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Abstract
In this study, we introduce two classes of nonlinear mappings, the

class of asymptotically generalized Φ-hemicontractive mappings in the
intermediate sense and asymptotically generalized Φ-pseudocontractive
mappings in the intermediate sense; and prove the convergence of Mann
type iterative scheme with errors to their fixed points. Our results
generalize the results of Chang et al. [4], Chidume and Chidume [5]
and Kim et al. [8] among others.
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1 Introduction

Let E be an arbitrary real normed linear space with dual E∗. We denote by J
the normalized duality mapping from E into 2E∗

defined by

J(x) :=
{
f ∗ ∈ E∗ : 〈x, f ∗〉 = ‖x‖2 = ‖f ∗‖2

}
, (1.1)

where 〈., .〉 denotes the generalized duality pairing.
We give the following definitions which will be useful in this study

Definition 1.1. Let C be a nonempty subset of real normed linear space E.
A mapping T : C → E is said to be

(1) strongly pseudocontractive mappings [8] if for all x, y ∈ C, there exists
a constant k ∈ (0, 1) and j(x − y) ∈ J(x − y) satisfying

〈Tx − Ty, j(x− y)〉 ≤ k‖x − y‖2, (1.2)

(2) φ-strongly pseudocontractive mappings [8] if for all x, y ∈ C, there exists
a strictly increasing function φ : [0,∞) → [0,∞) with φ(0) = 0 and j(x− y) ∈
J(x − y) satisfying

〈Tx − Ty, j(x− y)〉 ≤ ‖x − y‖2 − φ(‖x − y‖)‖x − y‖. (1.3)

The class of φ-strongly pseudocontractive mappings includes the class of strongly
pseudocontractive mappings by setting φ(s) = ks for all s ∈ [0,∞). However,
the converse is not true.

(3) generalized Φ-pseudocontractive mappings [1, 5] if for all x, y ∈ C, there
exists a strictly increasing function Φ : [0,∞) → [0,∞) with Φ(0) = 0 and
j(x − y) ∈ J(x − y) satisfying

〈Tx − Ty, j(x− y)〉 ≤ ‖x − y‖2 − Φ(‖x − y‖). (1.4)

It is well known that the class of generalized Φ-pseudocontractive mappings
includes the class of φ-strongly pseudocontractive mappings as a special case
(if one sets Φ(s) = sφ(s) for all s ∈ [0,∞)).

(4) generalized Φ-hemi-contractive mappings [5] if F (T ) := {x ∈ C : Tx =
x} 
= ∅, and there exists x∗ ∈ F (T ) and a strictly increasing function Φ :
[0,∞) → [0,∞), Φ(0) = 0 such that for all x ∈ C, there exists j(x − x∗) ∈
J(x − x∗) such that

〈Tx − x∗, j(x − x∗)〉 ≤ ‖x − x∗‖2 − Φ(‖x − x∗‖). (1.5)
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Clearly, the class of generalized Φ-hemi-contractive mappings includes the class
of generalized Φ-pseudocontractive mappings in which the fixed points set
F (T ) := {x ∈ C : Tx = x} 
= ∅ is not empty.

(5) generalized strongly successively Φ-pseudocontractive mappings [7] if for
all x, y ∈ C, there exists j(x− y) ∈ J(x− y) and a strictly increasing function
Φ : [0,∞) → [0,∞) with Φ(0) = 0 such that

〈T nx − T ny, j(x− y)〉 ≤ ‖x − y‖2 − Φ(‖x − y‖). (1.6)

Observe that if T n = T for all n ∈ N in (1.6), then we obtain (1.4).
(6) asymptotically generalized Φ-pseudocontractive mappings [8] with se-

quence {kn} if for each n ∈ N and x, y ∈ C, there exists a constant kn ≥ 1
with limn→∞ kn = 1 and a strictly increasing function Φ : [0,∞) → [0,∞) with
Φ(0) = 0 and j(x − y) ∈ J(x − y) satisfying

〈T nx − T ny, j(x− y)〉 ≤ kn‖x − y‖2 − Φ(‖x − y‖). (1.7)

The class of asymptotically generalized Φ-pseudocontractive maps was intro-
duced by Kim et al. [8] in 2009 as a generalization of the class of generalized
Φ-pseudocontractive mappings. Observe that if kn = 1 for all n ∈ N in (1.7),
then we obtain (1.4).

