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Abstract-Ensemble leat·ning is a t·ecent and extended 
appmach to the unsupet·vised data mining technique called 
clustel'ing which is used fm· finding natunl gmupings that 
exist in a dataset. Het·e, we applied an ensemble based 
clustel'ing algol'ithm called Random Fot·ests with Pat·tition 
amund Medoids (PAM) to multiple time sel'ies gene 
expt·ession data of Plasmodium falcipat·um. The Random 
Fot·est algol'ithm is most common ensemble leat·ning 
appmach that uses decision tt·ees. Random Fm·est consists 
of lat·ge numbet· of classification tt·ees (nnging fmm 
hundt·eds to thousands) built from sevenl bootstnp 
sampling of the dataset. We also applied the following 
intemal clustet· validity measm·es; Silhouette Width index, 
Connectivity Index and the Dunn Index to select the optimal 
numbet· of final clustet·s. Om· t·esults show that ensemble 
based clustel'ing is indeed a good altet·native fm· clustet· 
analysis with the pmmise of an impmved pel'fm·mance ovet· 
tnditional clustel'ing algol'ithms. 

Keywords-Random Forests, Plasmodium falciparum, 
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I. INTRODUCTION 

Clustering is an unsupervised data mining teclmique 
that is useful in fmding natural groupings or inherent 
structure that exists in a dataset. In contrast to 
classification, it does not require predefmed classes. This 
explains its ability to detect previously unknown 
relationships among unlabeled data objects. It also has the 
ability to describe unknown properties of these data 
objects (i.e. detection of natural data types) and discover 
unusual data objects (i.e. outlier detection). The goal of 
clustering is to group data points (i.e. objects) with similar 
numerical values together into disjoint or overlapping 
groups. This grouping is done such that members in the 
same group/cluster are more identical to each other than 
objects in another cluster. A cluster can therefore be 
referred to as a set of objects having high similarity 
between them as well as a high dis-similarity to other 
objects in other clusters. Clustering can either be hard or 
soft. In hard clustering, objects belong to one and only one 
cluster, while in soft clustering; an object belongs to a 
cluster to a certain degree (i.e. degree of membership). 
Soft clustering is also referred to as fuzzy clustering and is 
concerned with the probability of an object belonging to a 
cluster. An example of soft clustering is the Fuzzy C
Means (FCM) algorithm [ 1]. Clustering has a wide range 
of applications in the following domains; pattern 
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recognition, image processing, data mining (information 
retrieval and text mining), market analysis/research, 
spatial data analysis, Web analysis (e.g. document 
classification, social network analysis), machine learning, 
medical diagnostics, bioinformatics and lots more. 

Many clustering algorithms exist which employ 
different approaches/methods to group similar data 
objects into partitions. These include; 

• Hierarchical methods: builds a hierarchy/tree of 
clusters called dendograrn using a distance metric 
and a linkage criterion. Examples include 
agglomerative (bottom-up) and divisive (top
down) clustering algorithms (e.g. AGNES [2], 
DIANA [2]), BIRCH algorithm [3], CURE [4], 
CHAMELOEN [5], etc. 

• Partitioning methods: assigns data objects into 
partitions and iteratively relocates them between 
these partitions in order to reduce a given 
clustering criterion. Examples include K -means 
algorithm [6], K-rnedoids algorithm [7] (e.g. PAM 
- Partition Around Medoids), k-rnode algorithm 
[8], CLARA [2], CLARANS [9] and Expectation 
Maximisation algorithm [10] among others. 

• Grid-based methods: creates clusters by mapping 
the data points onto a multi-resolution grid based 
structure and selecting contiguous groups of dense 
cells. The selling point of grid based clustering 
algorithms is that they have a significantly reduced 
computational complexity noticeably with large 
data sets because they do not require the 
computation of a distance metric Examples 
include STING [11], Wave Cluster [12], 
OPTIGRID [13], CLIQUE [14], e.t.c. 

• Density-based methods: clusters data objects based 
on density i.e. using density connected points or a 
density function. It has the ability to handle noisy 
data and can discover clusters of arbitrary shapes. 
Examples include DENCLUE [15], DBSCAN [16] 
and OPTICS [17] among others. 

