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Abstract
In this study, we prove a strong convergence of Noor type scheme for a uniformly L-Lipschitzian and
asymptotically pseudocontractive mappings in the intermediate sense without assuming any form
of compactness. Consequently, we also obtain a convergence result for the class of asymptotically
strict pseudocontractive mappings in the intermediate sense. Our results are improvements and
extensions of some of the results in literature.
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1 Introduction
In the sequel, we give the following definitions of some of the concepts that will feature prominently in
this study.

Definition 1.1. Let T : C → C be a mapping. T is said to be
(1)asymptotically nonexpansive (Sahu et al. (2009)) if there exists a sequence {kn} ⊂ [1,∞)
with kn → 1 as n→∞ such that

‖Tnx− Tny‖ ≤ kn‖x− y‖, ∀n ≥ 1, x, y ∈ C. (1.1)

Goebel and Kirk (1972) introduced the class of asymptotically nonexpansive mappings as a genera-
lization of the class of nonexpansive mappings.

(2) asymptotically nonexpansive in the intermediate sense (Zegeye et al. (2011)) if it is continuous
and the following inequality holds:

lim
n→∞

sup sup
x,y∈C

(‖Tnx− Tny‖ − ‖x− y‖) ≤ 0. (1.2)
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Observe that if we define

ζn = max

{
0, sup

x,y∈C
(‖Tnx− Tny‖ − ‖x− y‖)

}
, (1.3)

then ζn → 0 as n→∞. Hence, (1.2) can be reduced to

‖Tnx− Tny‖ ≤ ‖x− y‖+ ζn, ∀n ≥ 1, x, y ∈ C. (1.4)

The class of asymptotically nonexpansive mapping in the intermediate sense was introduced in 1993
by Bruck et al. (1993). We remark that the class of mappings which are asymptotically nonexpansive
in the intermediate sense contains properly the class of asymptotically nonexpansive mappings.

(3) strict pseudocontractive (Qin et al. (2010)) if there exists a constant k ∈ [0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2, ∀x, y ∈ C. (1.5)

The class of strict pseudocontractive maps was introduced in 1967 by Browder and Petryshyn (1967).
Marino and Xu (2007) established that the fixed point of strict pseudocontractions is closed convex
and they obtained a weak convergence theorem for strictly pseudocontractive mappings by Mann
iterative process.

(4) asymptotically strict pseudocontractive (Zegeye et al. (2011)) if there exists a constant k ∈
[0, 1) and a sequence {kn} ⊂ [1,∞) with kn → 1 as n→∞ such that

‖Tnx− Tny‖2 ≤ kn‖x− y‖2 + k‖(I − Tn)x− (I − Tn)y‖2, ∀x, y ∈ C. (1.6)

The class of asymptotically strict pseudocontractive mappings was introduced by Liu (1996). We
remark that the class of asymptotically strict pseudocontractive mappings is a generalization of the
class of strict pseudocontractive mappings.

(5) asymptotically strict pseudocontractive in the intermediate sense (Qin et al. (2010)) if there
exist a constant k ∈ [0, 1) and a sequence {kn} ⊂ [1,∞) with kn → 1 as n→∞ such that

lim
n→∞

sup sup
x,y∈C

(‖Tnx− Tny‖2 − kn‖x− y‖2 − k‖(I − Tn)x− (I − Tn)y‖2) ≤ 0. (1.7)

Put

ζn = max

{
0, sup

x,y∈C
(‖Tnx− Tny‖2 − kn‖x− y‖2 − k‖(I − Tn)x− (I − Tn)y‖2)

}
. (1.8)

It follows that ζn → 0 as n→∞. Then, (1.7) is reduced to the following:

‖Tnx− Tny‖2 ≤ kn‖x− y‖2 + k‖(I − Tn)x− (I − Tn)y‖2 + ζn,∀n ≥ 1, x, y ∈ C. (1.9)

Sahu et al. (2009) introduced the class of asymptotically strict pseudocontractive mappings in the
intermediate sense. Zhao and He (2010) obtained some weak and strong convergence results for
this class of nonlinear maps. We remark that if ζn = 0 ∀n ≥ 1 in (1.9), then we obtain (1.6), meaning
that the class of asymptotically strict pseudocontractive mappings in the intermediate sense contains
properly the class of asymptotically strict pseudocontractive mappings.

(6) pseudocontractive (Qin et al. (2010)) if for any x, y ∈ C, there exists j(x− y) ∈ J(x− y) such
that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2, (1.10)

and it is well known that condition (1.10) is equivalent to the following:

‖x− y‖ ≤ ‖x− y + s[(I − Tx)− (I − Ty)]‖, ∀s > 0, x, y ∈ C, (1.11)

(7) asymptotically pseudocontractive (Qin et al. (2010)) if there exists a sequence
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{kn} ⊂ [1,∞) with kn → 1 as n→∞ such that

〈Tnx− Tny, x− y〉 ≤ kn‖x− y‖2, ∀n ≥ 1, x, y ∈ C. (1.12)

Observe that (1.12) is equivalent to

‖Tnx− Tny‖2 ≤ (2kn − 1)‖x− y‖2 + ‖x− y − (Tnx− Tny)‖2, ∀n ≥ 1, x, y ∈ C. (1.13)

The class of asymptotically pseudocontractive mapping was introduced in 1991 by Schu (1991).
Rhoades (1976) produced an example to show that the class of asymptotically pseudocontractive
mappings contains properly the class of asymptotically nonexpansive mappings.