(7) asymptotically generalized Φ-hemicontractive mappings [8] with sequence
{kn} if F (T ) 
= ∅ and for each n ∈ N, x ∈ C and p ∈ F (T ), there ex-
ists a constant kn ≥ 1 with limn→∞ kn = 1, a strictly increasing function
Φ : [0,∞) → [0,∞) with Φ(0) = 0 and j(x − p) ∈ J(x − p) satisfying

〈T nx − p, j(x − p)〉 ≤ kn‖x − p‖2 − Φ(‖x − p‖). (1.8)

Clearly, the class of asymptotically generalized Φ-hemicontractive map-
pings is the most general among those defined by Huang [7], i.e the class of
generalized Φ-pseudocontractive maps and the class of generalized strongly
successively Φ-pseudocontractive maps.

Recently, Qin et al. [15] introduced the following class of nonlinear map-
pings.
Definition 1.2. [15]. A mapping T : C → C is said to be asymptotically
pseudocontractive mapping in the intermediate sense if

lim sup
n→∞

sup
x,y∈C

(〈T nx − T ny, x− y〉 − kn‖x − y‖2
) ≤ 0, (1.9)

where {kn} is a sequence in [1,∞) such that kn → 1 as n → ∞. This is
equivalent to

〈T nx − T ny, x− y〉 ≤ kn‖x − y‖2 + νn, ∀n ≥ 1, x, y ∈ C, (1.10)
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where

νn = max

{
0, sup

x,y∈C

(〈T nx − T ny, x− y〉 − kn‖x − y‖2
)}

. (1.11)

Qin et al. [15] proved some weak convergence theorems for the class of
asymptotically pseudocontractive mappings in the intermediate sense. They
also established some strong convergence results without any compact assump-
tion by considering the hybrid projection methods. Olaleru and Okeke [13] in
2012 proved a strong convergence of Noor type scheme for a uniformly L-
Lipschitzian and asymptotically pseudocontractive mappings in the interme-
diate sense.

Motivated by the above facts, we now introduce the following classes of
nonlinear mappings

Definition 1.3. Let C be a nonempty subset of a real normed linear space E.
A mapping T : C → C is said to be asymptotically generalized Φ-pseudocontractive
mapping in the intermediate sense with sequence {kn} if for each n ∈ N and
x, y ∈ C, there exists a constant kn ≥ 1 with limn→∞ kn = 1, a strictly in-
creasing function Φ : [0,∞) → [0,∞) with Φ(0) = 0 and j(x − y) ∈ J(x − y)
satisfying

lim sup
n→∞

sup
x,y∈C

(〈T nx − T ny, j(x − y)〉 − kn‖x − y‖2 + Φ(‖x − y‖)) ≤ 0. (1.12)

Put

τn = max

{
0, sup

x,y∈C

(〈T nx − T ny, j(x − y)〉 − kn‖x − y‖2 + Φ(‖x − y‖))} .

(1.13)
It follows that τn → 0 as n → ∞. Hence (1.12) is reduced to the following

〈T nx − T ny, j(x− y)〉 ≤ kn‖x − y‖2 + τn − Φ(‖x − y‖). (1.14)

We remark that if τn = 0 for all n ∈ N, the class of asymptotically general-
ized Φ-pseudocontractive mappings in the intermediate sense is reduced to the
class of asymptotically generalized Φ-pseudocontractive mappings introduced
by Kim et al. [8] in 2009.

