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1. Introduction

Let E be a real Banach space, D a nonempty subset of E and φ : R+ = [0,∞) → R+

be a continuous strictly increasing function such that φ(0) = 0 and limt→∞ φ(t) =∞. We

associate a φ-normalized duality mapping Jφ : E → 2E
∗

to the function φ defined by

Jφ(x) = {f ∗ ∈ E∗ : 〈x, f ∗〉 = ‖x‖φ(‖x‖) and ‖f ∗‖ = φ(‖x‖)} , (1.1)
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where E∗ denotes the dual space of E and 〈., .〉 denotes the duality pairing.

We shall denote a single-valued duality mapping by jφ. If φ(t) = t, then Jφ reduces to the

usual duality mapping J.

The following relationship exists between Jφ and J, which can easily be shown.

Jφ(x) =
φ(‖x‖)
‖x‖

J(x) ∀ x 6= 0. (1.2)

The following definitions was given in [9].

Let T : D(T ) ⊂ E → E be a mapping with domain D(T ) and F (T ) be the nonempty

set of fixed points of T.

Definition 1.1. [9]. T is said to be φ-nonexpansive if for all x, y ∈ D(T ), the following

inequality holds:

‖Tx− Ty‖ ≤ φ(‖x− y‖). (1.3)

Definition 1.2. [9]. T is said to be φ-uniformly L-Lipschitzian if there exists L > 0 such

that for all x, y ∈ D(T )

‖T nx− T ny‖ ≤ L.φ(‖x− y‖). (1.4)

Definition 1.3. [9]. T is said to be asymptotically φ-nonexpansive, if there exists a

sequence {kn}n≥0 ⊂ [1,∞) with limn→∞ kn = 1 such that

‖T nx− T ny‖ ≤ knφ(‖x− y‖) ∀ x, y ∈ D(T ), n ≥ 1. (1.5)

Every φ-nonexpansive mapping is asymptotically φ-nonexpansive map. Every asymptot-

ically φ-nonexpansive mapping is φ-uniformly L-Lipschitzian.

Definition 1.4. [9]. T is said to be asymptotically φ-pseudocontractive, if there ex-

ists a sequence {kn}n≥0 ⊂ [1,∞) with limn→∞ kn = 1 and jφ(x − y) ∈ Jφ(x − y) such

that

〈T nx− T ny, jφ(x− y)〉 ≤ kn(φ(‖x− y‖))2 ∀x, y ∈ D(T ), n ≥ 1. (1.6)

Every asymptotically φ-nonexpansive mapping is asymptotically φ-pseudocontractive map-

ping.
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Example 1.5. [9]. Let E = R have the usual norm and D = [0, 2π]. Define T : D → R

by

Tx =
2x cosx

3

for each x ∈ D. Define a function φ : R+ → R+ by φ(x) = ln(x+ 1) for each x ∈ R+ and

take jφ(x− y) = ln(|x− y|+ 1).

It was shown by Kim and Lee [9] that T is asymptotically φ-pseudocontractive mapping.

Definition 1.6. [9]. T is said to be asymptotically φ-hemicontractive, if there exists

a sequence {kn}n≥0 ⊂ [1,∞) with limn→∞ kn = 1 and jφ(x− y) ∈ Jφ(x− y) such that for

some n0 ∈ N

〈T nx− y, jφ(x− y)〉 ≤ kn(φ(‖x− y‖))2 ∀ x ∈ D(T ), y ∈ F (T ) n ≥ n0. (1.7)

Every asymptotically φ-pseudocontractive mapping is asymptotically φ-hemicontractive

mapping.

Definition 1.7. [20]. T is said to be asymptotically pseudocontractive mapping in the

intermediate sense if there exists a sequence {kn} ⊂ [1,∞) with kn → 1 as n → ∞ such

that

lim sup
n→∞

sup
x,y∈C

(〈T nx− T ny, x− y〉 − kn‖x− y‖2) ≤ 0. (1.8)

Put

τn = max

{
0, sup

x,y∈C
(〈T nx− T ny, x− y〉 − kn‖x− y‖2)

}
. (1.9)

It follows that τn → 0 as n→∞. Hence, (1.8) is reduced to the following:

〈T nx− T ny, x− y〉 ≤ kn‖x− y‖2 + τn,∀n ≥ 1, x, y ∈ C. (1.10)

