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1 Introduction

In this study, we assume that E is a real Banach space and D is a nonempty
closed convex subset of E. We denote by J the normalized duality from E to 2E

∗
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defined by
J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2} (1.1)

where E∗ denotes the dual space of E and 〈., .〉 denotes the generalized duality
pairing. We shall also denote the single-valued duality mapping by j.

Definition 1.1 [18]. A map T : E → E is called strongly accretive if there
exists a constant k > 0 such that, for each x, y ∈ E, there is a j(x− y) ∈ J(x− y)
satisfying

〈Tx− Ty, j(x− y)〉 ≥ k‖x− y‖2. (1.2)

Definition 1.2 [18]. An operator T with domain D(T ) and range R(T ) in E

is called strongly pseudocontractive if for all x, y ∈ D(T ), there exists j(x − y) ∈
J(x− y) and a constant 0 < k < 1 such that

〈Tx− Ty, j(x− y)〉 ≤ k‖x− y‖2. (1.3)

The class of strongly accretive operators is closely related to the class of strongly
pseudocontractive operators. It is well known that T is strongly pseudocontractive
if and only if (I − T ) is strongly accretive, where I denotes the identity operator.
Browder [1] and Kato [7] indepedently introduced the concept of accretive opera-
tors in 1967. One of the early results in the theory of accretive operators credited
to Browder states that the initial value problem

du(t)

dt
+ Tu(t) = 0, u(0) = u0 (1.4)

is solvable if T is locally Lipschitzian and accretive on E.

These class of operators have been studied extensively by several authors (see [2,
3, 8, 9, 10, 14 - 15, 17, 18, 22]).

Definition 1.3 [24]. A mapping T is called strongly φ-pseudocontractive if for
all x, y ∈ E, there exist j(x − y) ∈ J(x − y) and a strictly increasing function
φ : [0,∞) → [0,∞) with φ(0) = 0 such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 − φ(‖x− y‖)‖x− y‖.

Definition 1.4 [24]. A mapping T is called generalized strongly Φ- pseudocon-
tractive if for all x, y ∈ E, there exist j(x− y) ∈ J(x− y) and a strictly increasing
function Φ : [0,∞) → [0,∞) with Φ(0) = 0 such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 − Φ(‖x− y‖).

Clearly, every strongly φ-pseudocontractive operator is a generalized strongly
Φ-pseudocontractive operator with Φ : [0,∞) → [0,∞) defined by Φ(s) = φ(s)s,
and every strongly pseudocontractive operator is strongly φ-pseudocontractive op-
erator with φ defined by φ(s) = ks for all k ∈ (0, 1) while the converses need not



Modified Noor iterations with errors for generalized strongly Φ-pseudo... 3

be true.

Definition 1.5. [18]. A mapping T : E → E is called Lipschitzian if there
exists a constant L > 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖ ∀x, y ∈ D(T ). (1.5)

In 1953, Mann [9]introduced the Mann iterative scheme and used it to prove the
convergence of the sequence to the fixed points for which the Banach principle is
not applicable. Ishikawa [6] in 1974, introduced an iterative process to obtain the
convergence of a Lipschitzian pseudocontractive operator when Mann iterative
scheme failed to converge. Noor [13,14] in 2000 gave the following three-step
iterative scheme for solving nonlinear operator equations in uniformly smooth
Banach spaces.
Let D be a nonempty convex subset of E and let T : D → D be a mapping. For
a given x0 ∈ D, compute the sequence {xn}∞n=0 by the iterative schemes







xn+1 = (1− αn)xn + αnTyn, n ∈ Z, n ≥ 0,
yn = (1− βn)xn + βnTzn, n ∈ Z, n ≥ 0,
zn = (1− γn)xn + γnTxn, n ∈ Z, n ≥ 0,

(1.6)

which is called the three-step iterative process, where {αn}∞n=0, {βn}∞n=0 and
{γn}∞n=0 are three real sequences in [0, 1] satisfying some certain conditions.