Definition 1.4. Let C be a nonempty subset of a real normed linear space E.
A mapping T : C → C is said to be asymptotically generalized Φ-hemicontractive
mapping in the intermediate sense with sequence {kn} if F (T ) := {p ∈ C :
p = Tp} 
= ∅ and for each n ∈ N, x ∈ C and p ∈ F (T ), there exists
a constant kn ≥ 1 with limn→∞ kn = 1 and a strictly increasing function
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Φ : [0,∞) → [0,∞) with Φ(0) = 0 and j(x − p) ∈ J(x − p) satisfying

lim sup
n→∞

sup
x,p∈C×F (T )

(〈T nx − p, j(x − p)〉 − kn‖x − p‖2 + Φ(‖x − p‖)) ≤ 0.

(1.15)
Put

τn = max

{
0, sup

x,p∈C×F (T )

(〈T nx − p, j(x − p)〉 − kn‖x − p‖2 + Φ(‖x − p‖))
}

.

(1.16)
It follows that τn → 0 as n → ∞. Hence (1.15) is reduced to the following

〈T nx − p, j(x − p)〉 ≤ kn‖x − p‖2 + τn − Φ(‖x − p‖). (1.17)

Clearly, the class of asymptotically generalized Φ-hemicontractive map-
pings in the intermediate sense is the most general so far introduced in litera-
ture since it includes the class of asymptotically generalized Φ-hemicontractive
maps.

The following definitions will be needed in this study.
Let C be a nonempty subset of a normed linear space E. A mapping T : C → E
is said to be Lipschitzian if there exists a constant L > 0 such that

‖Tx − Ty‖ ≤ L‖x − y‖ (1.18)

for all x, y ∈ C and generalized Lipschitzian [8] if there exists a constant L > 0
such that

‖Tx − Ty‖ ≤ L(‖x − y‖ + 1) (1.19)

for all x, y ∈ C. A mapping T : C → C is called uniformly L-Lipschitzian [8]
if for each n ∈ N, there exists a constant L > 0 such that

‖T nx − T ny‖ ≤ L‖x − y‖ (1.20)

for all x, y ∈ C.
Clearly, every Lipschitzian mapping is a generalized Lipschitzian mapping.

Every mapping with a bounded range is a generalized Lipschitzian mapping.
The following example shows that the class of generalized Lipschitzian map-
pings properly contains the class of Lipschitzian mappings and that of map-
pings with bounded range.

Example 1.5. [3]. Let E = (−∞,∞) and T : E → E be defined by

Tx =

⎧⎪⎪⎨
⎪⎪⎩

x − 1 if x ∈ (−∞,−1),

x − √
1 − (x + 1)2 if x ∈ [−1, 0),

x +
√

1 − (x − 1)2 if x ∈ [0, 1],
x + 1 if x ∈ (1,∞).
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Then T is a generalized Lipschitzian mapping which is not Lipschitzian and
whose range is not bounded.

Sahu [16] in 2005 introduced a new class of nonlinear mappings which is
more general than the class of generalized Lipschitzian mappings and the class
of uniformly L-Lipschitzian mappings.

Definition 1.6. [16]. Let C be a nonempty subset of a Banach space E and
fix a sequence {an} in [0,∞) with an → 0.

(1) A mapping T : C → C is said to be nearly Lipschitzian with respect to
{an} if for each n ∈ N, there exists a constant kn > 0 such that

‖T nx − T ny‖ ≤ kn(‖x − y‖ + an) (1.21)

for all x, y ∈ C.
The infimum of constants kn in (1.21) is called nearly Lipschitz constant

and is denoted by η(T n).
(2) A nearly Lipschitzian mapping T with sequence {(an, η(T n))} is said

to be nearly uniformly L-Lipschitzian if kn = L for all n ∈ N, i.e.

