COMPUTER AIDED DESIGN OF THE MAGNETIC CIRCUIT OF A 3-PHASE POWER TRANSFORMER

S. Ozuomba¹; S.T. Wara²; C. Kalu¹ and S.O. Oboma¹

¹ Electrical & Computer Engineering Department University of Uyo, Akwa Ibom State.

² Electrical & Computer Engineering Department Igbinedion University, Edo State.

ABSTRACT

In this paper, a computer program was developed in C++ language to determine the parameters of the magnetic circuit of a three-phase power transformer. A typical case study was used to demonstrate the effectiveness of the program. The program was developed using the mathematical models derived for the parameters to be determined, Apart from being flexible and speedy, the program removed the drudgery involved in the design and demonstrated the usefulness of software as both a teaching and research aid. Tables and graphs obtained from the program showed how the design problems were dealt with and how the parameters of the magnetic circuit were determined.

i. .

ii.

1.0 INTRODUCTION

The speed of computation, the accuracy of result and the flexibility of computer-based designs make it the best option in the design of transformers. This is because a transformer has so many parameters. Some of the parameters are determined by trial and error selection of values from tables, graph etc, while other parameters are obtained from repetitive computations until the desired values are obtained, Sawhney, (2001). With the computer, the computations are performed rapidly and previous results can be made available to guide in the selection of new values thereby ensuring that the desired values for the parameters are obtained easily and quickly.

Transformer parameters can be grouped into three, those pertaining to the magnetic circuit, the electric circuit and the cooling tank and the design of transformer entails computation of those parameters Best & Crompton Eng, (1981), Bilbir, (1982), Say, (1983), Kosow, (1981). This paper is therefore set to develop computer program for the design of the magnetic circuit of 3-phase power transformers. Other aspects of transformer design - the electric circuit, and the cooling tank design can be found in Ozuomba et. al,.. (2004), Oboma ,(2003),.

2.0 ANALYSIS OF THE MAGNETIC CIRCUIT OF POWER TRANSFORMERS

2.1 Design Specification

Useful specifications for the design are listed in this section. They include, Penders, (1949), Say, (1973), Still, (1970).: Transformer Power rating ,S in KVA

Frequency, f in Hz

- iii. Line voltage of the high voltage (H.V) winding, V_{inhv}
- iv. Line voltage of the low voltage (L.V) winding, V_{inlv}
- v. Connection type -star or Delta
- vi. Percentage impedance, Z%
- vii. Tapping on the H.V winding, Tp1, Tp2.....

2.2 Output Equation of Power Transformer

In order to derive the equation for output power, S of power transformers, the equation for the induced voltage in the windings of the transformer will be derived first. Suppose a coil of N-turns is wound on a core that is carrying a sinusoidal flux Φ , Hughes , (1977), Best & Crompton Eng , (1981), Fitzergerald, (1961).

 $\Phi = \Phi_{\rm m} \sin 2\pi ft \qquad (2.2.1)$

where Φ_m is the maximum flux density is Webbers, f is frequency in H_z, t is time in seconds, then the electromagnetic force (emf), e induced in the coil is given by Faraday's law as Oboma, (2003), Hughes, (1977)

 $e = N(d\Phi/dt)$ (2.2.2.1)

$$e = 2 \pi f \Phi_m N \cos(2 \pi f t)$$
 (2.2.2.2)

The maximum emf, E_m is given from Equation (2.2.2.2) as $E_m = 2\pi f \Phi m N$ (2.2.3)

The root mean square (rms) value of E_m is given as

Computer aided design of the magnetic circuit of a 3 - phase power transformer.