If γn = 0 and βn = 0, for each n ∈ Z, n ≥ 0, then (1.6) reduces to:

for a given x0 ∈ D, compute the sequence {xn}
∞
n=0 by the iterative scheme

xn+1 = (1− αn)xn + αnTxn, n ∈ Z, n ≥ 0, (1.7)

which is called the one-step Mann iterative scheme, introduced by Mann [9].
For γn = 0, (1.6) reduces to:

{

xn+1 = (1− αn)xn + αnTyn, n ∈ Z, n ≥ 0,
yn = (1− βn)xn + βnTxn, n ∈ Z, n ≥ 0,

(1.8)

which is called the two-step Ishikawa iterative process introduced by Ishikawa [6],
where {αn}

∞
n=0 and {βn}

∞
n=0 are two real sequences in [0, 1] satisfying some certain

conditions.

In 1989, Glowinski and Le Tallec [4] used a three-step iterative process to solve
elastoviscoplasticity, liquid crystal and eigenvalue problems. They established that
three-step iterative schemes performs better than one-step (Mann) and two-step
(Ishikawa) iterative schemes. Haubruge et al. [5] studied the convergence analysis
of the three-step iterative processes of Glowinski and Le Tallec [4] and used these
three-step iterations to obtain some new splitting type algorithms for solving vari-
ational inequalities, separable convex programming and minimization of a sum of
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convex functions. They also proved that three-step iterations also lead to highly
parallelized algorithms under certain conditions. Hence, we can conclude by ob-
serving that three-step iterative schemes play an important role in solving various
problems in pure and applied sciences.

In 2006, Rafiq [18] introduced the following modified three-step iterative schemes
and used it to approximate the unique common fixed point of a family of strongly
pseudocontractive operators.

Let T1, T2, T3 : D → D be three given mappings. For a given x0 ∈ D, compute
the sequence {xn}

∞
n=0 by the iterative scheme







xn+1 = (1 − αn)xn + αnT1yn,

yn = (1− βn)xn + βnT2zn,

zn = (1− γn)xn + γnT3xn, n ≥ 0,
(1.9)

where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are three real sequences in [0, 1] satisfying
some certain conditions. Equation (1.9) is called the modified three-step iterative
process. Observe that algorithms (1.6)-(1.8) are special cases of (1.9).

Suantai [19] introduced the following three-step iterative schemes.
Let E be a normed space, D be a nonempty convex subset of E, and T : D → D

be a given mapping. Then for a given x1 ∈ D, compute the sequence {xn}, {yn}
and {zn} by the iterative scheme







zn = anT
nxn + (1 − an)xn,

yn = bnT
nzn + cnT

nxn + (1− bn − cn)xn,

xn+1 = αnT
nyn + βnT

nzn + (1 − αn − βn)xn, n ≥ 1,
(1.10)

where {an}∞n=0, {bn}
∞
n=0, {cn}

∞
n=0, {αn}∞n=0, {βn}∞n=0 are appropriate sequences

in [0, 1].

Motivated by the facts above, we now introduce the following modified three-
step iterative scheme with errors which we shall use in this paper to approximate
the unique common fixed point of a family of strongly pseudocontractive maps.

Let E be a real Banach space, D be a nonempty convex subset of E, and Ti : D →
D, (i = 1, 2, 3) be a family of three mappings. Then for a given x0, u0, v0, w0 ∈ D,

compute the sequence {xn}∞n=0, {yn}
∞
n=0 and {zn}∞n=0 by the iterative scheme







xn+1 = (1− αn − βn − en)xn + αnT1yn + βnT1zn + enun, n ≥ 0,
yn = (1− an − bn − e′n)xn + anT2zn + bnT2xn + e′nvn,

zn = (1− cn − e′′n)xn + cnT3xn + e′′nwn,

(1.11)

where {an}
∞
n=0, {bn}

∞
n=0, {cn}

∞
n=0, {αn}

∞
n=0, {βn}

∞
n=0, {en}

∞
n=0, {e

′
n}

∞
n=0, {e

′′
n}

∞
n=0

are real sequences in [0, 1] satisfying certain conditions and {un}, {vn}, {wn} are
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bounded sequences in D.