In real Hilbert spaces, we observe that (1.10) is equivalent to

‖T nx−T ny‖2 ≤ (2kn−1)‖x−y‖2+‖(I−T n)x−(I−T n)y‖2+2τn,∀n ≥ 1, x, y ∈ C. (1.11)
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Qin et al. [20] recently introduced the class of asymptotically pseudocontractive mappings

in the intermediate sense. We remark that if τn = 0 ∀n ≥ 1, then the class of asymp-

totically pseudocontractive mappings in the intermediate sense is reduced to the class of

asymptotically pseudocontractive mappings. Olaleru and Okeke [19] proved some strong

convergence results of Noor type iteration for a uniformly L-Lipschitzian and asymptot-

ically pseudocontractive mappings in the intermediate sense without assuming any form

of compactness.

Bruck et al. [2] in 1993 introduced the class of asymptotically nonexpansive mappings

in the intermediate sense as follows.

The mapping T : D → D is said to be asymptotically nonexpansive in the intermediate

sense provided T is uniformly continuous and

lim sup
n→∞

sup
x,y∈D

(‖T nx− T ny‖ − ‖x− y‖) ≤ 0. (1.12)

Motivated by the facts above, we introduce the following class of nonlinear operators.

Definition 1.8. A mapping A is called φ-strongly quasi-accretive if there exists a se-

quence {kn}n≥0 ⊂ [1,∞) with limn→∞ kn = 1 and jφ(x − p) ∈ Jφ(x − p) such that for

some n0 ∈ N, x ∈ D(A), p ∈ N(A), then

〈Ax− Ap, jφ(x− p)〉 ≥ kn(φ(‖x− p‖))2. (1.13)

The following definitions will be needed in this study.

Definition 1.9. [21]. A map T : E → E is called strongly accretive if there exists

a constant k > 0 such that, for each x, y ∈ E, there is a j(x− y) ∈ J(x− y) satisfying

〈Tx− Ty, j(x− y)〉 ≥ k‖x− y‖2. (1.14)

Definition 1.10. [21]. An operator T with domain D(T ) and range R(T ) in E is called

strongly pseudocontractive if for all x, y ∈ D(T ), there exists j(x − y) ∈ J(x − y) and a
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constant 0 < k < 1 such that

〈Tx− Ty, j(x− y)〉 ≤ k‖x− y‖2. (1.15)

The class of strongly accretive operators is closely related to the class of strongly pseudo-

contractive operators. It is well known that T is strongly pseudocontractive if and only

if (I − T ) is strongly accretive, where I denotes the identity operator. Browder [1] and

Kato [8] indepedently introduced the concept of accretive operators in 1967. One of the

early results in the theory of accretive operators credited to Browder states that the initial

value problem
du(t)

dt
+ Tu(t) = 0, u(0) = u0 (1.16)

is solvable if T is locally Lipschitzian and accretive in an appropriate Banach space.

These class of operators have been studied extensively by several authors (see [3, 4, 9, 10,

18, 21, 25]).

In 1953, Mann [11] introduced the Mann iterative scheme and used it to prove the

convergence of the sequence to the fixed points for which the Banach principle is not

applicable. Later in 1974, Ishikawa [7] introduced an iterative process to obtain the

convergence of a Lipschitzian pseudocontractive operator when Mann iterative scheme

failed to converge. In 2000 Noor [14] gave the following three-step iterative scheme (or

Noor iteration) for solving nonlinear operator equations in uniformly smooth Banach

spaces.

Let D be a nonempty convex subset of E and let T : D → D be a mapping. For a given

x0 ∈ K, compute the sequence {xn}∞n=0 by the iterative schemes
xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTzn,

zn = (1− γn)xn + γnTxn, n ≥ 0

(1.17)

where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are three real sequences in [0, 1] satisfying some

conditions.

If γn = 0 and βn = 0, for each n ∈ Z, n ≥ 0, then (1.17) reduces to the iterative scheme

xn+1 = (1− αn)xn + αnTxn, n ∈ Z, n ≥ 0, (1.18)
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which is called the one-step (or Mann iterative scheme), introduced by Mann [11].

For γn = 0, (1.17) reduces to: xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTxn, n ≥ 0
(1.19)

where {αn}∞n=0 and {βn}∞n=0 are two real sequences in [0, 1] satisfying some conditions. E-

quation (1.19) is called the two-step (or Ishikawa iterative process) introduced by Ishikawa

[6].