E where $E=E_m / \sqrt{2}$ (2.2.4.1)	$N_{iv} a_{iv} / J = N_{hv} / J = Na / J$ (2.2.10.1)
:. $E = 4.44f \Phi_m N$ (2.2.4.2)	$N_{\rm lv} a_{\rm lv} = N_{\rm hv} a_{\rm hv} = Na$ (2.2.10.2)
The maximum flux density, B_m in the core is given as $B_m = \Phi_m (A_m)$ (2.2.5.1)	Substituting for N_{Iv} a _{Iv} from Equation (2.2.10.2) into Equation (2.2.8) gives
	Total copper area per window = $4 N_{hv} a_{hv}$ (2.2.11.1)
where A _i is the cross sectional of the iron core area, hence	Putting in general terms whether it is L.V or H.V
$\Phi_{\rm m}={\rm B}_{\rm m}~{\rm A}_{\rm i}. \tag{2.2.5.2}$	Total copper area per window = 4 Na (2.2.11.2)
Substituting Φ_m into Equation (2.2.4.2) gives	Let k _w stand for window space factor where Penders, (1949),
$E = 4.44 fB_{m} A_{i} N \tag{2.2.6}$	K total conner caption Area par window 0.0.12
The voltage per turn, V_t is given as E / N, thus from Equation (2.2.6):	$K_w = \frac{101a1 \text{ copper section Area per window}}{\text{Total window Area, } A_w}$
$V_{i} = 4.44 f B_{m} A_{i}$ (2.2.7.1)	$K_w = 4 \text{ aN } / A_w \qquad (.2.2.14)$
Thus from Equation (2.2.4.2),	(2.2.14) becomes $4 \parallel N/J = K$
$V_t = 4.44 f \Phi_m$ (2.2.7.2)	(2.2.15)
Also from Equation (2.2.7.1),	$IN = (K_w A_w J) /4$ (2.2.16)
$A_i = V_t / 4.44fB_m$ (2.2.7.3)	For 3-phase transformer S = $3 \text{ E I x } 10^{-3}$ (.2.2.17)
For 3-phase, each core window contains two sections of high voltage (H.V) coils and two socials of low voltage (I.V) coils Oboma (2003) If	Substituting Equation (2.2.6) into Equation (2.2.17) gives
N_{phv} and N_{piv} are the number of turns per phase and a_{hv} and a_{iv} are the cross sectional areas of each	S= 3(4.44 f B _m A _i N) x 10 ⁻³ (2.2.18)
conductor of the H.V and L.V coils respectively, then the total area of conductors per window is	Putting Equation (2.2.16) into Equation (2.2.18) gives
Total copper area per window = $2 (N_{abu} + N_{abu} + N_{abu})$ (2.2.8)	S =3(4.44f B _m A _i) (K _w A _w J) x 10 ⁻³ (2.2.19)
	$=3.33f B_{m} A_{i} A_{w} J K_{w} \times 10^{-3} $ (2.2.20)
L.V coils	For single phase transformers,
Thus $J = I_{plv} / a_{lv}$ (2.2.9.1) $J = I_{plv} / a_{lv}$ (2.2.9.2)	$ N = (K_{\rm e} A_{\rm ev})/2 \qquad (2.2.21)$
$J = l_p / a$ (2.2.9.3)	Thus,
where I _{phv} and I _{phv} are phase current in the high voltage and low voltage side. Also, recall that for transformers	$S_{1-phase} = 2.22 \text{ f } B_m A_i A_w J K_w x 10^{-3}$ (2.2.22)
$V_{plv}/V_{phv} = N_{lv}/N_{hv} = l_{phv} / l_{plv}$	The power rating (in KVA) can also be expressed in terms of magnetic potential gradient. If D_{sc} is the diameter of the circumscribing circle for the core
$I_{plv} N_{lv} = I_{phv} N_{hv} = I_p N$ (2.2.9.4)	limb, then, the area of the from A _i is then given as $A_i = k k \pi D^{-2} / 4 $ (2.2.23)
From Equation (2.2.9.3), Equation (2.2.9.2) and Equation (2.2.9.4), $I_{phv} = a_{hv} / J$, $I_{plv} = a_{hv} / J$, $I_n = a/J$.	where k_s is stacking factor. k_i is iron space factor
hence substituting I_{phv} , I_{plv} and I_p in Equation (2.2.9.4) gives	given in table 2.1 Now, the magnetic potential gradient H_m is given as

....

4.

.

100

Ozuomba et al.,

Then for a 3-phase transformer, the total magneto motive force, mmf over one limb is given as

Putting Equation (2.2.25) into Equation (2.2.24) and solving for NI gives,

$$NI=H_m H_{lmb}/2$$
 (2.2.26)

Putting Equation (2.2.26) into Equation (2.2.18) gives

 $S = 3(4.44f B_m k_i k_s \pi D_{sc}^2 / 4) (H_m H_{lmb} / 2) \times 10^{-3} (2.2.27)$

$$= (5.23 \text{fB}_{\text{m}} \text{D}_{\text{sc}}^{2} \text{H}_{\text{m}} \text{H}_{\text{imb}} \text{k}_{\text{i}} \text{k}_{\text{s}}) \times 10^{-3}$$
(2.2.28)

For single phase transformer,

mmf =NI (2.2.29) Thus,

 $S_{1-\text{phase}} = 3.48 \text{ fB}_{m} \text{ D}_{sc}^{2} \text{ H}_{m} \text{ H}_{\text{imb}} \text{ k}_{\text{i}} \text{ k}_{\text{s}} \text{ x } 10^{-3}$ (2.2.30)