(8) asymptotically pseudocontractive mapping in the intermediate sense (Qin et al. 2010)) if
there exists a sequence {kn} ⊂ [1,∞) with kn → 1 as n→∞ such that

lim
n→∞

sup sup
x,y∈C

(〈Tnx− Tny, x− y〉 − kn‖x− y‖2) ≤ 0. (1.14)

Put

τn = max

{
0, sup

x,y∈C
(〈Tnx− Tny, x− y〉 − kn‖x− y‖2)

}
. (1.15)

It follows that τn → 0 as n→∞. Hence, (1.14) is reduced to the following:

〈Tnx− Tny, x− y〉 ≤ kn‖x− y‖2 + τn, ∀n ≥ 1, x, y ∈ C. (1.16)

In real Hilbert spaces, we observe that (1.16) is equivalent to

‖Tnx− Tny‖2 ≤ (2kn − 1)‖x− y‖2 + ‖(I − Tn)x− (I − Tn)y‖2 + 2τn,∀n ≥ 1, x, y ∈ C. (1.17)

X. Qin et al. (2010) introduced the class of asymptotically pseudocontractive mappings in the interme-
diate sense. We remark that if τn = 0 ∀n ≥ 1, then the class of asymptotically pseudocontractive
mappings in the intermediate sense is reduced to the class of asymptotically pseudocontractive
mappings.

X. Qin et al. (2010) proved the following theorem.

Theorem QCK. Let H be a real Hilbert space, C ⊂ H be nonempty closed bounded and convex. Let
T be a uniformly L-Lipschitzian and asymptotically pseudocontractive self-map ofC in the intermediate
sense with sequences {kn} ⊂ [1,∞) and {τn} ⊂ [0,∞) defined as in (1.17). Assume that F (T ) is
nonempty. Let {xn} be a sequence defined by x1 = x ∈ C and

yn = βnT
nxn + (1− βn)xn

xn+1 = αnT
nyn + (1− αn)xn, n ≥ 1,

(1.18)

where {αn} and {βn} are sequences in (0, 1). Assume that the following conditions are satisfied:
(i)
∑∞

n=1 τn <∞,
∑∞

n=1(q
2
n − 1) <∞ where qn := 2kn − 1 for each n ≥ 1;

(ii) a ≤ αn ≤ βn ≤ b for some a > 0 and some b ∈ (0, L−2[
√
1 + L2 − 1]).

Then the sequence {xn} generated by (1.18) converges weakly to a fixed point of T.

Zegeye et al. (2011) proved a strong convergence theorem of Ishikawa type scheme (1.18) for
the class of asymptotically pseudocontractive mappings in the intermediate sense without the use of
the hybrid method adopted by X. Qin et al. (2010).

Theorem ZRC. Let C be a nonempty, closed and convex subset of a real Hilbert space H and T :
C → C be uniformly L-Lipschitzian and asymptotically pseudocontractive mapping in the intermediate
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sense with sequences {kn} ⊂ [1,∞) and {τn} ⊂ [0,∞) defined as in (1.14). Assume that the interior
of F (T ) is nonempty. Let {xn} be a sequence defined by x1 = x ∈ C and

yn = βnT
nxn + (1− βn)xn

xn+1 = αnT
nyn + (1− αn)xn, n ≥ 1,

(1.19)

where {αn} and {βn} are sequences in (0, 1). Assume that the following conditions are satisfied:
(i)
∑∞

n=1 τn <∞,
∑∞

n=1(q
2
n − 1) <∞ where qn := 2kn − 1 for each n ≥ 1;

(ii) a ≤ αn ≤ βn ≤ b for some a > 0 and some b ∈ (0, L−2[
√
1 + L2 − 1]).

Then the sequence {xn} generated by (1.19) converges strongly to a fixed point of T.
Noor et al. (2001) gave a three-step iteration process for solving non-linear operator equations in

real Banach spaces.
Consider the following Noor iteration scheme: Let T : C → C be a mapping. For an arbitrary x0 ∈ C,
the sequence {xn}∞n=0 ⊂ C defined by

yn = (1− βn)xn + βnTzn (1.20)
zn = (1− γn)xn + γnTxn, n ≥ 0,

xn+1 = (1− αn)xn + αnTyn
where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0, are three sequences satisfying αn, βn, γn ∈ [0, 1] for each n.
Olaleru and Mogbademu (2011) and (2012) obtained some convergence results for the modified
Noor iterative scheme introduced by Rafiq (2006). Zhou (2009) introduced a new three-step iterative
scheme with errors.