• Model-based methods: here, clusters are created by 
hypothesizing a model for each cluster with the 
hope to fmd the best fit of the model to the data. 
Model based methods can be further divided into 
neural network approaches (e.g. SOM - Self 
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Organizing Maps [18]), probability density based 
approaches (e.g. COBWEB [19]) and statistical 
approaches (e.g. AutoClass [20] - which is a 
Bayesian clustering procedure based on mixture 
models). 

All of these clustering algorithms largely employ some 
distance or proximity rnetrics in their computation to fmd 
similarity/distance between objects in the given data set. 
The choice of a right distance metric is a very important 
one as it largely affects the possibility of obtaining the 
correct clustering results. Several reports have carried out 
experiments on the use of different distance rnetrics in 
clustering algorithms and its attendant effects [21-25]. The 
most commonly used distance I proximity rnetrics include; 
Euclidean distance, Manhattan distance, Edit distance, 
Chebyshev distance, Minkowski distance, Chi-square 
distance, Pearson correlation coefficient, Spearman 
correlation coefficient, Kendall correlation coefficient and 
a host of others. 

II. ENSEMBLE BASED CLUSTERING 

Ensemble learning is a recent and extended approach 
to clustering involving the use of multiple learning 
approaches on the same data set for an improved 
performance. It is a two-phase approach; the generation 
phase - a collection of partitions are generated from the 
same dataset either with different runs of the same 
clustering algorithm (using different configurations) or 
using multiple clustering algorithms and the consensus 
phase - a consensus function is applied to the combined 
partitions to get a consensus clustering of the dataset. 
Ensemble methods generally have a stronger 
generalization ability compared to a single learning 
algorithm. Ensemble clustering has a better predictive 
performance in terms of stability, robustness, flexibility 
and accuracy when compared to any of its composing 
algorithms. Other strengths of ensemble learning include 
assigning a confidence to the decision made by the model, 
selecting optimal (or near optimal) features, data fusion, 
incremental learning, non-stationary learning and error
correcting [26]. 

Ensemble clustering provides more flexibility as the 
user is not constrained to the choice of a single clustering 
algorithm but can harness the strengths of multiple 
clustering approaches into one clustering solution and also 
avoid the possibility of making a poor choice of clustering 
algorithm. Reports have shown that ensemble based 
learning obtained better results when its composing 
models possess a significant diversity [27 - 29]. This is 
because when different models are used in an ensemble, a 
different type of error is made by each model as it learns 
the data by its own defmed hypothesis and when the 
results are meaningfully combined, the overall error is 
drastically reduced. Ensemble based methods are also 
very useful in dealing with cases of large amount of data 
as well as insufficient data. With insufficient data, 
different random samplings with replacement of the data 
are drawn and fed into the models to be used. This process 
is called bootstrapping. On the other hand, large datasets 
are carefully partitioned into smaller chunks which are fed 
into the models and then later combined following some 
defmed rules. 
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The following are commonly used ensemble based 
learning methods; 

• Boosting [30] - creates an ensemble such that its 
composing models are built incrementally and 
trained by resarnpling the data. Successive models 
are built from previous ones as extra weight is 
awarded to miss-classified points of the previous 
model. The consensus prediction is gotten through 
a weighted vote. An extension of this method is 
called Adaptive Boosting (AdaBoost [31 ]). 

• Bagging [32] - the composing models of an 
ensemble are built independently by different 
random sampling (bootstrap sample) of the data. 
Successive models do not rely on previous ones 
and the consensus prediction is gotten through a 
majority vote. 

• Random Forest [33] - can be seen as a variant or 
an extension of bagging as they introduce an extra 
layer of randonmess in bagging. They employ the 
use of large number of decision trees (ranging 
from hundreds to thousands) in order to achieve 
better prediction results. 

• Stacking [34] also known as stacked 
generalization creates ensembles in two phases. In 
the first phase, the bootstrapped samples of the 
dataset are fed into different models and their 
predictions are passed to the second phase where a 
combiner algorithm is used to merge them and 
produce a more refined result which ultimately 
corrects the miss classifications of the models used 
in the first phase. 