2.3.1 The Core Dimensions

Power transformer cores are built of thin strips of laminations arranged in a number of steps so as to obtain nearly round cross sectional area so that a better space factor for accommodating iron in the most useful way can be achieved. The number of steps usually chosen are 3,4,5,6,7 or 9. Balbir, (1982) .The iron core area, A_i is given in Equation (2.2 23). It is expressed with respect to D_{sc}, k_i and k_s. The value of A_i for various core steps can be obtained from table 2.1

 K_i , the iron space factor is there because of the use of steps of iron instead of one solid round section of iron core. K_s is due to paper or vanish insulation between the laminations of the core,

$$D_{sc} = \sqrt{4} A_i / \pi k_i k_s \dots$$
 (2.3.1)

 K_s =0.92 for all steps of core. The maximum length of the core limb L_{mc} is given in table 1 for various core steps. It is expressed with respect to D_{sc} in the form

$$m_{\rm c} = k (D_{\rm sc}) \tag{2.3.2}$$

where k is the factor relating L_{mc} to D_{sc} . The value of k is given in table 2.1 for the various core steps

2.3.2 Core yoke dimensions

The flux in the core limb is the same as the flux in the yoke Bilbir, (1981), Oboma, (2003). Hence, from Equation (2.3.2)

$$B_{imb} A_{imb} = B_{yk} A_{yk}$$
(2.3.3)

where B_{Imb} and B_{yk} are the flux density of the limb and yoke, A_{Imb} and A_{yk} are the cross sectional area of the limb and yoke respectively. Note that

$$B_{imb} = B_m \dots$$
 (2.3.4.1)

and

$$A_{\rm imb} = A_{\rm i}, \qquad (2.3.4.2)$$

Then, from Equation (2.3.3)

$$A_{yk} = A_i B_m / B_{yk} \qquad (2.3.5)$$

n practice
$$B_{yk} \le B_m$$
 (2.3.6)

Empirical values for B_{yk} can be chosen from the relation

$$1 \le B_m / B_{vk} \le 1.25$$
 (2.3.7)

Put another way
$$B_m / 1.25 \le B_{yk} \le 1$$
 (2.3.8)

The diameter of the circumscribing circle for the core yoke is given as in Equation (2.3.1)

$$D_{syk} = \sqrt{(4 A_{yk} / \pi k_i k_s)}$$
 (2.3.9)

Similarly, the maximum length of the yoke, L_{my} is given as in Equation (2.3.2)

$$L_{my} = K(Dsyk)$$
 (2.3.10)

where k, k_i , and k_s are the same as the ones used for the core in Equation (2.3.1) and (2.3.2)

2.3.3 The Core Window Dimensions

From Equation (2.2.20), the core window area, A_w is given as

$$A_w = S / ((3.33 \text{ fB}_m A_i \text{ J } \text{k}_w) \times 10^{-3}$$
 (2.3.11)

Table 2.2 gives the window space factor, k_w .. With k_w selected from table 2.2, and the value of current density, J chosen, A_w can be computed from Equation (2.3.11).In practice, the ratio of the window Height, H_w to the window width, W_w is between 2 and 4. If Υ_{hw} represent the ratio of H_w to W_w then:

Computer aided design of the magnetic circuit of a 3 - phase power transformer,

(2.3.16)

(2.3.17)

It means from the statement above that

$$2 \leq \Upsilon_{hw} \leq 4$$
 (2.3.13)

However, values of Υ_{hw} beyond this range can be used. From Equation (2.3.12)

$$H_{w} = \Upsilon_{hw} W_{w}$$
 (2.3.14)

Now $A_w = H_w W_w$ (2.3.15)

Thus

Hence $W_w = v'(A_w / \Upsilon_{hw})$

 $A_w = \Upsilon_{hw} W_w^2$

2.3.4 The Overall Core Frame Dimension

Overall core frame height, H is given as

 $H = H_w + 2L_{mv}$ (2.3.18)

The center-to-center distance, D_{cc} is given as:

 $D_{cc} = W_w + D_{sc}$ (2.3.19)

The overall core width

 $W = 2D_{cc} + L_{mc}$ (2.3.20)

2.4 Weight Of The Core

The volume of iron core can be found from the product $A_i L_{mf}$ where L_{mf} is the mean flux path including the core limb and yokes. For single phase transformers

$$L_{ml} = 2(W_w + D_{imb}) = 2(H_w + W_{imb})$$
(2.4.1)