It was established by Bnouhachem et al. (2006) that three-step method performs better than
two-step and one-step methods for solving variational inequalities. Glowinski and P. Le Tallec in 1989
applied three-step iterative sequences for finding the approximate solutions of the elastoviscoplasticity
problem, eigenvalue problems and in the liquid crystal theory. Moreover, three-step schemes are
natural generalization of the splitting methods to solve partial differential equations, (see Qihou
(2002), Senter and Dotson (1974), Shahzad and Udomene (2006), Suantai (2005)). What this means
is that Noor three-step methods are at times robust and more efficient than the Mann (one-step) and
Ishikawa (two-step) type schemes for solving problems of nonlinear equations.

The following question is natural:
Is it possible to obtain a strong convergence of Noor type scheme (1.20) to a fixed point of asymptoti-
cally pseudocontractive mappings in the intermediate sense?

We give the following definitions and lemmas which will be useful in this study.
The folowing function was studied by Alber (1996), Kamimula and Takahashi (2002) and Reich

(1996). Let φ : H ×H → R defined by

φ(x, y) = ‖x‖2 − 2〈x, y〉+ ‖y‖2 for any
x, y ∈ H. (1.21)

From the definition of φ, we observe that:

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2 for any x, y ∈ H. (1.22)

The function φ has the following property:

φ(y, x) = φ(z, x) + φ(y, z) + 2〈z − y, x− z〉 for all x, y, z ∈ H. (1.23)

Lemma 1.2. (Zegeye et al. (2011)) Let {an} be a sequence of nonnegative real numbers satisfying
the following relation:

an+1 ≤ (1 + γn)an + σn, n ≥ n0, (1.24)
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where, n0 is some nonnegative integer. If
∑
γn <∞ and

∑
|σn| <∞. Then, limn→∞ an exists.

Lemma 1.3. (Zegeye et al. (2011)) Let H be a real Hilbert space. Then the following equality
holds:

‖αx+ (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2, (1.25)

for all α ∈ (0, 1) and x, y ∈ H.
In this paper, we consider the following Noor type iterative scheme and use it to obtain a strong

convergence for an asymptotically pseudocontractive mappings in the intermediate sense.

Let T : C → C be a mapping. For an arbitrary x0 ∈ C, the sequence {xn}∞n=0 ⊂ C defined
by

yn = (1− βn)xn + βnT
nzn

zn = (1− γn)xn + γnT
nxn, n ≥ 0,

xn+1 = (1− αn)xn + αnT
nyn (1.26)

where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0, are three sequences satisfying αn, βn, γn ∈ [0, 1] for each n.

2 Strong convergence theorem for asymptotically
pseudocontractive mappings in the intermediate sense

Theorem 2.1. Let C be a nonempty, closed and convex subset of a real Hilbert spaceH and T : C →
C be uniformly L-Lipschitzian and asymptotically pseudocontractive mapping in the intermediate
sense with sequences {kn} ⊂ [1,∞) and {τn} ⊂ [0,∞) defined as in (1.14). Assume that the
interior of F (T ) is nonempty. Let {xn} be a sequence defined by x1 = x ∈ C and


yn = (1− βn)xn + βnT

nzn
zn = (1− γn)xn + γnT

nxn, n ≥ 0,
xn+1 = (1− αn)xn + αnT

nyn

(2.1)

where {αn}, {βn} and {γn} are sequences in (0, 1). Assume that the following conditions are satisfied:
(i)
∑∞

n=1 τn <∞,
∑∞

n=1(q
3
n − 1) <∞ where qn := 2kn − 1 for each n ≥ 1;

(ii) a ≤ αn ≤ βn ≤ γn ≤ b for some a > 0 and some b ∈ (0, L−2[
√
1 + L2 − 1]).

Then the sequence {xn} generated by (2.1) converges strongly to a fixed point of T.

Proof. Fix p ∈ F (T ). From Lemma 1.3, (2.1) and (1.17), we obtain
‖zn − p‖2 = ‖(1− γn)(xn − p) + γn(T

nxn − p)‖2
= (1− γn)‖xn − p‖2 + γn‖Tnxn − p‖2 − γn(1− γn)‖Tnxn − xn‖2
≤ (1− γn)‖xn − p‖2 + γn{qn‖xn − p‖2 + ‖xn − Tnxn‖2 + 2τn}
−γn(1− γn)‖Tnxn − xn‖2

≤ qn‖xn − p‖2 + γn‖xn − Tnxn‖2 + 2γnτn − γn(1− γn)‖Tnxn − xn‖2
≤ qn‖xn − p‖2 + γ2

n‖Tnxn − xn‖2 + 2τn. (2.2)

‖zn − Tnzn‖2 = ‖(1− γn)(xn − Tnzn) + γn(T
nxn − Tnzn)‖2

= (1− γn)‖xn − Tnzn‖2 + γn‖Tnxn − Tnzn‖2
−γn(1− γn)‖Tnxn − xn‖2

≤ (1− γn)‖xn − Tnzn‖2 + γ3
nL

2‖xn − Tnxn‖2
−γn(1− γn)‖Tnxn − xn‖2. (2.3)