• Mixtures of Experts [35] - several models are 
generated to learn the data and a generalized linear 
rule is used to combine their predictions. An 
Expectation Maximisation algorithm is used to 
train a gating network which is responsible for 
assigning weights to this combination. Jordan and 
Jacobs [36] introduced the concept of 'hierarchical 
mixture of experts' which is a combination of 
different models of mixtures of experts. 

Reports presented in [37 - 43] provide more details 
and reviews on ensemble based learning methods in 
machine learning. 

III. RANDOM FOREST 

The random forest (RF) algorithm was developed by 
Leo Breirnan and described in his paper published in 2001 
[33]. He combined his concept of bagging with Amit and 
Gernan' s idea of random selection of features described in 
[ 44], in the construction of decision tress. Random forest 
is used for classification, clustering and regression by 
constructing a multitude of unpruned decision trees and 
outputting the mode prediction (classification/clustering) 
or the mean prediction (regression) of the composing 
trees. The RF algorithm involves the construction of a 
forest of trees by projecting the dataset onto a random 
subset of the data to grow each tree. Then splitting of the 
nodes of the trees is done by randomized optimization 
where the best of a randomly selected subset of predictors 
is chosen to split each node. This approach is different 
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from the usual approach for standard trees where each 
node is split using the best of all available variables 
(deterministic optimization). This counterintuitive 
approach out performs many other well-known 
classification models such as neural networks, 
discriminant analysis, support vector machines among 
others. The properties of the RF algorithm include; 

1) It uses the OOB data (Out-Of-Bag) to estimate the 
generalization error, 

2) It defines a measure for ranking the importance of 
the predictor variables. The different methods for 
variable importance measurement are fi~rther described 
by Breiman in [45}. 

3) It also defines a proximity/distance measure. Each 
cell of an RF proximity matrix represents the ratio of 
tress in which the represented objects appear in the same 
terminal nodes. The reasoning here is that similar objects 
are expected to appear in more often in the same 
terminal nodes than dissimilar objects. 

Among the strengths of random forest are; robustness 
- it corrects the over-fitting problem of decision trees, 
simplicity and user-fi·iendliness- only two parameters are 
involved in its computation (i.e. number of predictor 
variables and the number of trees) as well as capacity for 
handling high dimensionality data i.e. large p and small n 
datasets with limited sample sizes which are common in 
genomic data. 

IV. RELATED WORK 

Over the years, clustering has been applied largely in 
bioinformatics. An example is in microarray data analysis 
to fmd sets of genes with similar expression patterns to 
infer sharing of similar function (functional annotation), 
imply common regulation and predict cis-regulatory 
promoter sequences. Sharan et al., in [ 46] presented a 
review of cluster analysis methods and their applications 
to analysis of gene expression data such identification of 
regulatory motifs and tissue classification. Li et al., in [ 47] 
demonstrated that clustering can also be large biological 
databases. They developed a fast program to cluster 
highly homologous sequences stored in a protein database 
in order to reduce the size of the database. A number of 
tools, programs and applications have also been 
developed applying clustering to other bioinformatics 
related problems. An example is the HCPM developed by 
Grant et al., in [48] for clustering protein models using 
hierarchical clustering. Clustering has also been used in 
the identification of clusters (i.e. protein complexes) in 
protein-protein interaction (PPI) networks. Brohee & van 
Heiden in [ 49] presented a comparative analysis report of 
four major algorithms (i.e. MCODE - Molecular Complex 
Detection algorithm, RNSC - Restricted Neighborhood 
Search Clustering algorithm, MCL - Markov Clustering 
algorithm, SPC Super Paramagnetic Clustering 
algorithm) used in clustering PPI networks. Several other 
methods asides from the traditional clustering algorithms 
have been developed and applied to gene expression data 
analysis such as Hi-clustering by Cheng & Church in [50], 
Multi-objective genetic algorithms for clustering and its 
applications in bioinformatics was discussed by Maulik et 
al., in [51], MOGA-SVM (Multi-Objective Genetic 
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Algorithms with Support Vector Machines) by Maulik et 
al., in [52], Tri-clustering by Li and Tuck in [53], and a 
host of others. 