Observe that (1.6)-(1.10) and the modified three step iteration process with errors
introduced by Mogbademu and Olaleru [10] are special cases of (1.11). In this pa-
per, we shall use algorithm (1.11) to approximate the unique common fixed point
of a family of three generalized strongly Φ-pseudocontractive operators in Banach
spaces. Hence, our results are generalizations and improvements of the results of
Olaleru and Mogbademu [10,17], Xue and Fan [22] which in turn is a correction
of Rafiq [18].

Rafiq [17] proved the following theorem

Theorem R [18]. Let E be a real Banach space and D be a nonempty closed
convex subset of E. Let T1, T2, T3 be strongly pseudocontractive self maps of D
with T1(D) bounded and T1, T3 be uniformly continuous. Let {xn}∞n=0 be the
sequence defined by







xn+1 = (1− αn)xn + αnT1yn,

yn = (1− βn)xn + βnT2zn,

zn = (1− γn)xn + γnT3xn, n ≥ 0,

where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are three real sequences in [0, 1] satisfying
the conditions:

limn→∞ αn = 0 = limn→∞ βn and
∑∞

n=0 αn = ∞.

If F (T1) ∩ F (T2) ∩ F (T3) 6= ∅, then the sequence {xn}
∞
n=0 converges strongly to

the common fixed point of T1, T2, T3.

Xue and Fan [22] obtained the following convergence results which is in turn
a correction of the results of Rafiq [18].

Theorem XF [22]. Let E be a real Banach space and D be a nonempty closed
convex subset of E. Let T1, T2 and T3 be strongly pseudocontractive self maps of
D with T1(D) bounded and T1, T2 and T3 uniformly continuous. Let {xn}∞n=0 be
defined by (1.9), where {αn}

∞
n=0, {βn}

∞
n=0 and {γn}

∞
n=0 are three real sequences

in [0, 1] which satisfy the conditions: αn, βn → 0 as n → ∞ and
∑∞

n=0 αn = ∞. If
F (T1) ∩ F (T2) ∩ F (T3) 6= ∅, then the sequence {xn}∞n=0 converges strongly to the
common fixed point of T1, T2 and T3.

In this study, we shall prove convergence theorems using our newly introduced
iterative scheme (1.11). Our results are generalizations and improvements of the
results of Ćirić and Ume [3], Olaleru and Mogbademu [17], Xue and Fan [22] which
in turn is a correction of Rafiq [18].

The following lemma will be useful in this study.

Lemma 1.1 [18]. Let E be a real Banach space and J : E → 2E
∗

be the normal-
ized duality mapping. Then, for any x, y ∈ E

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉, ∀ j(x+ y) ∈ J(x + y). (1.12)



6 Thai J. Math. x (20xx)/ G. A. Okeke and J. O. Olaleru

Lemma 1.2 [11]. Let Φ : [0,∞) → [0,∞) be an increasing function with Φ(x) =
0 ⇔ x = 0 and let {bn}∞n=0 be a positive real sequence satisfying

∑∞

n=0 bn = +∞ and limn→∞ bn = 0.
Suppose that {an}∞n=0 is a nonnegative real sequence. If there exists an inte-
ger N0 > 0 satisfying a2n+1 < a2n + o(bn) − bnΦ(an+1) for all n ≥ N0. where

limn→∞
o(bn)
bn

= 0, then limn→∞ an = 0.