Using Lemma 1.3, (1.17), (2.1), (2.2) and (2.3), we obtain:
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‖yn − p‖2 = ‖(1− βn)(xn − p) + βn(T
nzn − p)‖2

= (1− βn)‖xn − p‖2 + βn‖Tnzn − p‖2 − βn(1− βn)‖Tnzn − xn‖2
≤ (1− βn)‖xn − p‖2 + βn{qn‖zn − p‖2 + ‖zn − Tnzn‖2 + 2τn}
−βn(1− βn)‖Tnzn − xn‖2

≤ (1− βn)‖xn − p‖2 + βn{qn(qn‖xn − p‖2 + γ2
n‖Tnxn − xn‖2 + 2τn)+

(1− γn)‖xn − Tnzn‖2 + γ3
nL

2‖xn − Tnxn‖2
−γn(1− γn)‖Tnxn − xn‖2 + 2τn}

≤ q2n‖xn − p‖2 + βnqnγ
2
n‖Tnxn − xn‖2 + 2qnτn

+βn(1− γn)‖xn − Tnzn‖2 + βnγ
3
nL

2‖xn − Tnxn‖2−
βnγn(1− γn)‖Tnxn − xn‖2 + 2τn

≤ q2n‖xn − p‖2 − βnγn(1− γn − γnqn − γ2
nL

2)‖Tnxn − xn‖2
+βn(1− γn)‖xn − Tnzn‖2 + 2τn(1 + qn). (2.4)

Using Lemma 1.3, (1.17), (2.1) and (2.3), we have
‖yn − Tnyn‖2 = ‖(1− βn)(xn − Tnyn) + βn(T

nzn − Tnyn)‖2
= (1− βn)‖xn − Tnyn‖2 + βn‖Tnzn − Tnyn‖2
−βn(1− βn)‖Tnzn − xn‖2

≤ (1− βn)‖xn − Tnyn‖2 + β3
nL

2‖zn − Tnzn‖2
−βn(1− βn)‖Tnzn − xn‖2

≤ (1− βn)‖xn − Tnyn‖2 + β3
nL

2{(1− γn)‖xn − Tnzn‖2+
γ3
nL

2‖xn − Tnxn‖2 − γn(1− γn)‖Tnxn − xn‖2}−
βn(1− βn)‖Tnzn − xn‖2

= (1− βn)‖xn − Tnyn‖2 + β3
nL

2(1− γn)‖xn − Tnzn‖2−
β3
nL

2γn(1− γn − γ2
nL

2)‖Tnxn − xn‖2−
βn(1− βn)‖Tnzn − xn‖2. (2.5)

Using (1.17), (2.4) and (2.5), we have
‖Tnyn − p‖2 ≤ qn‖yn − p‖2 + ‖yn − Tnyn‖2 + 2τn

≤ qn{q2n‖xn − p‖2 − βnγn(1− γn − γnqn − γ2
nL

2)‖Tnxn − xn‖2+
βn(1− γn)‖xn − Tnzn‖2 + 2τn(1 + qn)}+
(1− βn)‖xn − Tnyn‖2 + β3

nL
2(1− γn)‖xn − Tnzn‖2−

β3
nL

2γn(1− γn − γ2
nL

2)‖Tnxn − xn‖2−
βn(1− βn)‖Tnzn − xn‖2 + 2τn

= q3n‖xn − p‖2 − βnγnqn(1− γn − γnqn − γ2
nL

2)‖Tnxn − xn‖2+
βnqn(1− γn)‖xn − Tnzn‖2 + 2qnτn(1 + qn)+
(1− βn)‖xn − Tnyn‖2 + β3

nL
2(1− γn)‖xn − Tnzn‖2−

β3
nL

2γn(1− γn − γ2
nL

2)‖Tnxn − xn‖2−
βn(1− βn)‖Tnzn − xn‖2 + 2τn

≤ q3n‖xn − p‖2 − βnγnqn(1− γn − γnqn − γ2
nL

2)‖Tnxn − xn‖2+
(1− βn)‖xn − Tnyn‖2 + 2τn(1 + qn + q2n). (2.6)

Using Lemma 1.3, (1.17) and (2.6), we obtain:
‖xn+1 − p‖2 = ‖(1− αn)(xn − p) + αn(T

nyn − p)‖2
= (1− αn)‖xn − p‖2 + αn‖Tnyn − p‖2 − αn(1− αn)‖Tnyn − xn‖2
≤ (1− αn)‖xn − p‖2 + αn{q3n‖xn − p‖2−