Ensemble based methods have also been applied in 
bioinformatics tasks. Chen et al. , in [54] presented a 
systematic review of the use of classification trees in 
bioinformatics. Asur et al. , in [55] proposed an ensemble 
clustering framework for PPI networks. Quite a number of 
successful applications of random forest to genomic data 
abound in literature. Some include; the work of Shi et al., 
in [56] where RF was used as a dissimilarity measure on 
protein expression profiles from tumor marker data to 
cluster renal cell carcinoma patients, the work of Lunetta 
et al. , in [57] was one of the first to apply RF to gene wide 
association studies (GW AS) data to rank/prioritize SNPs 
(Single Nucleotide Polymorphisms) and Pang & Zhao in 
[58] used RF to build pathway clusters using three human 
breast cancer gene expression datasets. 

V. MATERIALS AND METHODS 

A. Gene Expression Dataset 

Pre-processed gene expression time course data from 
Otto et al., in [59] was used in this study. They applied 
RNA-Seq to seven time points every 8 h for 48 h, thus 
capturing the entire asexual intra-erythrocytic 
developmental cycle of P. falciparurn from the ring stage 
to mature schizonts. The depth of sequence obtainable 
with highly parallel sequencing technologies make it 
possible to obtain high coverage of all transcribed genes. 
The dataset had expression for a total of 5270 transcribed 
P. falciparum genes. 

B. Clustering 

Time courses for P. falciparum transcribed genes 
derived from the dataset above were clustered. The 
clustering was done using Random forest algorithm as a 
proximity measure. The resulting RF proximity matrix 
was used as a distance measure for clustering using 
Partitioning Around Medoids (PAM) algorithm. All 
analyses were done in R version 3.1.1 [60], Bioconductor 
version 2.14 [61] and Rstudio version 0.98.978 [62]. The 
RF algorithm is implemented in the R package 
"randornForest" [63] and the PAM algorithm ts 
implemented in the Rpackage "cluster" [64]. 

C. Cluster Validity 

Clustering is an unsupervised pattern classification 
method that partitions the input space into clusters. Many 
clustering algorithms are not able to determine the number 
of natural clusters that exist in the data. As a result, these 
algorithms require this information to be supplied
known as the k parameter. As this information is rarely 
previously known, the usual approach is to run the 
algorithm several times with a different k value for each 
run. Then, all the partitions are evaluated and the partition 
that best fits the data is selected. 

In order to select the optimal clusters for the data set, 
clustering was done with many runs of the PAM 
algorithm using different k values. We then applied the 
following internal cluster validity measures; Silhouette 
Width index implemented in R package "clues" [65], 
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Connectivity Index and the Dunn Index both implemented 
in R package "clValid" [ 66]. 

VI. RESULTS AND DISCUSSION 

The time courses of the 5270 transcribed P. 
falciparum genes from the dataset described above were 
used to get bootstrapped samples which we passed into 
the RF algorithm for training. In order to get a stable 
proximity matrix, we built a forest of 1000 trees. The (i, j) 
element of an RF proximity matrix represents the fraction 
of trees where the ith and jth objects appear in the same 
terminal node. The multi-dimensional scaling 
representation of the proximity matrix generated from the 
RF algorithm is presented in Fig. 1. 

Multi-dimensional Scaling of Proximity Matrix 

-0.4 -0.2 0.0 0.2 

Fig. 1. A multi-dimensional scaling representation of the RF proximity 
matrix for 5270 P. falciparum genes 

We then used this proximity matrix as a distance 
metric for the PAM clustering algorithm using the 
formula Distance = 1 - proximity. As the no of clusters 
(k) is unknown, we used different values of k ranging 
from 15 to 22 to run the PAM algorithm. As already 
mentioned in the methods section, three cluster validity 
indices were used to determine the no of optimal clusters 
out of the 8 different clustering from the PAM algorithm. 
The results are presented in TABLE I. and Fig. 2. 

TABLE I. 