2 Main Results

Theorem 2.1 Let E be a real Banach space and D be a nonempty closed con-
vex subset of E. Let T1, T2 and T3 be generalized strongly Φ-pseudocontractive
self maps of D with T1(D) bounded and T1, T2 and T3 uniformly continuous.
Let {xn}∞n=0 be defined by (1.11), where {an}∞n=0, {bn}

∞
n=0, {cn}

∞
n=0, {αn}∞n=0,

{βn}∞n=0, {en}∞n=0, {e′n}
∞
n=0, {e′′n}

∞
n=0 are real sequences in [0, 1] satisfying the

conditions: an, bn, cn, e
′
n, e

′′
n, αn, βn, en −→ 0 as n → ∞, αn + βn + en < 1,

an + bn+ e′n < 1, cn + e′′n < 1,
∑∞

n=0 αn = ∞ and {un}∞n=0, {vn}
∞
n=0, {wn}∞n=0 are

bounded sequences in D. If F (T1)∩F (T2)∩F (T3) 6= ∅, then the sequence {xn}
∞
n=0

converges strongly to the common fixed point of T1, T2 and T3.

Proof. Since T1, T2, T3 are generalized strongly Φ-pseudocontractive, there ex-
ists j(x− y) ∈ J(x− y) and a strictly increasing function Φ : [0,∞) → [0,∞) with
Φ(0) = 0 such that

〈Tix− Tiy, j(x− y)〉 ≤ ‖x− y‖2 − Φ(‖x− y‖), i = 1, 2, 3. (2.1)

Assume that p ∈ F (T1) ∩ F (T2) ∩ F (T3), using the fact that Ti is generalized
strongly Φ-pseudocontractive for each i = 1, 2, 3 we obtain F (T1)∩F (T2)∩F (T3) =
p 6= ∅. Since T1 has a bounded range, we let

M1 = ‖x0 − p‖+ sup
n≥0

‖T1yn − p‖+ sup
n≥0

‖T1zn − p‖+ ‖un − p‖. (2.2)

We shall prove by induction that ‖xn − p‖ ≤ M1 holds for all n ∈ N. We observe
from (2.2) that ‖x0 − p‖ ≤ M1. Assume that ‖xn − p‖ ≤ M1 holds for all n ∈ N.

We will prove that ‖xn+1 − p‖ ≤ M1. Using (1.11), we obtain

‖xn+1 − p‖ = ‖(1− αn − βn − en)(xn − p) + αn(T1yn − p)+
βn(T1zn − p) + en(un − p)‖

≤ (1 − αn − βn − en)‖xn − p‖+ αn‖T1yn − p‖+
βn‖T1zn − p‖+ en‖un − p‖

≤ (1 − αn − βn − en)M1 + αnM1 + βnM1 + enM1

= M1. (2.3)

Using the uniform continuity of T3, we obtain that {T3xn}
∞
n=0 is bounded. We

now set

M2 = max

{

M1, sup
n≥0

{‖T3xn − p‖}, sup
n≥0

{‖wn − p‖}

}

, (2.4)
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hence

‖zn − p‖ = ‖(1− cn − e′′n)(xn − p) + cn(T3xn − p) + e′′n(wn − p)‖
≤ (1− cn − e′′n)‖xn − p‖+ cn‖T3xn − p‖+ e′′n‖wn − p‖
≤ (1− cn − e′′n)M1 + cnM2 + e′′nM2

≤ (1− cn − e′′n)M2 + cnM2 + e′′nM2

= M2. (2.5)

By the uniform continuity of T2, we obtain {T2zn}∞n=0 and {T2xn}∞n=0 are bounded.
Set

M = sup
n≥0

‖T2zn − p‖+ sup
n≥0

‖xn − p‖+ sup
n≥0

‖vn − p‖+M2. (2.6)

Using Lemma 1.1 and (1.11), we obtain

‖xn+1 − p‖2 = ‖(1− αn − βn − en)(xn − p) + αn(T1yn − p)
+βn(T1zn − p) + en(un − p)‖2