βnγnqn(1− γn − γnqn − γ2
nL

2)‖Tnxn − xn‖2+
(1− βn)‖xn − Tnyn‖2 + 2τn(1 + qn + q2n)}−
αn(1− αn)‖Tnyn − xn‖2

≤ q3n‖xn − p‖2 − αnβnγnqn(1− γn − γnqn − γ2
nL

2)‖Tnxn − xn‖2+
αn(1− βn)‖xn − Tnyn‖2 + 2τn(1 + qn + q2n)−
αn(1− αn)‖Tnyn − xn‖2

≤ q3n‖xn − p‖2 − αnβnγnqn(1− γn − γnqn − γ2
nL

2)‖Tnxn − xn‖2+
2τn(1 + qn + q2n). (2.7)

From assumption (ii) 0 < αn ≤ βn implies that 0 < αn(1 − βn) < αn(1 − αn) and ‖xn − Tnyn‖2 =
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‖(−1)(xn − Tnyn)‖2 = | − 1|2‖xn − Tnyn‖2 = ‖xn − Tnyn‖2. So that αn(1 − βn)‖xn − Tnyn‖2 −
αn(1− αn)‖xn − Tnyn‖2 = −k‖xn − Tnyn‖2 for some constant k > 0. Hence, we obtain (2.7).
Observe from condition (ii) b ∈ (0, L−2[

√
1 + L2 − 1]) implies that b > 0 and b < L−2[

√
1 + L2 − 1].

This implies that bL2 <
√
1 + L2 − 1, hence 1 + bL2 <

√
1 + L2. On squaring both sides, we obtain

(1 + bL2)2 < (
√
1 + L2)2, so that 1 + 2bL2 + b2L4 < 1 + L2, so we obtain L2 − 2bL2 − b2L4 > 0, by

dividing through by L2, we obtain 1− 2b− b2L2 > 0. Hence, 1−2b−b2L2

3
> 0.

Inview of the fact that γn ≤ b and condition (ii), there exists n0 such that

1− γn − γnqn − γ2
nL

2 ≥ 1− 2b− L2b2

3
> 0, ∀n ≥ n0, (2.8)

hence, (2.7) gives

‖xn+1 − p‖2 ≤ {1 + (q3n − 1)}‖xn − p‖2 + 2τn(1 + qn + q2n), ∀n ≥ n0. (2.9)

Hence, by Lemma 1.2 we have that limn→∞ ‖xn − p‖ exists.
Using (1.23), we obtain

φ(p, xn) = φ(xn+1, xn) + φ(p, xn+1) + 2〈xn+1 − p, xn − xn+1〉. (2.10)

This implies

〈xn+1 − p, xn − xn+1〉+
1

2
φ(xn+1, xn) =

1

2
{φ(p, xn)− φ(p, xn+1)} . (2.11)

Since the interior of F (T ) is nonempty, there exists x∗ ∈ F (T ) and r > 0 such that x∗ + rh ∈ F (T ),
whenever ‖h‖ ≤ 1. Hence, by replacing p with x∗ + rh in (2.10) and using it in (2.11) and by using
assumption (i), we have

0 ≤ 〈xn+1 − (x∗ + rh), xn − xn+1〉+
1

2
φ(xn+1, xn) +M((q3n − 1) + τn), (2.12)

for some M > 0. Consequently, from (2.11) and (2.12) we have that
r〈h, xn − xn+1〉 ≤ 〈xn+1 − x∗, xn − xn+1〉+ 1

2
φ(xn+1, xn) +M((q3n − 1) + τn)

= 1
2
(φ(x∗, xn)− φ(x∗, xn+1)) +M((q3n − 1) + τn), (2.13)

hence,

〈h, xn − xn+1〉 ≤
1

2r
(φ(x∗, xn)− φ(x∗, xn+1)) +

1

r
M((q3n − 1) + τn). (2.14)

But h with ‖h‖ ≤ 1 is arbitrary, we obtain

‖xn − xn+1‖ ≤
1

2r
(φ(x∗, xn)− φ(x∗, xn+1)) +

1

r
M((q3n − 1) + τn). (2.15)

Hence, if n > m > n0, we obtain
‖xm − xn‖ = ‖xm − xm+1 + xm+1 − · · · − xn−1 + xn−1 − xn‖

≤
∑n−1

i=m ‖xi − xi+1‖
≤ 1

2r

∑n−1
i=m(φ(x∗, xi)− φ(x∗, xi+1)) +

M
r

∑n−1
i=m((q3i − 1) + τi)

= 1
2r
(φ(x∗, xm)− φ(x∗, xn)) + M

r

∑n−1
i=m((q3i − 1) + τi). (2.16)

But {φ(x∗, xm)} converges,
∑
τn < ∞ and

∑
(q3n − 1) < ∞. Hence, we have that {xn} is a

Cauchy sequence. But H is complete, this implies that there exists y∗ ∈ H such that

xn → y∗ ∈ H. (2.17)

Since {xn} is a subset of C which is closed and convex we have that y∗ ∈ C. Since C is complete,
we claim that y∗ ∈ F (T ). Using (2.7) and (2.8), we obtain

a2(1− 2b− L2b2)

3
‖Tnxn − xn‖2 ≤ q3n‖xn − y∗‖2 − ‖xn+1 − y∗‖2 + 2τn(1 + qn + q2n). (2.18)
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Hence,
lim

n→∞
‖Tnxn − xn‖ = 0. (2.19)