In 1989, Glowinski and Le-Tallec [5] used a three-step iterative process to solve elasto-

viscoplasticity, liquid crystal and eigenvalue problems. They established that three-step

iterative scheme performs better than one-step (Mann) and two-step (Ishikawa) iterative

schemes. Haubruge et al. [6] studied the convergence analysis of the three-step itera-

tive processes of Glowinski and Le-Tallec [5] and used the three-step iteration to obtain

some new splitting type algorithms for solving variational inequalities, separable convex

programming and minimization of a sum of convex functions. They also proved that

three-step iteration also lead to highly parallelized algorithms under certain conditions.

Hence, we can conclude by observing that three-step iterative scheme play an important

role in solving various problems in pure and applied sciences.

Rafiq [21] recently introduced the following modified three-step iterative scheme and

used it to approximate the unique common fixed point of a family of strongly pseudocon-

tractive operators.

Let T1, T2, T3 : D → D be three given mappings. For a given x0 ∈ D, compute the

sequence {xn}∞n=0 by the iterative scheme
xn+1 = (1− αn)xn + αnT1yn

yn = (1− βn)xn + βnT2zn

zn = (1− γn)xn + γnT3xn, n ≥ 0,

(1.20)

where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are three real sequences in [0, 1] satisfying some

conditions. Observe that iterative schemes (1.17), (1.18) and (1.19) are special cases of

(1.20).
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More recently, Suantai [22] introduced the following three-step iterative schemes.

Let E be a normed space, D be a nonempty convex subset of E and T : D → D be a

given mapping. Then for a given x1 ∈ D, compute the sequence {xn}∞n=1, {yn}∞n=1 and

{zn}∞n=1 by the iterative scheme
zn = anT

nxn + (1− an)xn

yn = bnT
nzn + cnT

nxn + (1− bn − cn)xn

xn+1 = αnT
nyn + βnT

nzn + (1− αn − βn)xn, n ≥ 1,

(1.21)

where {an}∞n=1, {bn}∞n=1, {cn}∞n=1, {αn}∞n=1, {βn}∞n=1 are appropriate sequences in [0, 1].

Yang et al. [26] in 2009 introduced the following three step iterative scheme.

Let E be a normed space, D be a nonempty convex subset of E. Let Ti : D → D(i = 1, 2, 3)

be given asymptotically nonexpansive mappings in the intermediate sense. Then for a

given x1 ∈ D and n ≥ 1, compute the iterative sequences {xn}, {yn}, {zn} defined by
xn+1 = (1− an1 − bn1 − cn1 − en1)xn + an1T

n
1 yn + bn1T

n
1 zn + en1T

n
1 xn + cn1un,

yn = (1− an2 − bn2 − cn2)xn + an2T
n
2 zn + bn2T

n
2 xn + cn2vn,

zn = (1− an3 − cn3)xn + an3T
n
3 xn + cn3wn,

(1.22)

where {ani}, {cni}, {bn1}, {bn2}, {en1}, {an3 +cn3}, {an2 +bn2 +cn2} and {an1 +bn1 +cn1 +

en1} are appropriate sequences in [0,1] for i = 1, 2, 3 and {un}, {vn}, {wn} are bounded

sequences in D. The iterative schemes (1.22) are called the modified three-step iterations

with errors. If T1 = T2 = T3 = T and en1 ≡ 0, then (1.22) reduces to the modified Noor

iterations with errors defined in [13].
xn+1 = (1− an1 − bn1 − cn1)xn + an1T

nyn + bn1T
nzn + cn1un,

yn = (1− an2 − bn2 − cn2)xn + an2T
nzn + bn2T

nxn + cn2vn,

zn = (1− an3 − cn3)xn + an3T
nxn + cn3wn,

(1.23)

where {ani}, {cni}, {bn1}, {bn2} are appropriate sequences in [0,1] for i = 1, 2, 3 and

{un}, {vn}, {wn} are bounded sequences in C.

If T1 = T2 = T3 = T and bn1 = bn2 = cn1 = cn2 = cn3 = en1 ≡ 0, then (1.22) reduces

to the Noor iteration defined in [14]. If bn1 = en1 = cn1 = bn2 = cn2 = cn3 ≡ 0, then

(1.22) reduces to (1.20). This means that the modified Noor iterative scheme introduced
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by Rafiq [21] is a special case of the modified three-step iterations with errors introduced

by Yang et al. [26].