For 3-phase transformers

$$L_{m1} = 2(2W_w + 2D_{lmb}) = 3(H_w + W_{lmb})$$
(2.4.2)

where $D_{imb} = D_{sc}$ is the diameter of the circumscribing circle for the core limb cross section, H_w is the window height. The volume of iron V_i is given as

$$V_i = A_i L_{mi}$$
 2.4.3)

If the density of the iron core in Cm^3/kg is P_{ic} , then weight of iron, W_i is given as

$$W_i = V_i P_{ic} \qquad (.2.4.4)$$

2.5 Weight Of The Copper

If E_{phv} and E_{plv} are the phase voltages of the H.V and L.V winding respectively, then

$$N_{hv} = E_{phv} / V_1$$
 (2.5.1)

$$N_{iv} = E_{piv} / V_t$$
 (2.5.2)

Note, for star connection, phase voltage is given as (line voltage/ $\sqrt{3}$).

To calculate the weight of copper, an approximate value can be obtained from the conductor cross sectional area and the mean length of turns, L_{mf} . Assuming that the window space is completely filled with oil, we can allocate half of the window space to coils on each core limb. The mean diameter of the coil D_{mt} is therefore giver as Bilbir, (1982).

$$D_{mt} = D_{lmb} + W_w/2$$
 (2.5.3)

Since
$$D_{Imb} = D_{sc}$$

 $\therefore D_{mt} = D_{sc} + W_w/2$ (2.5.4)

$$\therefore L_{mt} = \pi D_{mt} \tag{2.5.5}$$

The volume of copper V_{cp} is given as

$$V_{cp} = K_w L_{mt} (W_w/2) H_w$$
 (2.5.6)

where K_w is the window space factor . If ρ_{cp} is the density of copper, then weight of copper W_{cp} is given as

 $W_{cp} = V_{cp}\rho_{cp} \tag{2.5.7}$

2.5.2.1 Empirical Formula for Voltage per Turn V_{t}

In the design of a transformer, the value c voltage per turn, V_t is often needed to be chosen o calculated quite fairly from the available parameters. The value of V_t so chosen affects the size and weight of the transformer as well as othe performance characteristics of the transformer Experts have proffered some empirical formula fo V_t. Two of the formula will be discussed here. Suppose we define

r = (Magnetic Loading) / Electric Loading) (2.5.8.1

vhere	Magnetic Loading	= Φ _m	(2.5.8.2)

Electric Loading	= IN	(2.5.8.3)

$$\therefore r = \Phi_m / IN \tag{2.5.9}$$

$$\begin{split} & \text{IN} = \Phi_{\text{m}} \, / \, r & (2.5.10) \\ & \text{Now} \, , \, \text{from Equation} \, (2.2.7.2) \\ & V_t = 4.44 \, \Phi_{\text{m}} & (2.5.11) \\ & \text{Also, from Equation} \, (2.2.17) \, \ \text{S} = 3 \text{El x } 10^{-3} \, \text{and E} \end{split}$$

= Vt N, hence

 $S = (4.44 \Phi_m NI) \times 10^{-3}$ (2.5.12)

Putting Equation (2.5.10) into Equation (2.5.12) gives $S = 4.44 f(\Phi_m^2/r) \times 10^{-3}$ (2.5.13) $\therefore \Phi_m = \sqrt{((S.r)/((4.44f) \times 10^{-3}))}$ (2.5.14) Putting $\Phi_m = \sqrt{(2.5.14)}$ (2.5.11)

Putting Φ_m from Eq2.5.14 into Equation (2.5.11) gives

V_t = (4.44f)($\sqrt{((S.r)/((4.44f) \times 10^{-3}))}$ (2.5.15.1) ∴ V_t = $\sqrt{((4.44f)(S.r) \times 10^{-3})}$ (2.5.15.2) If we define C = $\sqrt{((4.44f)(r) \times 10^{-3})}$ (2.5.16) ∴ V_t = C \sqrt{S} (2.5.17) where S is the power rating in KVA . From Equation (2.5.17), C = V_t/ \sqrt{S} (2.5.18)

2.5.2.2 Significance of C

Form Equation (2.5.16), C is proportional to r. Also, from Equation (2.5.9) r is proportional to Φ_m . A s such , C is proportional to Φ_m and hence an increase in C will result to increase Φ_m , if other variables remain constant.