Since xn → y∗ we obtain Tnxn → y∗ as n→∞.
Next we, show that ‖Tny∗ − y∗‖ → 0 as n → ∞. Recall that T is uniformly L-Lipschitzian and

xn → y∗ as n→∞, we obtain

‖Tny∗ − Tnxn‖ ≤ L‖y∗ − xn‖ → 0, as n→∞, (2.20)

hence,
Tny∗ → y∗ as n→∞. (2.21)

Consequently, by continuity of T we obtain y∗ = limn→∞(Tny∗) = limn→∞ T (T
n−1y∗) =

T (limn→∞(Tn−1y∗)) = T (y∗), meaning that y∗ ∈ F (T ). The proof of the theorem is complete.

We obtain the following corollaries to Theorem 2.1.

Corollary 2.2. Let C be a nonempty, closed and convex subset of a real Hilbert space H and T :
C → C be uniformly L-Lipschitzian and asymptotically pseudocontractive mappings with sequences
{kn} ⊂ [1,∞). Assume that the interior of F (T ) is nonempty. Then the sequence {xn} generated by
(2.1) converges strongly to a fixed point of T.

Proof. Let τn = 0 for all n ≥ 1 in Theorem 2.1, and the proof follows.
If we assume that T is asymptotically nonexpansive in corollary 2.2, then we obtain the following
corollary.

Corollary 2.3. Let C be a nonempty, closed and convex subset of a real Hilbert space H and
T : C → C be asymptotically nonexpansive mappings with sequences {kn} ⊂ [1,∞). Assume that
the interior of F (T ) is nonempty. Then the sequence {xn} generated by (2.1) converges strongly to
a common fixed point of T.

Proof. Recall that every asymptotically nonexpansive mappings is uniformly L-Lipschitzian with
L := maxn≥1{kn} and asymptotically pseudocontractive mapping, hence the proof follows from
corollary 2.2.

Remark 2.4. If γn = 0 ∀n ≥ 1 in Theorem 2.3 we obtain Theorem ZRC which is an improvement of
Theorem QCK since the Noor type iterative scheme we used is more general than the Ishikawa type
iterative scheme used in Theorem QCK and Schu (1991). Our convergence is strong and does not
require the complex computation of Cn ∩ Qn for each n ≥ 1 as was the case of Qin et al. (2010).
Corollary 2.3 extends the results of Schu (1991) in the sense that our resuts does not require that T
be completely continuous or C be compact.

3 Strong convergence theorem for asymptotically strict
pseudocontractive mappings in the intermediate sense

Theorem 3.1. Let C be a nonempty, closed and convex subset of a real Hilbert space H and T :
C → C be a uniformly L-Lipschitzian and asymptotically strict pseudocontractive mapping in the
intermediate sense with sequences {kn} ⊂ [1,∞) and {ζn} ⊂ [0,∞) as defined in (1.9). Assume
that the interior of F (T ) is nonempty. Let {xn} be a sequence defined by x1 = x ∈ C and

yn = (1− βn)xn + βnT
nzn

zn = (1− γn)xn + γnT
nxn, n ≥ 0,

xn+1 = (1− αn)xn + αnT
nyn

(3.1)
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where {αn}, {βn} and {γn} are sequences in (0, 1). Assume that the following conditions are satisfied:
(i)
∑∞

n=1 ζn <∞,
∑∞

n=1(k
3
n − 1) <∞

(ii) a ≤ αn ≤ βn ≤ γn ≤ b for some a > 0 and some b ∈ (0, L−2[
√
1 + L2 − 1]).

Then the sequence {xn} generated by (3.1) converges strongly to a fixed point of T.

Proof. Observe that any L-Lipschitzian and asymptotically k-strict pseudocontractive mapping T
in the intermediate sense is uniformly L-Lipschitzian and asymptotically pseudocontractive mapping
in the intermediate sense with qn := kn and τn := 1

2
ζn ∀n ≥ 1, consequently, the conclusion follows

from Theorem 2.1.

Corollary 3.2. Let C be a nonempty, closed and convex subset of a real Hilbert space H and
T : C → C be an asymptotically strict pseudocontractive mapping with sequences {kn} ⊂ [1,∞).
Assume that the interior of F (T ) is nonempty. Then the sequence {xn} generated by (3.1) converges
strongly to a fixed point of T.

Proof. Recall that any k-strict pseudocontractive mapping T is uniformly L-Lipschitzian, since ‖Tnx−

Tny‖ ≤ L‖x− y‖, ∀x, y ∈ C, where L = max{ k+
√

1+(kn−1)(1−k)

1−k
} (Kim and Xu (2008)). Hence, the

proof follows from Theorem 3.1 with ζn = 0 for all n ≥ 1.