≤ (1− αn − βn − en)
2‖xn − p‖2

+2〈αn(T1yn − p) + βn(T1zn − p) + en(un − p), j(xn+1 − p)〉
= (1− αn − βn − en)

2‖xn − p‖2 + 2αn〈T1yn − p, j(xn+1 − p)〉
+2βn〈T1zn − p, j(xn+1 − p)〉+ 2en〈un − p, j(xn+1 − p)〉

≤ (1− αn − βn − en)
2‖xn − p‖2

+2αn〈T1xn+1 − T1p, j(xn+1 − p)〉
+2αn〈T1yn − T1xn+1, j(xn+1 − p)〉
+2βn〈T1xn+1 − T1p, j(xn+1 − p)〉
+2βn〈T1zn − T1xn+1, j(xn+1 − p)〉+ 2en〈un − p, j(xn+1 − p)〉

≤ (1− αn − βn − en)
2‖xn − p‖2

+2αn(‖xn+1 − p‖2 − Φ(‖xn+1 − p‖))
+2αn‖T1yn − T1xn+1‖.‖xn+1 − p‖
+2βn(‖xn+1 − p‖2 − Φ(‖xn+1 − p))
+2βn‖T1zn − T1xn+1‖.‖xn+1 − p‖+ 2enM

≤ (1− αn − βn − en)
2‖xn − p‖2

+(2αn + 2βn)(‖xn+1 − p‖2 − Φ(‖xn+1 − p‖))
+2αnδnM1 + 2βnτnM1 + 2enM

≤ (1− αn − βn − en)
2‖xn − p‖2

+(2αn + 2βn)
(

‖xn+1 − p‖2 − Φ(‖xn+1 − p‖)
)

+2M(αnδn + βnτn + en), (2.7)

where δn = ‖T1yn − T1xn+1‖ −→ 0 as n → ∞ and τn = ‖T1zn − T1xn+1‖ −→ 0
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as n → ∞. But

‖yn − xn+1‖ = ‖(1− an − bn − e′n)xn + anT2zn + bnT2xn + e′nvn−
(1 − αn − βn − en)xn − αnT1yn − βnT1zn − enun‖

= ‖an(T2zn − xn) + bn(T2xn − xn) + e′n(vn − xn)+
αn(xn − T1yn) + βn(xn − T1zn) + en(xn − un)‖

≤ an‖T2zn − xn‖+ bn‖T2xn − xn‖+ e′n‖vn − xn‖+
αn‖xn − T1yn‖+ βn‖xn − T1zn‖+ en‖xn − un‖

≤ anM + bnM + e′nM + αnM1 + βnM1 + enM1

= M(an + bn + e′n) +M1(αn + βn + en)
≤ 2M(an + bn + e′n + αn + βn + en) −→ 0, (2.8)

as n → ∞.

‖zn − xn+1‖ = ‖(1− cn − e′′n)xn + cnT3xn + e′′nwn − (1− αn − βn − en)xn

−αnT1yn − βnT1zn − enun‖
= ‖cn(T3xn − xn) + e′′n(wn − xn) + αn(xn − T1yn)

+βn(xn − T1zn) + en(xn − un)‖
≤ cn‖T3xn − xn‖+ e′′n‖wn − xn‖+ αn‖xn − T1yn‖

+βn‖xn − T1zn‖+ en‖xn − un‖
≤ cnM2 + e′′nM + αnM1 + βnM1 + enM

≤ M(cn + e′′n + αn + βn + en) −→ 0,

as n → ∞. This implies that limn→∞ ‖xn+1 − yn‖ = 0, since limn→∞ an = 0,
limn→∞ bn = 0, limn→∞ e′n = 0, limn→∞ αn = 0, limn→∞ βn = 0, limn→∞ en = 0.
Using the uniform continuity of T1, we obtain δn = ‖T1yn − T1xn+1‖ −→ 0 as
n → ∞ and τn = ‖T1zn−T1xn+1‖ −→ 0 as n → ∞. Hence, there exists a positive
integer N such that