Now, $\Phi_m = B_m A_i$. If B_m is kept constant increasing Φ_m will result to increase in A_i, which is the amount of iron used in the transformer . On the other hand, N, the number of turns indicate the amount of copper used in the transformer. For any given E, (E = 4.44 f N Φ_m) and for a particular S, if Φ_m is increased, N will decrease, if Φ_m is decreased, N will increase. So, it will be observed that increasing the value of C will increase the amount of iron (Ai) used and decrease N, the number of turns of copper. On the other hand decreasing the value of C will decrease the amount of iron (Ai) used and increase N. Therefore, C is a constant that indicates the amount of iron, A_i used and the number o turns, N of the transformer. Table 2.3 gives the average values that are usually used in practice for C Bilbir, (1982)

2.5.3 Second Empirical Formula For V₁

Another empirical formula for V_t is given as Bilbir, (1982)

 $V_i = (1/40)\sqrt{((S \times 1000) / Number of Legs)}$ (2.5.19)

where S is in KVA. The number of legs for 3-phae core type is 3 while it is 2 for single phase transformers. Equation (2.5.4) or Equation (2.5.19) can be used to obtain a fairly accurate value for V_1

3.0 ALGORITHM FOR DESIGNING THE MAGNETIC CIRCUIT OF 3-PHASE POWER TRANSFORMER

3.1 Design Specifications Obtain the values of the following

parameters from the given design specifications

- 3.1.1 Transformer Power rating ,S in KVA
- 3.1.2 Frequency, f in Hz
- 3.1.3 Line voltage of the high voltage (H.V) winding, V_{Inhv}
- 3.1.4 Line voltage of the low voltage (L.V) winding, V_{lnlv}
- 3.1.5 Connection type -star or Delta
- 3.1.6 Percentage impedance, Z%
- 3.1.7 Tapping on the H.V winding, Tp1, Tp2.....
- 3.2 Core Parameters

3.2.1 Compute volt per turn, V_t from Eq2.5 .17 or Equation (2.5.19)

- 3.2.2 Compute cross sectional area of core, A_i from Equation (2.2.7.3)
- 3.2.3 Select window space factor from Table 2.2
- 3.2.4 Choose value for current density, J
- 3.2.5 Compute window area A_w from Equation (2.3.11)
- 3.2.6 Select suitable ration for window height to window width from Equation (2.3.13)
- 3.2.7 Compute window area, W_w from Equation (2.3.17)
- 3.2.8 Compute window height, H_w from Equation (2.3.14)
- 3.2.9 Choose number of steps for the Core
- 3.2.10 Choose iron space factor, K_i from Table 2.1
- 3.2.11 Choose stacking factor $K_s = 0.92$
- 3.2.12 Choose diameter of circumscribing circle of Core limb, D_{sc}
- 3.2.13 Select K from Table 2.1 for the chosen number of steps in core
- 3.2.14 Compute maximum length of core, L_{mc} from Equation (2.3.2)
- 3.2.15 Choose flux density of the yoke, B_{yk} form Equation (2.3.7)
- 3.2.16 Compute diameter of circumscribing circle of yoke, D_{syk} form Equation (2.3.9)
- 3.2.17 Compute maximum length of yoke L_{my} from Equation (2.3.10)
- 3.2.18 Compute center-to center distance of limb, D_{cc} from Equation (3.3.19)
- 3.2.19 Compute overall core width, W from Equation (2.3.20)
- 3.2.20 Compute overall core height, H from Equation (2.3.18)
- 3.2.21 Compute mean length of flux path, L_{mf} from Equation (2.4.2)
- 3.2.22 Compute the volume of iron, V_i from Equation (2.4.3)

Computer aided design of the magnetic circuit of a 3 – phase power transformer.

3.2.23 Compute the weight of iron, W_i from Equation (2:4.4)

ş.,

- 3.2.24 Compute number of turns in H.V winding, N_{hv} from Equation (2.5.1)
- 3.2.25 Compute number of turns in L.V winding, N_N from Equation (2.5.2)
- 3.2.26 Compute mean diameter of the coil, D_{mt} from Equation (2.5.4)
- 3.2.27 Compute mean diameter length of turn, L_{mt} from E quation (2.5.5)
- 3.2.28 Compute volume of copper, V_{cp} from Equation (2.5.6)
- 3.2.29 Compute weight of copper W_{cp} From Equation (2.5.7)

3.4 The Computer Program

The algorithm of section 3.1 is developed into C++ program. The program can be used to computer the values of the parameters outlined in the algorithm or in the flowchart.

4.0 SAMPLE DESIGN PROBLEM

Design a 800KVA 3-phase 220KV/11KV, 50Hz. Delta/Delta connected power transformer, with construction type: core, cooling type OFAE, temperature rise of coil 50°C. impedance percentage 11.50%, the transformer is provided with tapings of ±5% on the High voltage winding and has a total loss not more than 50Kw.

4.1 Results For The Sample Design

The C++ program was used to carry out the sample design. The program accepts the design specifications as input and computes the values of the parameters of the electric circuit. The screenshots of sample results are given below.