K/ 
Cluster 
Validity 

Silhouette 

Dunn 

Connecti 
vity 

CLUSTER VALIDITY INDICES FOR DIFFERENT K VALUES 
FOR RF & PAM ALGORITHM 

15 16 17 18 19 20 21 22 

O.D7 0.0 O.D7 0.0 0.0 0.0 O.D7 0.070 
17 77 05 73 72 73 30 0 

9 I 5 15 
5.12 5.0 5.12 2.6 2.6 2.6 2.63 2.63e 
e-6 9e- e-6 3e- 3e- 3e- e-6 -6 

6 6 6 6 
417 41 4483 44 46 47 4749 5077. 
6.01 23. . 76 58. 47 . 29. .98 62 

38 94 12 78 
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Fig. 2. Graphical representation of the validity indices 

The cluster validity results show a gross difference in 
the range of values for the connectivity index compared 
the silhouette and Dunn indices. To choose the best k, 
connectivity index should be minimized (i.e. the lowest 
value), while silhouette and Dunn indices should be 
maximized (i.e. the highest). K = 16 was the best from 
connectivity and silhouette indices. We used 16 as the 
optimal number of clusters. The result of the PAM 
algorithm for K = 16 is presented in Table II. The result 
shows a balanced partitioning. 

TABLE II. PAM CLUSTERING FOR 16 CLUSTERS 

Cluster No SIZE Average Distance 
I 279 0.52995 
2 334 0.53020 
3 461 0.53890 
4 274 0.55035 
5 395 0.55332 
6 314 0.55646 
7 295 0.56452 
8 230 0.57233 
9 298 0.57291 
10 336 0.58760 
II 394 0.59316 
12 321 0.59503 
13 337 0.60207 
14 279 0.64025 
15 393 0.64444 
16 330 0.73132 

In order to give credence to our results, we used 
another partitioning algorithm, the K-rneans algorithm on 
our dataset and set K =16. The result of the K-rneans 
algorithm is presented in TABLE III. 

TABLE III. K·MEANS CLUSTERING FOR 16 CLUSTERS 

Cluster no Size 
I 79 
2 42 
3 4239 
4 4 
5 I 
6 9 
7 5 
8 13 

" 

lil 
I 

22 
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9 682 
10 10 
11 1 
12 1 
13 34 
14 113 
15 33 
16 4 

The result of k-means clustering shows a skewed 
partitioning as some clusters are seen having very few 
objects (Cluster 4, 5, 11 , 12 and 16) while some are seen 
having too many objects (Cluster 3 and 9). Table 4 
presents the comparison of the partitioning between the 
PAM algorithm (using RF as a distance metric) and the K
means algorithm. It shows RF and PAM corrected the 
miss-classification of k-means. For instance Cluster 4, 5, 
11 , 12 and 16 that had very few objects in k-means 
reported a higher no of objects in RF and PAM. Also 
Cluster 3 that had 4239 objects which is about % of the 
total no objects in the dataset was split into smaller 
partitions by RF and PAM as well as Cluster 9. 

Figure 3 shows a subspace of the cluster plot colored 
by cluster id. It further shows the balanced nature of the 
partitioning by RF and PAM and the skewed nature of 
that ofk-means as more colors are seen in the former than 
the latter. 

RF&PAM Kmeans 

0 10 20 30 40 50 0 1 0 20 30 40 50 

Fig. 3. Subspace of the cluster plot colored by cluster id. 

VII. CONCLUSION 

We have shown that ensemble based clustering is 
indeed a good alternative for cluster analysis with the 
promise of an improved performance over traditional 
clustering algorithms. The clusters generated by our 
classification ensemble method were insensitive to miss
classification from using a single clustering algorithm. 
Our results further shows ensemble clustering has a better 
predictive performance in terms of stability, robustness 
and accuracy when compared to any of its composing 
algorithms. 
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TABLE IV. COMPARISON BETWEEN THE PARTITION OF K-MEANS & RF AND PAM 

RF&PAM 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 0 0 0 0 76 0 0 0 0 0 0 0 1 0 2 0 

K 2 0 0 0 0 40 0 0 0 0 0 0 0 0 0 2 0 
3 279 334 461 274 0 172 295 224 295 331 394 303 335 272 42 228 

M 4 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

E 6 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 

A 7 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 10 0 0 0 0 0 0 0 0 0 2 1 

N 9 0 0 0 0 121 139 0 6 3 5 0 17 1 7 297 86 
10 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 s 11 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
12 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
13 0 0 0 0 32 0 0 0 0 0 0 0 0 0 0 0 
14 0 0 0 0 61 0 0 0 0 0 0 1 0 0 38 13 
15 0 0 0 0 21 1 0 0 0 0 0 0 0 0 9 2 
16 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 
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