Remark 3.3. Observe that Corollary 3.2 extends Theorems 3.1 and 4.1 of Kim and Xu (2008),
Qin et al. (2010) and Corollary 3.2 of Zegeye et al. (2011) in the sense that we obtained a strong
convergence and do not require the computation of Cn ∩Qn for all n ≥ 1. If we take γn = 0 ∀n ≥ 1,
then we obtain Corollary 3.2 of Zegeye et al. (2011).

Example 3.4. Let X = R and C = [0, 1], for each x ∈ C. Define

Tx =

 e−
√
kx, if x ∈ [0, 1

2
]

0, if x ∈ ( 1
2
, 1]

(3.2)

where 0 < k < 1. Then T : C → C is not continuous at x = 1
2
, this impies that T is not Lipschitzian.

Set C1 := [1, 1
2
] and C2 := ( 1

2
, 1]. Hence, we obtain

|Tnx− Tny| = e−
√
kn|x− y| ≤ |x− y| for all x, y ∈ C1 and n ∈ N. and

|Tnx− Tny| = 0 ≤ |x− y| for each x, y ∈ C2 and n ∈ N.
For x ∈ C1 and y ∈ C2, we obtain:
|Tnx− Tny| = |e−

√
knx− 0| = |e−

√
kn(x− y) + e−

√
kny|

≤ e−
√
kn|x− y|+ e−

√
kn|y|

≤ |x− y|+ e−
√

kn ∀n ∈ N. (3.3)
Thus,
|Tnx− Tny|2 ≤ (|x− y|+ e−

√
kn)2

≤ |x− y|+ e−
√

k|x− Tnx− (y − Tny)|2 + e−
√
knM, (3.4)

for each x, y ∈ C, n ∈ N and for some M > 0.
Hence, T is an asymptotically k-strict pseudocontractive mapping in the intermediate sense.

Remark 3.5. Observe that since T is not continuous, T is not asymptotically k-strictly pseudocon-
tractive and asymptotically nonexpansive in the intermediate sense.

Authors’ contributions
All authors contributed equally and significantly in this research work. All authors read and approved

159



British Journal of Mathematics & Computer Science 2(3), 151–162, 2012

the final manuscript.

Acknowledgment

The authors would like to thank the Referees for their useful comments which lead to the improvement
of this article.

Competing interests
The authors declare that they have no competing interests.

References
Alber, Ya. (1996). Metric and generalized projection operators in Banach spaces: properties and

applications, in: A. G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Accretive
and Monotone Type, in: Lecture Notes in Pure and Appl. Math., vol. 178, Dekker, New York, 1996,
pp. 15-50.

Bnouhachem, A., Noor, M. A., Rassias, Th. M. (2006). Three-steps iterative algorithms for mixed
variational inequalities. Appl. Math. Comput. 183, 436-446.

Browder, F. E., Petryshyn, W. V. (1967). Construction of fixed points of nonlinear mappings in Hilbert
spaces, Journal of Mathematical Analysis and Applications, vol. 20, pp. 197-228.

Bruck, R. E., Kuczumow, T., Reich, S. (1993). Convergence of iterates of asymptotically nonexpansive
mappings in Banach spaces with the uniform Opial property. Colloquium Mathematicum, vol. 65,
no. 2, pp. 169-179.

Chang, S.-S., Huang, J., Wang, X., Kim, J. K. (2008). Implicit iteration process for common fixed points
of strictly asymptotically pseudocontractive mappings in Banach spaces. Fixed Point Theory and
Applications, vol. 2008, Article ID 324575, 12 pages.

Goebel, K., Kirk, W. (1972). A fixed point theorem for asymptotically nonexpansive mappings.
Proceedings of the American Mathematical Society, vol. 35, pp. 171-174.

Kamimura, S., Takahashi, W. (2002). Strong convergence of proximal-type algorithm in a Banach
space. SIAM Journal on Optimization, 13(2002), 938-945.

Kim, J. K., Nam, Y. M. (2006). Modified Ishikawa iterative sequences with errors for asymptotically
set-valued pseudocontractive mappings in Banach spaces. Bulletin of the Korean Mathematical
Society, vol. 43, no. 4, pp. 847-860.

Kim, T.-H., Xu, H.-K. (2008). Convergence of the modified Mann’s iteration method for asymptotically
strict pseudo-contractions in Hilbert spaces. Nonlinear Analysis: Theory, Methods & Applications,
vol. 68, no. 9, pp. 2828-2836.

Kirk, W. A. (1974). Fixed point theorems for non-Lipschitzian mappings of asymptotically
nonexpansive type. Israel Journal of Mathematics, vol. 17(1974), pp. 339-346.

160



British Journal of Mathematics & Computer Science 2(3), 151–162, 2012

Liu, Q. H. (1996). Convergence theorems of the sequence of iterates for asymptotically
demicontractive and hemicontractive mappings. Nonlinear Analysis: Theory, Methods &
Applications, vol. 26, no. 11(1996), pp. 1835-1842.

Marino, G., Xu, H.-K. (2007). Weak and strong convergence theorems for strict pseudo-contractions
in Hilbert spaces. Journal of Mathematical Analysis and Applications, vol. 329, no. 1(2007), pp.
336-346.