4.2 Discussion Of Result

(i) From Fig 4.1 and Table 4.1, the volt per turn is directly proportional to C for a constant power rating, S. Hence, the choice of C determines the volts per turn for any given S.

(ii) From Table 4.1, Fig 4.2 and Fig 4.3, the number of turns, N, and the weight of copper, W, decreases as C and V_t increase for constant current density ,J, conductor area, the L.V and H.V currents .

From table 4.1, Fig 4.2, and Fig 4.3, A_i , and W_i increase as C and V_t increase for constant B_m hence, increasing the quantity of iron used while decreasing the quantity of copper used.

5.0 CONCLUSION

In this paper, a program was developed for the design of the magnetic circuit of 3-phase power transformer. Firstly, mathematical models were developed for all the parameters to be calculated. Secondly, the algorithm for the design was developed. Then sample design problem was used to demonstrate the effectiveness of the program. The sets of results obtained from the sample problem demonstrated how easy and quickly the desired values for the parameters could be obtained when the program was used for the design.

REFERENCES

Balbir, Singh "Electric Machine Design", Vikos Publishing House PVT Ltd, India, 1982

- Best & Crompton Eng. "Typical Desigr Calculations" Best & Crompton Madras India 1981
- Deshphande, M.V. "Electrical Machines "Wheeler and Co, New Delhi, 1997
- Edward Hughes; "Electrical Technology", Longma Group Ltd, London, 1977
- Fitzergerald A. E. "Electric Machinery" Third Edition McGraw-Hill Book Co, New York, 1961
- Kosow, Living L. "Electrical Machine an Transformers" New Delhi Prentice-Hall, 1981
- Oboma S.O "Development of Computer Program f the Design of 3-phase power Transforme University of Uyo, 2003
- Ozuomba, S.; Wara, S.T.; Kalu,C.; and Oboma, S. (2004) "Software Development for the Desi of the Cooling Tank Of 3-Phase Pow Transformer" University of Uyo and Igbenedi University Delta state. A draft paper, 2004.
- Penders, H et al "Electrical Engineers referen Book"14th Edition, John Wiley and Sons York, 1949.
- Sawhney, A.K. "A Course in Electrical Mach Design", Dhanpat Rai and Co PVT Ltd, N Delhi, 2001.
- Say M. G. "Electrical Engineers Reference Boc 13th Edition, Butterworth & Co. Publish London, 1973.
- Say, M.G "Alternating Current Machines" 15th Edit New York, Longman Science and Technolc 1983.
- Still A. "Elements of Electrical Machines Des McGraw-Hill Book Co. N York., 1970.

Ozuomba et al.,

TABLE 2.1 IRON SPACE FACTOR (K) AND K, THE RATIO OF THE DIAMETER OF THE CIRCUMSCRIBING CIRCLE TO THE MAXIMUM CORE LIMB LENGTH FOR VARIOUS CORE STEPS

		Core Diameter (mm)	Number of Core Steps	Iron Space Factor (K ₁)	K = Lmd/Dsc
Single Frame Without Duct	Duct	< 100	1	0.64	0.71
		< 100	2	0.79	0.85
		< 100	3	0.84	0.90
		< 100	4	0.87	0.93
		100 - 250	5	0.89	0.95
		250 - 300	6	0.89	0.96
Double Framed	Longitudinal Duct	350 - 750	6 - 8	0.86	0.97
		550 - 1000	7 – 10	0.98	0.98

Table 2.2 WINDOW SPACE FACTOR, Kw Balbir, (1982)

KVA	3KV	10KV	30KV	100KV	
100	0.28	0.20	0.14	0.13	
800	0.37	0.27	0.20	0.15	· · · · · · · · · · · · · · · · · · ·
2000	0.40	0.31	0.23	0.16	
≥ 10000	0.45	0.37	0.28	0.21	

Table 2.3 EMPIRICAL AVERAGE VALUES FOR THE FACTOR C

Transformer Type	Range OF Values For C	
Core Type Distribution Transformer	0.35 to 0.45	
Core Type Power Transformer	0.555 to 0.65	
Shell Type Transformer	1.0 to 1.25	· · · · · · · · · · · · · · · · · · ·

Fig 3.1: Flowchart for the Design of the magnetic circuit of 3-phase power transformer

Computer aided design of the magnetic circuit of a 3 – phase power transformer.