1

2
< 1− 2αn − 2βn < 1

for all n > N. Hence, from (2.7), we obtain

‖xn+1 − p‖2 ≤ (1−αn−βn−en)
2

1−2αn−2βn

‖xn − p‖2 − 2(αn+βn)
1−2αn−2βn

Φ(‖xn+1 − p‖)

+ 2M(αnδn+βnτn+en)
1−2αn−2βn

≤ ‖xn − p‖2 − 2(αn+βn)
1−2αn−2βn

Φ(‖xn+1 − p‖)

+ 2M(αnδn+βnτn+en)
1−2αn−2βn

. (2.9)

Next, set bn = 2(αn+βn)
1−2αn−2βn

and observe that limn→∞ bn = 0 and
∑∞

n=0 bn = +∞ since limn→∞ αn = 0, limn→∞ βn = 0 and
∑∞

n=0 αn = +∞.

Hence, we observe that (2.9) becomes a2n+1 ≤ a2n − bnΦ(an+1) + o(bn) for all
n ≥ N, satisfying Lemma 1.2. This implies that an −→ 0 as n → ∞. This means
that limn→∞ ‖xn − p‖ = 0. The proof of Theorem 2.1 is completed. 2

Corollary 2.2 Let E be a real Banach space, D a nonempty closed and con-
vex subset of E. Let T1, T2, T3 be self maps of D with T1(D) bounded such that
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F (T1) ∩ F (T2) ∩ F (T3) 6= ∅ and T1, T2 and T3 uniformly continuous. Suppose
T1, T2, T3 are strongly pseudocontractive mappings. For x0, u0, v0, w0 ∈ D, the
three step iteration with errors {xn}

∞
n=0 defined as follows







xn+1 = anxn + bnT1yn + cnun

yn = a′nxn + b′nT2zn + c′nvn
zn = a′′nxn + b′′nT3xn + c′′nwn n ≥ 0,

(2.10)

where {un}∞n=0, {vn}
∞
n=0 and {wn}∞n=0 are arbitrary bounded sequences in D.

{an}∞n=0, {bn}
∞
n=0, {cn}

∞
n=0, {a

′
n}

∞
n=0, {b

′
n}

∞
n=0, {c

′
n}

∞
n=0, {a

′′
n}

∞
n=0, {b

′′
n}

∞
n=0 and

{c′′n}
∞
n=0 are real sequences in [0, 1] satisfying the following conditions:
(i) an + bn + cn = a′n + b′n + c′n = a′′n + b′′n + c′′n = 1
(ii) bn, b

′
n, cn, c

′
n −→ 0 as n → ∞.

(iii)
∑∞

n=1 bn = ∞
(iv) limn→∞

cn
bn

= 0,
converges strongly to the unique common fixed point of T1, T2 and T3.

Corollary 2.3 Let E be a real Banach space, D a nonempty closed and convex
subset of E. Let T1, T2, T3 : D → D be uniformly continuous and generalized Φ-
pseudocontractive mappings such that T1(D) is bounded. Let {xn} be a sequence
defined by (1.9) where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are three sequences in [0, 1]
satisfying (i) limn→∞ αn = limn→∞ βn = limn→∞ γn = 0, (ii) lim∞

n=1 αn = ∞. If
F (T1) ∩ F (T2) ∩ F (T3) 6= ∅, then the sequence {xn}∞n=0 converges strongly to the
unique common fixed point of T1, T2 and T3.

Remark 2.4 Corollary 2.2 is Theorem 2.1 of Mogbademu and Olaleru [10] and
Corollary 2.3 is Theorem 2.1 of Olaleru and Mogbademu [17]. Observe that The-
orem 2.1 improves and generalizes the results of [10] since the class of strongly
pseudocontractive maps is a subclass of the class of generalized strongly Φ -
pseudocontractive maps. Clearly, our newly introduced iterative scheme (1.11)
is more general than iterative scheme (1.9) used by Olaleru and Mogbademu [17].
Theorem 2.1 is also an improvement and a generalization of Theorem 2.1 of Xue
and Fan [22] which in turn is a correction of Rafiq [18].