‖T nx − T ny‖ ≤ L(‖x − y‖ + an) (1.22)

and nearly asymptotically nonexpansive if kn ≥ 1 for all n ∈ N with limn→∞ kn =
1.

(3) A mapping T : C → E will be called generalized (M, L)-Lipschitzian if
there exist two constants L,M > 0 such that

‖Tx − Ty‖ ≤ L(‖x − y‖ + M) (1.23)

for all x, y ∈ C.
Observe that the class of generalized (M, L)-Lipschitzian mappings is a gen-

eralization of the class of Lipschitzian mappings. Clearly, the class of nearly
uniformly L-Lipschitzian mappings properly contains the class of generalized
(M, L)-Lipschitzian mappings and the class of uniformly L-Lipschitzian map-
pings. We remark that every nearly asymptotically nonexpansive mapping is
nearly uniformly L-Lipschitzian.

It has been shown by Sahu [16] that a nearly uniformly L-Lipschitzian
map is not necessarily continuous. Sahu [16] extended the results of Goebel
and Kirk [6] to demicontinuous mappings and proved that if C is a nonempty
closed convex bounded subset of a uniformly convex Banach space, then every
demicontinuous nearly asymptotically nonexpansive self-mapping of C has a
fixed point.
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Chidume and Chidume [5] in 2005 obtained result for the class of gener-
alized Φ-hemi-contractive mappings while Kim et al. [8] in 2009 generalized
the result to nearly uniformly L-Lipschitzian asymptotically generalized Φ-
hemicontractive mappings. They established a strong convergence result of
the iterative sequence generated by these mappings in a general Banach space.

Theorem KSN. [8]. Let C be a nonempty convex subset of a real Banach
space E and T : C → C a nearly uniformly L-Lipschitzian mapping with se-
quence {an} and asymptotically generalized Φ-hemicontractive mapping with
sequence {kn} and F (T ) 
= ∅. Let {αn} be a sequence in [0, 1] satisfying the
conditions:

(i) { an

αn
} is bounded,

(ii)
∑∞

n=1 αn = ∞,
(iii)

∑∞
n=1 α2

n < ∞ and
∑∞

n=1 αn(kn − 1) < ∞.
Let {xn} be the sequence in E generated from arbitrary x1 ∈ C by

xn+1 = (1 − αn − βn)xn + αnT nxn + βnun, n ∈ N. (1.24)

Then the sequence {xn} in C defined by (1.24) converges strongly to a unique
fixed point of T.

It is our purpose in this study to use the concept of nearly uniformly
L-Lipschitzian (not necessarily continuous) mappings to prove a strong con-
vergence result for the class of asymptotically generalized Φ-hemicontractive
mappings in the intermediate sense in a general Banach space. Our results
are improvements and generalizations of Chidume and Chidume [5], Theorem
KSN of Kim et al. [8] and Chang et al. [4] among others.

The following Lemmas will be useful in this study

Lemma 1.1. [2]. Let E be a Banach space. Then for each x, y ∈ E, there
exists j(x + y) ∈ J(x + y) such that

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉.

Lemma 1.2. [14]. Let {δn}, {βn} and {γn} be three sequences of nonnegative
numbers such that

δn+1 ≤ (1 + βn)δn + γn

for all n ∈ N. If
∑∞

n=1 βn < ∞ and
∑∞

n=1 γn < ∞, then limn→∞ δn exists.

Lemma 1.3. [10]. Let {θn} be a sequence of nonnegative real numbers and
{λn} a real sequence in [0, 1] such that

∑∞
n=1 λn = ∞. If there exists a strictly

increasing function φ : [0,∞) → [0,∞) with φ(0) = 0 such that

θ2
n+1 ≤ θ2

n − λnφ(θn+1) + σn



1998 G. A. Okeke, J. O. Olaleru and H. Akewe

for all n ≥ n0, where n0 is some nonnegative integer and {σn} is a sequence of
nonnegative numbers such that σn = o(λn), then limn→∞ θn = 0.