Fig 3.2 : Flowchart for the Computation of the transformer Core Parameters of 3-phase power transformer

Ozuomba et al.,

ERAIGO/5/EINTENNENTANS EXEMPLY MEN	
TRANSFORMER DESIGN INPUT SPECIFIC	ATIONS
Power Rating in KUA	- 9880 880
Frequency in Hz	= 50.000
High Voltage Rating in KV	- 220.000
Cooling Tupe	= 11.000 = DFAF
Oil Temperature in Centigrade	= 50.000
Construction Type	= COPE
Percentage Impedance	= 11.500
Tapping on High Voltage Winding(%)	= %.3f
THE PARAMETERS FOR CORE DESIGN	
Volt Per Turn in Volts	40,000
Net Area of Iron in Square milimeter	112612.609
Gross Area of Core in Square Milimeter Diameter of Circumscribing Circle in Milimeter	117617.531
Length of Lamination in Milimeters	400.000
Iron Factor	0.880
stacking Factor Maximum Flux Densitu	0.920 1.600000E-06
······································	
	2 🖻 🕺 🍋 6:54 AM
THE PARAMETERS FOR CORE WINDOW DESIG	in Aller and All
Hindow Easter	a
Maximum Current Densitu in Amn Per Square milim	0.288 heter 600000 000
Window Height in Milineter	600.000
Window Width in Milimeter	300.000
Area of Window in Square Milimeters Distance Batween Come Contras in Milimeters	
Distance Between Core Centres in Milimeters	154400.000
	154400.000 770.000
THE PARAMETERS FOR YOKE DESIGN	154400.000 770.000
THE PARAMETERS FOR YOKE DESIGN Gross Area of Yoke	154400.000 770.000 135135.125
THE PARAMETERS FOR YOKE DESIGN Gross Area of Yoke Depth of Yoke	154400.000 770.000 135135.125 460.910
THE PARAMETERS FOR YOKE DESIGN Gross Area of Yoke Depth of Yoke Heiight of Yoke	154400.000 770.000 135135.125 460.910 293.192
THE PARAMETERS FOR YOKE DESIGN Gross Area of Yoke Depth of Yoke Heiight of Yoke Flux density of Yoke	154400.000 770.000 135135.125 460.910 293.192 0.0000013
THE PARAMETERS FOR YOKE DESIGN Gross Area of Yoke Depth of Yoke Height of Yoke Flux density of Yoke THE PARAMETERS FOR OVERALL DIMENSION OF	154400.000 770.000 135135.125 460.910 293.192 0.0000013 CORE FRAME
THE PARAMETERS FOR YOKE DESIGN Gross Area of Yoke Depth of Yoke Height of Yoke Flux density of Yoke THE PARAMETERS FOR OVERALL DIMENSION OF Overall Height of frame in Milimeter	154400.000 770.000 135135.125 460.910 293.192 0.0000013 CORE FRAME 1186.383
THE PARAMETERS FOR YOKE DESIGN Gross Area of Yoke Depth of Yoke Height of Yoke Flux density of Yoke THE PARAMETERS FOR OVERALL DIMENSION OF Overall Height of frame in Milimeter Overall Width of frame in Milimeter	154400.000 770.000 135135.125 460.910 293.192 0.0000013 CORE FRAME 1186.383 2000.910
THE PARAMETERS FOR YOKE DESIGN Gross Area of Yoke Depth of Yoke Height of Yoke Flux density of Yoke THE PARAMETERS FOR OVERALL DIMENSION OF Overall Height of frame in Milimeter Overall Width of frame in Milimeter Overall Depth of frame in Milimeter	154400.000 770.000 135135.125 460.910 293.192 0.0000013 CORE FRAME 1186.383 2000.910 460.910
THE PARAMETERS FOR YOKE DESIGN Gross Area of Yoke Depth of Yoke Height of Yoke Flux density of Yoke THE PARAMETERS FOR OVERALL DIMENSION OF Overall Height of frame in Milimeter Overall Width of frame in Milimeter Overall Depth of frame in Milimeter	154400.000 770.000 135135.125 460.910 293.192 0.0000013 CORE FRAME 1186.383 2000.910 460.910
THE PARAMETERS FOR YOKE DESIGN Gross Area of Yoke Depth of Yoke Height of Yoke Flux density of Yoke THE PARAMETERS FOR OVERALL DIMENSION OF Overall Height of frame in Milimeter Overall Width of frame in Milimeter Overall Depth of frame in Milimeter	154400.000 770.000 135135.125 460.910 293.192 0.0000013 CORE FRAME 1186.383 2000.910 460.910
THE PARAMETERS FOR YOKE DESIGN Gross Area of Yoke Depth of Yoke Height of Yoke Flux density of Yoke THE PARAMETERS FOR OVERALL DIMENSION OF Overall Height of frame in Milimeter Overall Width of frame in Milimeter Overall Depth of frame in Milimeter	154400.000 770.000 135135.125 460.910 293.192 0.0000013 CORE FRAME 1186.383 2000.910 460.910
THE PARAMETERS FOR YOKE DESIGN Gross Area of Yoke Depth of Yoke Height of Yoke Flux density of Yoke THE PARAMETERS FOR OVERALL DIMENSION OF Overall Height of frame in Milimeter Overall Width of frame in Milimeter Overall Depth of frame in Milimeter	154400.000 770.000 135135.125 460.910 293.192 0.0000013 CORE FRAME 1186.383 2000.910 460.910
THE PARAMETERS FOR YOKE DESIGN Gross Area of Yoke Depth of Yoke Height of Yoke Flux density of Yoke THE PARAMETERS FOR OUERALL DIMENSION OF Overall Height of frame in Milimeter Overall Width of frame in Milimeter Overall Depth of frame in Milimeter Verall Depth of Frame in Milimeter We start	154400.000 770.000 135135.125 460.910 293.192 0.0000013 CORE FRAME 1186.383 2000.910 460.910
THE PARAMETERS FOR YOKE DESIGN Gross Area of Yoke Depth of Yoke Height of Yoke Flux density of Yoke THE PARAMETERS FOR OUERALL DIMENSION OF Overall Height of frame in Milimeter Overall Width of frame in Milimeter Overall Depth of frame in Milimeter Overall Depth of frame in Milimeter Program running EStart EALSE	154400.000 770.000 135135.125 460.910 293.192 0.0000013 CORE FRAME 1186.383 2000.910 460.910
THE PARAMETERS FOR YOKE DESIGN Gross Area of Yoke Depth of Yoke Height of Yoke THE PARAMETERS FOR OUERALL DIMENSION OF Overall Height of frame in Milimeter Overall Width of frame in Milimeter Overall Depth of frame in Milimeter Verall Depth of frame in Milimeter Program running EStart EAL CONTINUES CONTIN	154400.000 770.000 135135.125 460.910 293.192 0.0000013 CORE FRAME 1186.383 2000.910 460.910
THE PARAMETERS FOR YOKE DESIGN Gross Area of Yoke Depth of Yoke Height of Yoke THE PARAMETERS FOR OUERALL DIMENSION OF Overall Height of frame in Milimeter Overall Width of frame in Milimeter Overall Depth of frame in Milimeter Program running Program running	154400.000 770.000 135135.125 460.910 293.192 0.0000013 CORE FRAME 1186.383 2000.910 460.910
THE PARAMETERS FOR YOKE DESIGN Gross Area of Yoke Depth of Yoke Height of Yoke THE PARAMETERS FOR OUERALL DIMENSION OF Overall Height of frame in Milimeter Overall Width of frame in Milimeter Overall Depth of frame in Milimeter Program running Program running	154400.000 770.000 135135.125 460.910 293.192 0.0000013 CORE FRAME 1186.383 2000.910 460.910