Mogbademu, A. A., Olaleru, J. O. (2011). Modified Noor iterative methods for a family of strongly
pseudocontractive maps. Bulletin of Mathematical Analysis and Applications. Vol. 3 Issue 4(2011),
pp. 132-139.

Noor, M. A. (2000). New approximation schemes for general variational inequalities. J. Math. Anal.
Appl. 251 (2000), 217-229.

Noor, M. A., Kassias, T. M., Huang, Z. (2001). Three-step iterations for nonlinear accretive operator
equations. J. Math. Anal. Appl. 274 (2001), 59-68.

Olaleru, J. O., Mogbademu, A. A. (2011). On the modified Noor iteration scheme for non-linear maps.
Acta Math. Univ. Comenianae, vol. LXXX, 2 (2011), pp. 221-228.

Olaleru, J. O., Mogbademu, A. A. (2012). Approximation of fixed points of strongly successively
pseudocontractive maps in Banach space. International Journal of Computational and Applied
Mathematics, vol. 7, No. 2(2012), pp. 121-132.

Liu, Q. H. (2002). Iteration sequences for asymptotically quasi-nonexpansive mapping with an error
member in a uniformly convex Banach space. J. Math. Anal. Appl. 266 (2002), 468-471.

Qin, X., Cho, S. Y., Kim, J. K. (2010). Convergence theorems on asymptotically pseudocontractive
mappings in the intermediate sense. Fixed Point Theory and Applications, vol. 2010, Article ID
186874, 14 pages.

Qin, X., Cho, Y. J., Kang, S. M., Shang, M. (2009). A hybrid iterative scheme for asymptotically k-strict
pseudo-contractions in Hilbert spaces. Nonlinear Analysis: Theory, Methods & Applications, vol.
70, no. 5(2009), pp. 1902-1911.

Rafiq, A. (2006). Modified Noor iteration for nonlinear equations in Banach spaces. Applied
Mathematics and Computation 182 (2006), 589-595.

Reich, S. (1996). A weak convergence theorem for the alternating method with Bergman distance, in:
A. G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone
Type, in: Lecture Notes in Pure and Appl. Math., vol. 178, Dekker, New York, 1996, pp. 313-318.

Rhoades, B. E. (1976). Comments on two fixed point iteration methods. Journal of Mathematical
Analysis and Applications, vol. 56, no. 3, pp. 741-750.

Sahu, D. R., Xu, H. K., Yao, J.-C. (2009). Asymptotically strict pseudocontractive mappings in the
intermediate sense. Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 10, pp. 3502-
3511.

Schu, J. (1991). Iterative construction of fixed points of asymptotically nonexpansive mappings.
Mathematical Analysis and Applications, vol. 158, no.2, pp. 407-413.

Senter, H. F., Dotson, W. G. (1974). Approximating fixed points of nonexpansive mappings. Proc.
Amer. Math. Soc. 44(1974): 375-380.

161



British Journal of Mathematics & Computer Science 2(3), 151–162, 2012

Shahzad, N., Udomene, A. (2006). Approximating common fixed points of two asymptotically quasi-
nonexpansive mappings in Banach spaces. Fixed Point Theory Appl. (2006), article ID 18909,
10pp.

Suantai, S. (2005). Weak and strong convergence criteria of Noor iterations for asymptotically
nonexpansive mappings. J. Math. Anal. Appl. 311(2005): 506-517.

Tan, K.-K., Xu, H. K. (1993). Approximating fixed points of nonexpansive mappings by the Ishikawa
iteration process. Journal of Mathematical Analysis and Applications, vol. 178(1993), no. 2, pp.
301-308.

Yanes, C. M., Xu, H.-K. (2006). Strong convergence of the CQ method for fixed point iteration
processes. Nonlinear Analysis: Theory, Methods & Applications, vol. 64, no. 11(2006), pp. 2400-
2411.

Zegeye, H., Robdera, M., Choudhary, B. (2011). Convergence theorems for asymptotically
pseudocontractive mappings in the intermediate sense. Computers and Mathematics with
Applications, 62(2011) 326-332.

Zhao, J., He, S. (2010). Weak and strong convergence theorems for asymptotically strict
pseudocontractive mappings in the intermediate sense. Fixed Point Theory and Applications, vol.
2010, Article ID 281070, 13 pages, doi:10.1155/2010/281070.

Zhou, H. (2009). Demiclosedness principle with applications for asymptotically pseudo-contractions
in Hilbert spaces. Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 9(2009), pp.
3140-3145.

—————————————————————————————————————————————-
c©2012 Olaleru & Okeke; This is an Open Access article distributed under the terms of the Creative Commons

Attribution License http://creativecommons.org/licenses/by/2.0, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

162

http://creativecommons.org/licenses/by/3.0

	Introduction
	Strong convergence theorem for asymptotically pseudocontractive mappings in the intermediate sense
	Strong convergence theorem for asymptotically strict pseudocontractive mappings in the intermediate sense