Lemma 1.4. [8]. Let {δn}, {βn}, {γn} and {σn} be four sequences of nonneg-
ative numbers such that

δ2
n+1 ≤ (1 + βn)δ2

n + γn(δn + σn)2

for all n ∈ N. If
∑∞

n=1 βn < ∞,
∑∞

n=1 γn < ∞ and {σn} is bounded, then
limn→∞ δn exists.

2 Main Results

We prove the following lemma which will be needed in this study.

Lemma 2.1. Let {δn}, {βn}, {γn}, {σn} and {ρn} be five sequences of non-
negative numbers such that

δ2
n+1 ≤ (1 + βn)δ2

n + γn(δn + σn)2 + ρ2
n (2.1)

for all n ∈ N. If
∑∞

n=1 βn < ∞,
∑∞

n=1 γn < ∞,
∑∞

n=1 ρn < ∞ and {σn} is
bounded, then limn→∞ δn exists.

Proof. Using (2.1), we obtain

δ2
n+1 ≤ (1 + βn)δ2

n + γn(δn + σn)2 + ρ2
n

≤ (1 + βn)δ2
n + 2γn(δ2

n + σ2
n) + ρ2

n

≤ (1 + βn + 2γn)δ2
n + 2γnσ2

n + ρ2
n. (2.2)

Since {σn} is bounded and
∑∞

n=1 ρn < ∞, then by Lemma 1.2, it follows that
limn→∞ δn exists. �

Theorem 2.2. Let C be a nonempty convex subset of a real Banach space E
and T : C → C a nearly uniformly L-Lipschitzian mapping with sequence {an}
and asymptotically generalized Φ-hemicontractive mapping in the intermediate
sense with sequences {τn} and {kn} as defined in (1.17) and F (T ) 
= ∅. Let
{αn} be a sequence in [0, 1] satisfying the conditions:

(i) 1
αn+αnL+βn

is bounded, (ii)
∑∞

n=1 αn = ∞, limn→∞ αn = 0,

(iii)
∑∞

n=1 α2
n < ∞,

∑∞
n=1 τn < ∞ and

∑∞
n=1 αn(kn − 1) < ∞.

Let {xn} be the sequence in E generated from arbitrary x1 ∈ C by

xn+1 = (1 − αn − βn)xn + αnT nxn + βnun, n ∈ N, (2.3)

where {un} is a bounded sequence in E. Then the sequence {xn} in C defined
by (2.3) converges strongly to the unique fixed point of T.
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Proof. Fix p ∈ F (T ) and using (1.17), (1.22), (2.3) we obtain

‖xn+1 − xn‖ = ‖ − αn(xn − T nxn) − βn(xn − un)‖
≤ αn‖T nxn − xn‖ + βn‖un − xn‖
≤ αn{‖T nxn − p‖ + ‖xn − p‖} + βn{‖un − p‖ + ‖xn − p‖}
≤ αn{L(‖xn − p‖ + an) + ‖xn − p‖} + βn{‖xn − p‖ + ‖un − p‖}
= (αnL + αn + βn)‖xn − p‖ + βn‖un − p‖ + αnanL
≤ (αn(1 + L) + βn)‖xn − p‖ + βn‖un − p‖ + anL. (2.4)

Using Lemma 1.1, (1.17), (1.22), (2.3) and (2.4), we obtain

‖xn+1 − p‖2 = ‖(1 − αn − βn)(xn − p) + αn(T nxn − p) + βn(un − p)‖2

≤ (1 − αn − βn)2‖xn − p‖2

+2〈αn(T nxn − p) + βn(un − p), j(xn+1 − p)〉
= (1 − αn − βn)2‖xn − p‖2 + 2αn〈T nxn − p, j(xn+1 − p)〉

