SYNTHESIS OF (E)-N'-(5-bromo-2-hydroxybenzylidene)nicotinohydrazide) AND ITS Pt(II), Zn(II), Mn(II), Ni(II) AND Mo(V) COMPLEXES AS POTENTIAL ANTI-TUBERCULAR AGENT

*KO Ogumniran1, MA Mesubi2, JA Adekoya1, OO Siyanbola1, Al Inegbinebor1, OO Ojo1, AE Adedapo1, A Edobor-Oso1 and T Narender4

1Department of Chemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
2Department of Chemistry, Kwara State University, Molette, Kwara State, Nigeria
3Department of Biochemistry, Ekiti State University, Ado-ekiti, Nigeria
4Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India

ABSTRACT

The cold condensation reaction of nicotinic acid hydrazide and 5-bromo-2-hydroxybenzaldehyde to form a tridentate Schiff base hydrazone ligand (H2L) was studied. The prepared ligand was characterized using CHN analyzer, ESI mass spectrometry, IR, 1H NMR, 13C NMR and 2D NMR such as COSY and HSQC. Thereafter, five novel metal complexes [Pt(II), Zn(II), Mn(II), Ni(II) and Mo(V)] of the hydrazone ligand were synthesized and characterized based on conductivity measurements, CHN analysis, AAS, magnetic measurement, UV/Vis, IR, ESR and TGA/DTA study. The proposed structures of the metal complexes were further supported with the use of powder X-ray analysis. Antitubercular activity study of the compounds was evaluated against Mycobacterium tuberculosis H37Rv by using microdiluted method. The study revealed that H2L exhibited promising antitubercular activity with MIC value of 0.82 µg/mL. Also, metal complexes ([Pt(H2L)Cl] - 0.88 µg/mL, [Mn(H2L)(CH3COO)2] - 0.78 µg/mL, [Zn(H2L)(CH3COO)H2O]-0.62 µg/mL and [Ni(H2L)(Cl)2H2O]- 1.19 µg/mL) exhibited significant inhibition as compared to the standard drug (isoniazid-0.91 µg/mL). Complex 2 and 3 with coordinated acetates showed two folds inhibition than standard isoniazid drug. However, complex 5 with coordinated chlorine atom displayed lower inhibition when compared to isoniazid.

Keywords: X-ray, hydrazones, metal complexes, electron spin resonance, thermogravimetric, crystallographic, antitubercular agents.

INTRODUCTION

The world is presently facing challenges of various types of epidemic diseases. Efforts are been made by Scientists all over the world to find new compounds that could used successfully to tackle problems of drug resistance. The field of bioorganic chemistry offered better chance in this area. The metal complexes of acylhydrazone have been recognized to serve as models for biologically important species (Rakesh et al., 2009; Jia et al., 2005). Based on this, there have been sudden Interests in the study of metal complexes of acylhydrazones in the last decade. Reports have shown that most of the compounds have enhanced biological properties, such as anti-inflammatory, analgesic, anticonvulsant, antituberculous (Lourenço et al., 2008; Dharmaraj et al., 2012) antitumor (Andreani et al., 2008), anti-HIV (Rollas and Kucukguzel, 2007) and antimicrobial activity (Banerjee et al., 2009; Shi et al., 2007). Tuberculosis (TB) is a highly infectious disease that is caused mainly by Mycobacterium tuberculosis. It is one of the diseases that require urgent attention across the world due to the fact that it kills between 2 and 3 million people every year (Lourenço et al., 2008; Aboul-Fadl et al., 2010). Most of the victims of TB are mainly in Asian and African countries where about 70-80% of the populations are infected (Kaufmann and Parida, 2008). Tuberculosis cases have been a burden to a number of countries in the world. The top five TB infected ranking countries are; India, China, Indonesia, South Africa, and Nigeria (Harper, 2009; Laughon, 2007). The situation has become more complicated due to increases in multidrug-resistant (MDR) TB (WHO, 2010). Based on the alarming rate, it was estimated that 0.22 billion people may acquire TB and 79 million could die due to TB by the year 2030.