Rafiq [21] in 2006 proved the following theorem

Theorem R. [21]. Let E be a real Banach space and D be a nonempty closed con-

vex subset of E. Let T1, T2, T3 be strongly pseudocontractive self maps of D with T1(D)

bounded and T1, T3 be uniformly continuous. Let {xn}∞n=0 be the sequence defined by
xn+1 = (1− αn)xn + αnT1yn

yn = (1− βn)xn + βnT2zn

zn = (1− γn)xn + γnT3xn, n ≥ 0,

where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are three real sequences in [0, 1] satisfying the con-

ditions:

limn→∞ αn = 0 = limn→∞ βn and
∑∞

n=0 αn =∞.

If F (T1) ∩ F (T2) ∩ F (T3) 6= ∅, then the sequence {xn}∞n=0 converges strongly to the com-

mon fixed point of T1, T2, T3.

Xue and Fan [25] in 2008 obtained the following convergence results which in turn is

a correction of Theorem R.

Theorem XF. [25]. Let E be a real Banach space and D be a nonempty closed convex

subset of E. Let T1, T2 and T3 be strongly pseudocontractive self maps of D with T1(D)

bounded and T1, T2 and T3 uniformly continuous. Let {xn}∞n=0 be defined by (1.20), where

{αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are three real sequences in [0, 1] which satisfy the condi-

tions: αn, βn → 0 as n→∞ and
∑∞

n=0 αn =∞. If F (T1) ∩ F (T2) ∩ F (T3) 6= ∅, then the

sequence {xn}∞n=0 converges strongly to the common fixed point of T1, T2 and T3.

In this study, we approximate the common fixed points of a family of three asymptoti-

cally φ-hemicontractive mappings using the three step iterative scheme (1.22) introduced

by Yang et al. [26]. Our results improves and generalizes the results of Kim and Lee [9],

Xue and Fan [25], Yang et al. [26] and several others in literature.
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The following lemmas will be needed in this study.

Lemma 1.1. [9]. Let Jφ : E → 2E
∗

be a φ-normalized duality mapping. Then for

any x, y ∈ E, we have

‖x+ y‖2 ≤ ‖x‖2 + 2
‖x+ y‖

φ(‖x+ y‖)
〈y, jφ(x+ y)〉 ∀ jφ(x+ y) ∈ Jφ(x+ y).

We remark that if φ is an identity, then we have the following inequality

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉 ∀ j(x+ y) ∈ J(x+ y).

Lemma 1.2. [23]. Let {ρ}∞n=0 be a nonnegative sequence which satisfies the following

inequality:

ρn+1 ≤ (1− λn)ρn + σn, n ≥ 0,

where λn ∈ (0, 1), n = 0, 1, 2, · · · ,
∑∞

n=0 λn =∞ and σn = o(λn). Then ρn → 0 as n→∞.

3. Main results

Theorem 2.1. Let E be a real Banach space and D be a nonempty closed convex subset

of E. Let T1, T2 and T3 be asymptotically φ-hemicontractive self maps of D with T1(D)

bounded and T1, T2 and T3 uniformly continuous. Let {xn}∞n=0 be defined by (1.22), where

{ani}, {cni}, {bn1}, {bn2}, {en1}, {an3 + cn3}, {an2 + bn2 + cn2} and {an1 + bn1 + cn1 + en1}

are appropriate sequences in [0,1] for i = 1, 2, 3 and {un}, {vn}, {wn} are bounded se-

quences in D satisfying the conditions: {an1}, {an2}, {bn1}, {bn2}, {cn1}, {cn2}, {en1} → 0

as n→∞ and
∑∞

n=0 an1 =∞. If F (T1) ∩ F (T2) ∩ F (T3) 6= ∅, then the sequence {xn}∞n=0

converges strongly to the common fixed point of T1, T2 and T3.

Proof. Since T1, T2, T3 are asymptotically φ-hemicontractive mappings, there exists a

sequence {kn}n≥0 ⊂ [1,∞) with limn→∞ kn = 1 and jφ(x − p) ∈ Jφ(x − p) such that for

some n0 ∈ N

〈T ni x− p, jφ(x− p)〉 ≤ kn(φ(‖x− p‖))2, ∀x ∈ D, p ∈ F (T ), n ≥ n0, i = 1, 2, 3. (2.1)



204 G. A. OKEKE, H. AKEWE

Let p ∈ F (T1) ∩ F (T2) ∩ F (T3) and

M1 = ‖x0 − p‖+ supn≥0 ‖T n1 yn − p‖+ supn≥0 ‖T n1 zn − p‖

+ supn≥0 ‖T n1 xn − p‖+ supn≥0 ‖un − p‖. (2.2)