+2βn〈un − p, j(xn+1 − p)〉
≤ (1 − αn − βn)2‖xn − p‖2

+2αn{〈T nxn+1 − p, j(xn+1 − p)〉
+〈T nxn − T nxn+1, j(xn+1 − p)〉} + 2βn〈un − p, j(xn+1 − p)〉

≤ (1 − αn − βn)2‖xn − p‖2 + 2αn{kn‖xn+1 − p‖2 + τn

−Φ(‖xn+1 − p‖) + L(‖xn+1 − xn‖ + an)‖xn+1 − p‖}
+2βn‖un − p‖ × ‖xn+1 − p‖

≤ (1 − αn − βn)2‖xn − p‖2 + 2αn{kn‖xn+1 − p‖2 + τn

−Φ(‖xn+1 − p‖) + L[(αn(1 + L) + βn)‖xn − p‖ + βn‖un − p‖
+(1 + L)an]‖xn+1 − p‖} + 2βn‖un − p‖ × ‖xn+1 − p‖

= (1 − αn − βn)2‖xn − p‖2 + 2αnkn‖xn+1 − p‖2 + 2αnτn

−2αnΦ(‖xn+1 − p‖) + 2αnL{(αn + αnL + βn)‖xn − p‖
+βn(1 + 1

αnL
)‖un − p‖ + (1 + L)an}‖xn+1 − p‖

≤ (1 − αn − βn)2‖xn − p‖2 + 2αnkn‖xn+1 − p‖2 + 2αnτn

−2αnΦ(‖xn+1 − p‖) + 2αnL{[(αn + αnL + βn)‖xn − p‖
+βn(1 + 1

αnL
)‖un − p‖ + (1 + L)an]2 + ‖xn+1 − p‖2}. (2.5)

Set An := 2αn(kn − 1) + 2αnL(αn + αnL + βn) and Bn := 1 − 2αnkn − 2αnL.
From (2.5), we obtain

‖xn+1 − p‖2 ≤ (1−αn−βn)2

Bn
‖xn − p‖2 + 2αnτn

Bn
− 2αn

Bn
Φ(‖xn+1 − p‖)

+2αnL
Bn

[(αn + αnL + βn)‖xn − p‖ + βn(1 + 1
αnL

)‖un − p‖
+(1 + L)an]2

≤ (1 + An

Bn
)‖xn − p‖2 + 2αnτn

Bn
− 2αn

Bn
Φ(‖xn+1 − p‖)

+2αnL
Bn

[(αn + αnL + βn)‖xn − p‖ + βn(1 + 1
αnL

)‖un − p‖
+(1 + L)an]2. (2.6)
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But Bn := 1− 2αnkn − 2αnL → 1, since limn→∞ αn = 0 there exists a number
n0 ∈ N such that 1

2
< Bn ≤ 1 for all n ≥ n0. From (2.6), we have

‖xn+1 − p‖2 ≤ (1 + 2An)‖xn − p‖2 + 4αnτn − 2αnΦ(‖xn+1 − p‖)
+2αnL[(αn + αnL + βn)‖xn − p‖ + βn(1 + 1

αnL
)‖un − p‖

+(1 + L)an]2

≤ (1 + 2An)‖xn − p‖2 + 4αnτn + 2αnL[(αn + αnL + βn)‖xn − p‖
+βn(1 + 1

αnL
)‖un − p‖ + (1 + L)an]2

≤ 1 + 2An‖xn − p‖2 + 4αnτn + 2αnL(αn + αnL + βn)2×[
‖xn − p‖ + 1

αn+αnL+βn

{
βn(1 + 1

αnL
)‖un − p‖ + (1 + L)an

}]2

(2.7)

Using the conditions
∑∞

n=1 αn(kn − 1) < ∞ and
∑∞

n=1 α2
n < ∞, we have∑∞

n=1 An < ∞. Since {un} is a bounded sequence in E and 1
αn+αnL+βn

is

bounded, from (2.7) and Lemma 2.1 we have that limn→∞ ‖xn − p‖ exists.
Hence {xn} is bounded. Now, we set M1 := sup{‖xn − p‖ : n ∈ N}, M2 :=
sup{βn(1 + 1