Treatment of TB takes longer time due to the unusual structure and chemical composition of the Mycobacterial
cell wall, which resisted many antibiotics and also hinders the entry of drugs (Jia et al., 2005). The standard DOTS course (Directly Observed Treatment Short course) for TB is a 6 months treatment (Jindani et al., 2004). Most of the current drugs for the treatment of TB resulted from the research performed over half a century ago (Sacchettini et al., 2008). Hence, there is an urgent need to develop more potent and fast acting anti-TB drugs with new modes of action to overcome the cross-resistance with current drugs and with low toxicity profiles that can be tolerated for long treatment periods (Salih et al., 2003). Presently, some drugs are under clinical trial by several public and private partnerships (Dover and Coxon, 2011). Despite the severe outbreak of TB and the rise of MDR strains, progress to find a new vaccine or improvement of the BCG vaccine has been very slow. Several numbers of approaches such as target-based drug design, combinatorial synthesis, high-throughput screening, etc., have been explored to generate new novel compounds. However, chemical modification of a known anti-TB drug has been reported to be a successful approach in the development of new anti-TB agent (Ramón-García et al., 2011). The present study is focused on the synthesis and characterization of the hydrazone obtained in the condensation reaction of nicotinic hydrazide with 5-bromosalicylaldehyde and its Pt(II), Zn(II), Mn(II), Ni(II) and Mo(V) complexes. The structure of the ligand was established with the use of some spectroscopy study while the structures of the metal complexes were proposed. The in vitro anti-tubercular activity against resistant strains of H37Rv was carried out to determine the anti-tubercular potential of the compounds.

MATERIALS AND METHODS

Nicotinic hydrazide, 5-bromosalicylaldehyde, PtCl2, Zn(COOCCH3)2, Mn(COOCCH3)2·H2O, NiCl2·H2O, MoCl5, and solvents with high purity were purchased from Sigma-Aldrich. They are of high purity and were used as purchased.

The melting points of all the compounds were determined by using Gallenkamp melting point apparatus (Davidson, 2010). The % of carbon, nitrogen and hydrogen in the synthesized hydrazones and metal complexes were determined by using Vario EL CHNS analyser at Sophisticated Analytical Instruments Facilities at Central Drug Research Institute, Lucknow, India. ESI-MS spectrum for the hydrazone was collected from Agilent 6520 Q-TOF mass spectrometer and MeOH solution was used as the solvent. Mass spectra were measured in positive mode and in the range m/z = 200-1400. The percentage of metal in the synthesized metal complexes was determined by using Varian spectrometer AAS-110. The molar conductivities of the metal complexes at ambient temperature in DMF solution (10−3 M) were measured using sytonyrics – 304 conductivity meter. The electronic data of the hydrazone and the metal complexes were obtained in methanol/DMSO by using Perkin Elmer Spectro UV-visible Double Beam UVD spectrometer in the range of 200-700 nm. The infrared spectra for the hydrazone and the metal complexes were recorded on Perkin – Elmer RX-1 Fourier Transform Infrared Spectrometer using KBr pellets in the range of 400-400 cm−1. 1H NMR, 13C NMR and 2D NMR (COSY and HSOQC) spectra of the hydrzone were recorded by using Bruker AMX 300 FT-NMR spectrometer in DMSO-d6. The magnetic susceptibility data of the paramagnetic metal complexes were measured at room temperature by using vibrating susceptibility magnetometer (PAR 155) with magnetic field of -10 to +10 kOe at instrumentation center, Indian Institute of Technology, Roorkee, India. TGA/DTA analyses of the metal complexes were carried out, at heating rate of 10 °C min−1, under inert atmosphere by using thermogravimetric analyser TGA Q500 V20.8 Build 34 model. The EPR spectra of the metal complexes at 77 K were recorded on a Varian E-112 spectrometer using TCNE as the standard, with 100 kHz modulation frequency, modulation amplitude 2G and 9.1 GHz microwave frequency. X-ray powder diffraction pattern for Ni(II) complex was recorded on a Bruker AXS D8 Advance diffractometer operating in the θ/θ mode and equipped with a secondary beam graphite mono-chromator.