Clearly, M1 is finite. We now show that {xn − p}n≥0 is also bounded. Observe that

‖x0 − p‖ ≤M1. It follows that

‖xn+1 − p‖ = ‖(1− an1 − bn1 − cn1 − en1)(xn − p) + an1(T
n
1 yn − p)

+bn1(T
n
1 zn − p) + en1(T

n
1 xn − p) + cn1(un − p)‖

≤ (1− an1 − bn1 − cn1 − en1)‖xn − p‖+ an1‖T n1 yn − p‖

+bn1‖T n1 zn − p‖+ en1‖T n1 xn − p‖+ cn1‖un − p‖

≤ (1− an1 − bn1 − cn1 − en1)M1 + an1M1 + bn1M1

+en1M1 + cn1M1

= M1, (2.3)

using the uniform continuity of T3, we obtain that {T n3 xn} is bounded. Denote

M2 = max

{
M1, sup

n≥0
{‖T n3 xn − p‖}, sup

n≥0
{‖wn − p‖}

}
, (2.4)

then we have:

‖zn − p‖ ≤ (1− an3 − cn3)‖xn − p‖+ an3‖T n3 xn − p‖+ cn3‖wn − p‖

≤ (1− an3 − cn3)M1 + an3M2 + cn3M2

≤ (1− an3 − cn3)M2 + an3M2 + cn3M2

= M2. (2.5)

Recall that T2 is uniformly continuous, so that {T n2 zn} is bounded. Let

M = sup
n≥0
‖T n2 zn − p‖+ sup

n≥0
‖T n2 xn − p‖+ sup

n≥0
‖vn − p‖+M2,

then M is finite. Since {xn − p}n≥0 is bounded and φ is a continuous strictly increasing

function, M∗ := supn≥0 φ(‖xn+1 − p‖) is also finite. Using Lemma 1.1, (1.24) and (2.1),
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then for n ≥ 0 and jφ(xn+1 − p) ∈ J(xn+1 − p), we have:

‖xn+1 − p‖2 = ‖(1− an1 − bn1 − cn1 − en1)(xn − p) + an1(T
n
1 yn − p)

+bn1(T
n
1 zn − p) + en1(T

n
1 xn − p) + cn1(un − p)‖2

≤ (1− an1 − bn1 − cn1 − en1)2‖xn − p‖2

+2〈an1(T n1 yn − p) + bn1(T
n
1 zn − p) + en1(T

n
1 xn − p)

+cn1(un − p), ‖xn+1−p‖
φ(‖xn+1−p‖)jφ(xn+1 − p)〉

= (1− an1 − bn1 − cn1 − en1)2‖xn − p‖2

+2an1

〈
T n1 yn − p,

‖xn+1−p‖
φ(‖xn+1−p‖)jφ(xn+1 − p)

〉
+2bn1

〈
T n1 zn − p,

‖xn+1−p‖
φ(‖xn+1−p‖)jφ(xn+1 − p)

〉
+2en1

〈
T n1 xn − p,

‖xn+1−p‖
φ(‖xn+1−p‖)jφ(xn+1 − p)