αnL
) : n ∈ N}, M3 := sup{‖un − p‖ : n ∈ N}, M4 := sup{4αnτn :

n ∈ N} and M5 := sup{(1 + L)an : n ∈ N}. Then from (2.6), we obtain

‖xn+1 − p‖2 ≤ ‖xn − p‖2 + M4 − 2αnΦ(‖xn+1 − p‖) + 2αnL(αn + αnL + βn)2×
{[(αn(1 + L) + βn)M1 + M2M3 + M5]

2} + 2AnM2
1 . (2.8)

Taking θn = ‖xn − p‖2, λn = 2αn and σn = 2αnL(αn + αnL + βn)2{[(αn(1 +
L) + βn)M1 + M2M3 + M5]

2} + 2AnM2
1 + M4, (2.8) reduces to

θ2
n+1 ≤ θ2

n − λnφ(θn+1) + σn.
Hence from Lemma 1.3, we have that ‖xn − p‖ → 0. The proof of Theorem
2.2 is completed. �

Corollary 2.3. Let C be a nonempty convex subset of a real Banach space
E and T : C → C a nearly uniformly L-Lipschitzian mapping with sequence
{an} and asymptotically generalized Φ-hemicontractive with sequence {kn} as
defined in (1.5) and F (T ) 
= ∅. Let {αn} be a sequence in [0, 1] satisfying the
conditions:

(i) 1
αn+αnL+βn

is bounded, (ii)
∑∞

n=1 αn = ∞,

(iii)
∑∞

n=1 α2
n < ∞ and

∑∞
n=1 αn(kn − 1) < ∞.

Let {xn} be the sequence in E generated from arbitrary x1 ∈ C by

xn+1 = (1 − αn − βn)xn + αnT nxn + βnun, n ∈ N, (2.9)

where {un} is a bounded sequence in E. Then the sequence {xn} in C defined
by (2.9) converges strongly to a unique fixed point of T.

Remark 2.4. We remark that Theorem 2.2 and of course, Corollary 2.3
improves and generalizes the results of Chang et al. [4], Ofoedu [11], Liu et
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al. [9], Olaleru and Mogbademu [12] and includes the results of Chidume and
Chidume [5] and Theorem KSN as special cases since the class of asymptotically
generalized Φ-hemicontractive mappings in the intermediate sense introduced
in this paper is more general than those defined by those authors.

Example 2.5. Let E = R, C = [0, 1] and T : C → C a mapping defined by

Tx =

⎧⎨
⎩

x
2

if x ∈ [0, 1),

0 if x = 1.
(2.10)

Clearly, T is not a continuous mapping and the unique fixed point of T is
x = 0. It was shown by Sahu and Beg [17] that T is not Lipschitzian, but
it is nearly 1

2
-Lipschitzian with sequence { 1

2n}. We can easily show that T is
an asymptotically generalized Φ-hemicontractive mapping in the intermediate
sense with sequences {kn = 1}, τn = 1

n2 and Φ(t) = t2

2
, t ∈ [0,∞) as defined

in (1.17).
Put αn = 1

n
, βn = 1

n2 . We see that the assumptions (i), (ii) and (iii) of
Theorem 2.2 are satisfied.

If x1 = 1, then xn = 0 for each n ≥ 2. Hence, the sequence {xn} converges
to 0. Moreover, if x1 ∈ [0, 1), then using (2.3), we obtain
xn+1 = (1 − αn)xn + αn

xn

2n + βnun

= (1 − (1 − 1
2n )αn)xn + βnun, n ∈ N. (2.11)

Since
∑∞

n=1(1 − 1
2n )αn = ∞ and {un} is bounded, from (2.11), we have that

xn −→ 0 as n → ∞.
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