tree barks for bioactive phytochemicals in Yola metropolis of Adamawa State- J. U. Ijomah, M. Idu, and B. A. O. Okusanya	59
11.	Conductivity and pH values of 0-60 cm soil profiles of two commercial areas in Yola, Adamawa State, Nigeria, using column leaching experiment – E., Adeiza, T.C. Wapanuwari & I.F.H. Andenyang	65

. *

Quality assessment of stored soybean flour (*Glycine max.* (L). marr)

Nandita De

Department of Microbiology, Federal University of Technology, Yola, P.O.Box 2076, Adamawa State, Nigeria. (Received:9th January 2002; Accepted 6th May 2002)

Soybean seeds (TGX 536-02D) were oven dried at 55°C for 18 hours and were then ground into fine powder. The flour so prepared was dispensed in 10 polythene bags each containing 10 grams and were stored at room temperature for 90 days. Two of the samples were taken at regular intervals for microbiological and biochemical analysis purpose over the 90 days of storage. The pH range was 6.77-6.28 over the period of 90 days. The bacterial isolates on 0 day of storage were *Bacillus cereus* and *Bacillus subtilis* while the isolates identified on 90th day of storage were *Bacillus cereus*, *Bacillus subtilis*, *Staphylococcus aureus* and *Escherichia coli*. The fungal isolates in soybean flour on 0 day of storage were *Aspergillus* sp., *Penicillium* sp., *Candida* sp. and *Trichoderma* sp. The total bacterial count (TBC) was 1.00×10^2 cfu/g on 0 day of storage and 8.59×10^{10} on 90th day of storage. The moisture content (%) was in the range of 17.10 to 16.37. The reduction in protein content was significant (LSD 0.753) over the 90 days of storage. The reduction in fat content over the first 14 days of storage was significant (at prob. of F 0.01) whereas the change was not significant from 14 to 60 days of storage period. However, the change in fat content was significant over the last 30 days of storage (LSD 0.579). So it can be concluded that stored soybean flour may not be safe for consumption, hence proper preservation of soybean seeds using chemical and natural preservative is recommended.

Key words: Glycine max.(L) marr.; Soy bean seeds, TBC.

I. INTRODUCTION

Several alternatives to animal protein are being investigated to alleviate protein energy malnutrition problem in developing countries. Soybean is considered one of the best options. Worldwide in most low cost diets the amino acids lysine, tryptophan and threonine are available only in limited quantities. Since soybean is a good source of lysine, tryptophan and threonine its addition to a mixed diet greatly improves the quality of the diet's protein. Compared with other sources of plant protein, soybean has a superior amino acid profile but it is deficient in methionine and cystine (Okaruwa and Dashiell, 1997). Soybean flour has many applications all over the world namely Com-Soy milk (CSM), wheat soy blend, soft cheese and soy sauce (Obatolu et al., 1993). Because of the wide uses of soybean flour, it will be interesting to know the nutritional and microbiological changes of soy flour during storage and how it could be preserved to increase the shelf life. The objective of this study

therefore is to determine the quality of soybean flour stored for 90 days.

II. MATERIALS AND METHODS

II.1. Preparation of Materials

Five hundred grams of washed soybean seeds (TGX 536-02D) were oven dried at 55°C overnight and then ground into fine powder using a milling machine (Konan and Agbo, 1997). The soybean flour was then sieved and kept in a sterile container for further use. Ten grams of soybean flour was dispensed in each of 10 polythene bags and then the polythene bags were sealed with an electric sealer. The sealed polythene bags containing soybean flour were kept for 90 days at room temperature (30 - 32 °C) for quality assessment purpose. Two of the samples were taken on 14th, 30th, 60th and 90th day for microbiological biochemical analysis and purpose.