〉
+2cn1

〈
un − p, ‖xn+1−p‖

φ(‖xn+1−p‖)jφ(xn+1 − p)
〉

= (1− an1 − bn1 − cn1 − en1)2‖xn − p‖2

+2an1
‖xn+1−p‖

φ(‖xn+1−p‖) 〈T
n
1 yn − T n1 xn+1 + T n1 xn+1 − p, jφ(xn+1 − p)〉

+2bn1
‖xn+1−p‖

φ(‖xn+1−p‖) 〈T
n
1 zn − T n1 xn+1 + T n1 xn+1 − p, jφ(xn+1 − p)〉

+2en1
‖xn+1−p‖

φ(‖xn+1−p‖) 〈T
n
1 xn − T n1 xn+1 + T n1 xn+1 − p, jφ(xn+1 − p)〉

+2cn1
‖xn+1−p‖

φ(‖xn+1−p‖) 〈un − p, jφ(xn+1 − p)〉

= (1− an1 − bn1 − cn1 − en1)2‖xn − p‖2

+2an1
‖xn+1−p‖

φ(‖xn+1−p‖) 〈T
n
1 yn − T n1 xn+1, jφ(xn+1 − p)〉

+2an1
‖xn+1−p‖

φ(‖xn+1−p‖) 〈T
n
1 xn+1 − p, jφ(xn+1 − p)〉

+2bn1
‖xn+1−p‖

φ(‖xn+1−p‖) 〈T
n
1 zn − T n1 xn+1, jφ(xn+1 − p)〉

+2bn1
‖xn+1−p‖

φ(‖xn+1−p‖) 〈T
n
1 xn+1 − p, jφ(xn+1 − p)〉

+2en1
‖xn+1−p‖

φ(‖xn+1−p‖) 〈T
n
1 xn − T n1 xn+1, jφ(xn+1 − p)〉

+2en1
‖xn+1−p‖

φ(‖xn+1−p‖) 〈T
n
1 xn+1 − p, jφ(xn+1 − p)〉

+2cn1
‖xn+1−p‖

φ(‖xn+1−p‖) 〈un − p, jφ(xn+1 − p)〉

≤ (1− an1 − bn1 − cn1 − en1)2‖xn − p‖2 + 2an1‖xn+1 − p‖‖T n1 yn − T n1 xn+1‖

+2an1kn‖xn+1 − p‖φ(‖xn+1 − p‖) + 2bn1‖xn+1 − p‖‖T n1 zn − T n1 xn+1‖

+2bn1kn‖xn+1 − p‖φ(‖xn+1 − p‖) + 2en1‖xn+1 − p‖‖T n1 xn − T n1 xn+1‖

+2en1kn‖xn+1 − p‖φ(‖xn+1 − p‖) + 2cn1‖xn+1 − p‖‖un − p‖
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≤ (1− an1 − bn1 − cn1 − en1)2‖xn − p‖2 + 2an1‖xn+1 − p‖‖T n1 yn − T n1 xn+1‖

+2an1knM
∗‖xn+1 − p‖+ 2bn1‖xn+1 − p‖‖T n1 zn − T n1 xn+1‖

+2bn1knM
∗‖xn+1 − p‖+ 2en1‖xn+1 − p‖‖T n1 xn − T n1 xn+1‖

+2en1knM
∗‖xn+1 − p‖+ 2cn1‖xn+1 − p‖‖un − p‖

≤ (1− an1 − bn1 − cn1 − en1)2‖xn − p‖2 + 2an1knM
∗‖xn+1 − p‖

+2bn1knM
∗‖xn+1 − p‖+ 2en1knM

∗‖xn+1 − p‖

+2M1{an1‖T n1 yn − T n1 xn+1‖+ bn1‖T n1 zn − T n1 xn+1‖

+en1‖T n1 xn − T n1 xn+1‖+ cn1‖un − p‖}

= (1− an1 − bn1 − cn1 − en1)2‖xn − p‖2 + 2an1knM
∗‖xn+1 − p‖

+2bn1knM
∗‖xn+1 − p‖+ 2en1knM

∗‖xn+1 − p‖+ 2δn, (2.6)

where

δn = M1{an1‖T n1 yn − T n1 xn+1‖+ bn1‖T n1 zn − T n1 xn+1‖

+en1‖T n1 xn − T n1 xn+1‖+ cn1‖un − p‖}. (2.7)

Using (1.24), we have

‖yn − xn+1‖ = ‖yn − xn + xn − xn+1‖

≤ ‖yn − xn‖+ ‖xn − xn+1‖

= ‖(1− an2 − bn2 − cn2)xn + an2T
n
2 zn + bn2T

n
2 xn + cn2vn − xn‖

+‖xn − {(1− an1 − bn1 − cn1 − en1)xn + an1T
n
1 yn + bn1T

n
1 zn

+en1T
n
1 xn + cn1un}‖

= ‖ − an2(xn − T n2 zn)− bn2(xn − T n2 xn)− cn2(xn − vn)‖

+‖an1(xn − T n1 yn) + bn1(xn − T n1 zn) + cn1(xn − un)

+en1(xn − T n1 xn)‖

= ‖ − an2(xn − p+ p− T n2 zn)− bn2(xn − p+ p− T n2 xn)

−cn2(xn − p+ p− vn)‖+ ‖an1(xn − p+ p− T n1 yn)

+bn1(xn − p+ p− T n1 zn) + cn1(xn − p+ p− un)

+en1(xn − p+ p− T n1 xn)‖
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‖yn − xn+1‖ ≤ an2‖xn − p‖+ an2‖p− T n2 zn‖+ bn2‖xn − p‖+ bn2‖p− T n2 xn‖