Theorem 2.5 Let E be a real Banach space, T1, T2, T3 : E → E be uniformly con-
tinuous and generalized strongly Φ-accretive operators with R(I − T1) bounded,
where I is the identity mapping on E. Let p denote the unique common solution
to the equation Tix = f, (i = 1, 2, 3). For a given f ∈ E, define the operator
Hi : E → E by Hix = f + x − Tix, (i = 1, 2, 3). For any x0 ∈ E, the sequence
{xn}∞n=0 is defined by






xn+1 = (1− αn − βn − en)xn + αnH1yn + βnH1zn + enun, n ≥ 0,
yn = (1− an − bn − e′n)xn + anH2zn + bnH2xn + e′nvn,

zn = (1− cn − e′′n)xn + cnH3xn + e′′nwn,

(2.11)

where {an}
∞
n=0, {bn}

∞
n=0, {cn}

∞
n=0, {αn}

∞
n=0, {βn}

∞
n=0, {en}

∞
n=0, {e

′
n}

∞
n=0, {e

′′
n}

∞
n=0

are real sequences in [0, 1] satisfying the conditions: an, bn, cn, e
′
n, e

′′
n, αn, βn, en −→
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0 as n → ∞, αn + βn + en < 1, an + bn + e′n < 1, cn + e′′n < 1,
∑∞

n=0 αn = ∞
and {un}∞n=0, {vn}

∞
n=0, {wn}∞n=0 are bounded sequences in E. Then the sequence

{xn}
∞
n=0 converges strongly to the unique common solution to Tix = f, (i =

1, 2, 3).

Proof. Clearly, if p is the unique common solution to the equation Tix = f, (i =
1, 2, 3), it follows that p is the unique common fixed point of H1, H2 and H3. Using
the fact that T1, T2 and T3 are all generalized srtongly Φ-accretive operators, then
H1, H2 and H3 are all generalized strongly Φ-pseudocontractive with Φ a strictly
increasing function Φ : [0,∞) → [0,∞) and Φ(0) = 0. Since Ti (i = 1, 2, 3) is
uniformly continuous with R(I − T1) bounded, this implies that Hi (i = 1, 2, 3)
is uniformly continuous with R(H1) bounded. Hence, Theorem 2.5 follows from
Theorem 2.1. 2

Corollary 2.6 Let E be a real Banach space and T1, T2, T3 : D → D be uni-
formly continuous and generalized Φ-accretive operator such that the equation
Tix = f, 1 ≤ i ≤ 3, has common solution with the range of (I − T1) bounded.
For a given f ∈ E, defined by the operator Hi : E → E by Hix = f + x − Tix,

(i = 1, 2, 3) and for x0 ∈ E, let {xn} be a sequence defined by






xn+1 = (1− αn)xn + αnH1yn,

yn = (1 − βn)xn + βnH2zn,

zn = (1 − γn)xn + γnH3xn, n ≥ 0,
(2.12)

where {αn}∞n=0, {βn}∞n=0 and {γ}∞n=0 are three sequences in [0, 1] satisfying
(i) limn→∞ αn = limn→∞ βn = limn→∞ γn = 0, (ii)

∑∞

n=1 αn = ∞.

Then the sequence {xn} converges to a common solution of Tix = f, (i = 1, 2, 3).

Remark 2.7 Corollary 2.6 is Theorem 2.3 of Olaleru and Mogbademu [17]. The-
orem 2.5 improves and extends Theorem 2.3 of Olaleru and Mogbademu [17] and
Theorem 2.2 of Xue and Fan [22] which in turn is a correction of Rafiq [18].
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