II.2. Quality assessment of stored samples

Quality assessment of stored soybean flour (Glycine max. (L). Nandita De

Days `	Total bacterial count	pH	Moisture	Fat	Protein	
)	1.01x10 ²	6.77	17.10	20.00	40.15	
	1.02×10^{2}	6.77	17.12	20.05	40.11	
	0.98×10^{2}	6.79	17.10	20.04	40.13	
Mean	1.00×10^2	6.77	17.10	20.03	40.13	
14	1.38×10^{10}	6.42	16.75	19.23	35.69	
	1.36×10^{10}	6.46	16.72	19.23	35.66	
	1.38×10^{10}	6.45	16.73	19.25	35.67	
Mean	1.37×10^{10}	6.44	16.73	19.23	35.67	
30	7.87x10 ¹⁰	6.49	16.40	18.30	31.01	
	7.84×10^{10}	6.51	16.40	18.30	31.05	
	7.86x10 ¹⁰	6.48	16.41	18.31	31.03	
Mean	7.85x10 ¹⁰	6.49	16.40	18.30	31.03	
60	9.06x10 ¹⁰	6.34	16.22	17.95	25.88	
	9.01x10 ¹⁰	6.35	16.24	17.96	25.93	
	9.03x10 ¹⁰	6.34	16.23	18.00	25.89	
Mean	9.03x10 ¹⁰	6.34	16.23	17.97	25.90	
90	8.63x10 ¹⁰	6.30	16.39	25.92	22.66	
	8.56x10 ¹⁰	6.28	16.36	25.89	22.69	
	8.58x10 ¹⁰	6.28	16.36	25.91	22.66	
Mean	8.59x10 ¹⁰	6.28	16.37	17.23	22.67	

TABLE 1: Determination of TBC, pH, moisture content (%), protein content (%) and fat content (%) of stored soybean samples.

maximum counts specified for the flour used in various food range from 5.0×10^3 to 1.5×10^4 . The reduction in crude protein from 40.13 to 22.67 for the samples over 90 days was significantly high (at prob. of F 0.01) and could attributed higher microbiological activities resulting from increased bacterial and fungal load. So, it may be concluded

. . .

that soybean that soybean flour prepared by using this roasting technique is of high nutritional quality but stored soybean flour is a cause of concern especially due to presence of *Bacillus cereus* and the high bacterial load on 90^{th} day of storage (8.57x10¹⁰).

Days	Total bacterial count	pН	Moisture	Fat	Protein
			۹.		
0	1.00×10^{2}	6.77	17.10	20.03	40.13
14	1.37×10^{10}	6.44	16.73	19.23	35.67
30	7.85×10^{10}	6.49	16.40	18.30	31.03
50	9.03×10^{10}	6.34	16.23	17.97	25.90
90	8.59x10 ¹⁰	6.28	16.37	17.23	22.67
Mean	5.37×10^{10}	6.46	16.57	18.55	31.08
Prob. of F	0.01				
S.E.D.	1.56x10 ⁹	0.016	0.138	0.178	0.23
L.S.D.	7.42×10^{9}	0.052	0.449	0.579	0.753

TABLE 2: Determination of TBC, pH, moisture content (%), protein content (%) and	
fat content (%) of stored samples (biostatics was done using SAS system).	

TBC values used for analysis of variance were transformed using log transformation

REFERENCES

A.O.A.C (1980). Official Methods of Analysis 13th Edition. Association of Official Analytical Chemists Inc., Washington, D.C.

Blakey, L. J. and Priest, F. G. (1980). The occurrence of *Bacillus cereus* in some dried foods including pulse and cereals. *Journal of Applied Bacteriology* **48**, 297-302.

Bressani, R. (1981). The role of soy beans. Journal of American Oil Chemists Society 58, 392-400.

Doty, J. (1961). Bacteria control in the flour milling operation, *American Miller Processor*, **89**, 20-21.

Fawole, M. O. and Oso, B. A. (1988). Laboratory Manual of Microbiology. Spectrum Books Limited Ibadan, Nigeria, p. 24-56.

Frazier, W. C and Westhoff, D. C. (1994). Food Microbiology, 13th Edition, Mcgrow Hill Publisher, p 156- 164. Hudson, K. B. and Sherwood, L. (1997). Identifying bacteria using metabolic characteristics Exploitations in Microbiology. Prentice Hall, New Jersey, p. 83-90.

Konan, G. and Agbo, N. G. (1997). Soybean supplementation of maize and millet pup. Soybean utilization in Nigeria, Ghana and Cote D'Ivoire (West Africa) IDRIC- IITA soy beans utilization project phase III p. 42-59.

Obatolu, V. A., Osho, S. M. and Oyekan, P. M. (1993). Fortification of indigenous foods using soy beans (for the western states of Nigeria). IITA and IARST publication p. 41.

Okaruwa, K. and Dashiell, E. R. (1997). Soybean for Tropics.Research, Production and Utilization. Singh, S. R., Racjie, K. O. and dashiell, E. R. (Eds.). John Wiley and Sons. New York.

Smith, D. A. (1977). Emumerating Fungi. *Phytopathology* 8, 81.