+cn2‖xn − p‖+ cn2‖p− vn‖+ an1‖xn − p‖+ an1‖p− T n1 yn‖

+bn1‖xn − p‖+ bn1‖p− T n1 zn‖+ cn1‖xn − p‖+ cn1‖p− un‖

+en1‖xn − p‖+ en1‖p− T n1 xn‖

≤ 2Man2 + 2Mbn2 + 2Mcn2 + 2Man1 + 2Mbn1 + 2Mcn1 + 2Men1

= 2M (an2 + bn2 + cn2 + an1 + bn1 + cn1 + en1) . (2.8)

Using the condition that {an1}, {an2}, {bn1}, {bn2}, {cn1}, {cn2}, {en1} → 0 as n→∞, we

obtain from (2.8)

lim
n→∞

‖yn − xn+1‖ = 0. (2.9)

Using the uniform continuity of T1, we have

lim
n→∞

‖T n1 yn − T n1 xn+1‖ = 0. (2.10)

Similarly, limn→∞ ‖T n1 zn−T n1 xn+1‖ = limn→∞ ‖T n1 xn−T n1 xn+1‖ = 0. Hence, we have that

limn→∞ δn = 0.

Furthermore, we have

‖xn+1 − p‖ = ‖(1− an1 − bn1 − cn1 − en1)(xn − p) + an1(T
n
1 yn − p)

+bn1(T
n
1 zn − p) + en1(T

n
1 xn − p) + cn1(un − p)‖

≤ (1− an1 − bn1 − cn1 − en1)‖xn − p‖+ an1‖T n1 yn − p‖

+bn1‖T n1 zn − p‖+ en1‖T n1 xn − p‖+ cn1‖un − p‖

≤ (1− an1 − bn1 − cn1 − en1)‖xn − p‖

+(an1 + bn1 + en1 + cn1)M. (2.11)

Since {an1}, {an2}, {bn1}, {bn2}, {cn1}, {cn2}, {en1} → 0 as n → ∞, for every ε > 0 there

exists k ∈ N such that (an1 + bn1 + cn1 + en1) ≤ ε for all n ≥ k. Let {tn} = {an1 + bn1 +
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cn1 + en1}. Substituting (2.11) into (2.6), we have

‖xn+1 − p‖2 ≤ (1− tn)2‖xn − p‖2 + 2M∗kn(an1 + bn1 + en1)‖xn+1 − p‖

+2δn

≤ (1− tn)2‖xn − p‖2 + 2M∗kn(an1 + bn1 + en1)

×{(1− tn)2‖xn − p‖+ tnM}+ 2δn

≤ (1− tn)2‖xn − p‖2 + 2M∗tnkn{(1− tn)‖xn − p‖+ tnM}

+2δn

= (1− tn)2‖xn − p‖2 + 2M∗tnkn(1− tn)‖xn − p‖

+2MM∗t2nkn + 2δn

≤ (1− tn)2‖xn − p‖2 + 2M∗tnkn(1− tn)

×{(1− tn−1)‖xn−1 − p‖+ tn−1M}+ 2[MM∗t2nkn + δn]

≤ (1− tn)2‖xn − p‖2 + 2M∗kntn(1− tn)(1− tn−1)‖xn−1 − p‖

+2[M∗kntn(1− tn)tn−1M +MM∗t2nkn + δn]

= (1− tn)2‖xn − p‖2 + 2M∗tnkn(1− tn)(1− tn−1)‖xn−1 − p‖

+2 [MM∗kntn{(1− tn)tn−1 + tn}+ δn]

≤ · · ·

≤ (1− tn)2‖xn − p‖2 + 2tnkn
∏n

j=k(1− tj)M∗‖xk − p‖

+2{t2nMM∗kn

+tnknMM∗∑n−1
j=k

(
tn−1−j

∏n−1
j=k (1− tn−j)

)
+ δn}

≤ (1− tn)2‖xn − p‖2 + 2{t2nkn
∏n

j=k(1− tj)MM∗ + t2nMM∗kn

+tnknMM∗∑n−1
j=k

(
tn−1−j

∏n−1
j=k (1− tn−j)

)
+ δn}

≤ (1− tn)2‖xn − p‖2 + 2θn, (2.12)

where

θn =
[
tn
∏n

j=k(1− tj) + tn +
∑n−1

j=k

(
tn−1−j

∏n−1
j=k (1− tn−j)