¥_ `+ . [

Computer aided design of the magnetic circuit of a 3 - phase power transformer. Contra States and the

18.5

1.1.1

4

12

Sec. TABLE 4.1: VOLT/TURN, CROSS SECTIONAL AREA OF IRON, THE NO. OF TURN OF THE LV WINDING, WEIGHT OF COPPER (KG) AND WEIGHT OF IRON (KG)

Ne.

Constant , C Volt/Turn, V _t	Cross Sectional Area Of No. Of Turns Of The Weight Of Iron (mm ²)*10 ⁻ L.V Winding Copper (Kg)	Weight Of Iron (kg)
0.335 30.000	870.841 367 2339.3	5110.6
0.501 45.000	1288.132	7513.6
0.671 60.000	1720.053 183 1287.7	10942.3
0.839 75.000	2139.888 147 1097.2	13080.3
-:0.848 75.865	2139,884 145 1083.3	13265.4
90.000	2605.524 122 978.2	16833.2
100 un 80 60 40 20 0		

Fig 4. 1 Volt/Turn Vs. Consta

11 1 en as sea fis 第一个户方式是中国的 · 四百

2月1日日月月1日月3日 1.12.13 一,这些人,他就有那些分词。 45 \$ 51 小小小 如 你!!!!!! t:d 1 an an a sugar same and HERE & A. M. MARK PONTING an paper to the as Sec. 1. 5 254 mine History Hol - 11 1 - 16% and an and the second 11.1 anortal apol and the second s $\mathbf{K}^{\mathbf{A}_{\mathbf{A}}}$

Sound and participation in the action 1000 a stranging with 1.1 12. ÷.†. 101. 118 0

108