)]
tnknMM∗

+δn. (2.13)
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Observe that {θn}n≥0 converges to 0 as n→∞. Clearly,∏n
j=k(1− tj) ≤ e−

∑n
j=k tj −→ 0 as n→∞ and

n−1∑
j=k

{
tn−1−j

n−1∏
j=k

(1− tn−j)

}
≤

n−1∑
j=k

ε→ 0

as ε → 0. Let ρn = ‖xn − p‖2, λn = tn and σn = 2θn. Using the fact that limn→∞ θn =

limn→∞ δn = 0 and Lemma 1.2, we have from (2.12) that

lim
n→∞

‖xn − p‖ = 0. (2.14)

The proof of Theorem 2.1 is completed. �

Remark 2.2. Theorem 2.1 improves and generalizes the results of Yang et al. [26],

Xue and Fan [25] which in turn is a correction of the results of Rafiq [21].

Theorem 2.3. Let E be a real Banach space, T1, T2, T3 : E → E be uniformly con-

tinuous and φ-strongly quasi-accretive operators with R(I − T1) bounded, where I is

the identity mapping on E. Let p denote the unique common solution to the equa-

tion Tix = f, (i = 1, 2, 3). For a given f ∈ E, define the operator Hi : E → E by

Hix = f + x− Tix, (i = 1, 2, 3). For any x0 ∈ E, the sequence {xn}∞n=0 is defined by
xn+1 = (1− an1 − bn1 − cn1 − en1)xn + an1H1yn + bn1H1zn + en1H1xn + cn1un,

yn = (1− an2 − bn2 − cn2)xn + an2H2zn + bn2H2xn + cn2vn,

zn = (1− an3 − cn3)xn + an3H3xn + cn3wn,

(2.15)

where {ani}, {cni}, {bn1}, {bn2}, {en1}, {an3+cn3}, {an2+bn2+cn2} and {an1+bn1+cn1+en1}

are appropriate sequences in [0,1] for i = 1, 2, 3 and {un}, {vn}, {wn} are bounded se-

quences in D satisfying the conditions: {an1}, {an2}, {bn1}, {bn2}, {cn1}, {cn2}, {en1} → 0

as n → ∞ and
∑∞

n=0 an1 = ∞. Then the sequence {xn}∞n=0 converges strongly to the

unique common solution to Tix = f (i = 1, 2, 3).

Proof. Clearly, if p is the unique common solution to the equation Tix = f (i = 1, 2, 3),
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it follows that p is the unique common fixed point of H1, H2 and H3. Using the fact that

T1, T2 and T3 are all φ-strongly quasi-accretive in the intermediate sense operators, then

H1, H2 and H3 are all asymptotically φ-hemicontractive mappings. Since Ti (i = 1, 2, 3)

is uniformly continuous with R(I − T1) bounded, this implies that Hi (i = 1, 2, 3) is uni-

formly continuous with R(H1) bounded. Hence, Theorem 2.3 follows from Theorem 2.1. �

Remark 2.4. Theorem 2.3 improves and extends Theorem 2.2 of Xue and Fan [25]

which in turn is a correction of the results of Rafiq [21].

Example 2.5. Let E = (−∞,+∞) with the usual norm and let D = [0,+∞). We

define T1 : D → D by T1x := x
2(1+x)

for each x ∈ D. Hence, F (T1) = {0}, R(T1) = [0, 1
2
)

and T1 is a uniformly continuous and asymptotically φ-hemicontractive mapping in the

intermediate sense. Define T2 : D → D by T2x := x
4

for all x ∈ D. Hence, F (T2) =

{0} and T2 is a uniformly continuous and strongly pseudocontractive mapping. Define

T3 : D → D by T3x := sin4 x
4

for each x ∈ D. Then F (T3) = {0} and T3 is a uniformly

continuous and asymptotically φ-hemicontractive mapping in the intermediate sense. Set

{ani} = {cni} = 1
n4 , {bn1} = {en1} = {bn2} = 1

n3 , {kn} = 1, for all n ≥ 0 and φ(t) = t2

2

for each t ∈ (−∞,+∞). Clearly, F (T1) ∩ F (T2) ∩ F (T3) = {0} = p 6= ∅. For an arbitrary

x0 ∈ D, the sequence {xn}∞n=0 ⊂ D defined by (1.22) converges strongly to the com-

mon fixed point of T1, T2 and T3 which is {0}, satisfying Theorem 2.1. This means that

Theorem 2.1 is applicable.
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