Synthesis of the hydrazone

The synthetic methods described earlier (Nair, 2012; Abeda, 2012) were modified and adopted. The nicotinic acid hydrazide (10 mmol, 342 mg) was dissolved in 20 ml absolute ethanol by heating gently on water bath. The solution of nicotinic acid hydrazide was mixed with 20 ml ethanolic solutions of 5-bromosalicylaldehyde (10 mmol, 503 mg) in a round bottom flask after which the mixture was stirred at 20°C for 6 h (Scheme 1). The precipitates obtained were allowed to stay at room temperature for 12 h before they were filtered, and washed with 30 ml of ethanol thrice. The compound obtained was recrystallized in mixture of dried chloroform. Vacuum pump rotary evaporator was used to ensure complete dryness. The purity was checked by TLC (10% methanol: 90% chloroform).

Yield 2.52 g (78%); milky colour solid; mp: 220-222°C; Rf = 0.82 (CHCl3 / CH3OH; 4:1, at RT.). IR (KBr) cm−1: 3418 (ArOH), 3266 (NH), 1675 (C=O), 1610 (C=N), 1529 (N-N), 1339 (C-O), 1147(C-N). MS [ESI+] in m/z: 320.0 [M+ H]+. Anal. calcd. for C25H14BrNO3S (319.00): C: 48.90; H: 3.13; N: 13.16. Found: C: 48.76; H: 3.47; N: 12.78. 1H-NMR (DMSO-d6) δ: 12.32(s, 1H, NH), 11.19 (s, Ar-OH, 1H), 9.08 (d, J1 = 1.2 Hz, 1H, H(3)), 8.78 (dd, J1 = 4.8 Hz, J2 = 7.9 Hz, 1H, H(4)), 8.61 (s, 1H, H=C=N), 8.29 (d, J1 = 1.5 Hz, J2 = 8.1 Hz ,1H, H(6)). 7.81 (d, J = 2.4 Hz, 1H, H(7)), 7.59 (m, J1 = 4.8 Hz, J2 = 8.1 Hz, 1H, H(8)), 7.44 (dd, J1 = 2.4 Hz, J2 = 8.7 Hz, 1H, H(9)), 6.92
(d, J = 8.7 Hz, 1H, H(10), ppm. 13C-NMR (DMSO-d6) δ: 162.56 (CO), 156.40 (C-OH), 152.41 (C3), 148.60 (C4), 146.03 (C=O), 135.45 (C6), 133.71 (C7), 130.26 (C8), 128.53 (C9), 123.57 (C10), 121.19 (C11), 118.63 (C12), 110.47 (C13), ppm.

Synthesis of the metal complexes

[Co(H2L3)(CH3COO)2]: To an ethanolic solution of H2L3 (10 mmole, 161 mg), 10 mmole (153 mg) of [Co(CH3COO)3·4H2O] dissolved in 20 ml of ethanol was added slowly after which 2 drops of TEA was added. The mixture was refluxed at 80°C for 4 h. The brown product formed was filtered, washed with ethanol followed by ether and dried over P2O5 in vacuo. Elemental Anal. found (Calcd.) (%): C, 40.73 (39.84); H, 8.23 (8.52); N, 7.96 (8.06); m = 5.54 BM.

[Zn(H2L3)(CH3COO)2]: 229 mg (10 mmole) of Zn(CH3COO)2 was dissolved in 10 ml of mixture of ethanolic and distilled water (1:1). The solution obtained was added gradually to 400 ml of ethanolic solution of H2L3 (10 mmole in 10 ml of absolute ethanol) in a round bottom flask after which two drops of TEA was added. The solution was refluxed at 80°C for 4 h. The yellow precipitate formed was allowed to cool to ambient temperature after which it was filtered, washed with 15 ml of ethanol and then with 10 ml of ether. The precipitate obtained was dried by using vacuum rotary evaporator. Elemental Anal. found (Calcd.) (%): Zn, 13.01 (12.54); C, 39.25 (39.14); H, 3.37 (3.48); N, 8.23 (8.06). m = 5.54 BM.

Pt(H2L3)Cl]: 166 mg (10 mmole) of PtCl2 dissolved in 10 ml of absolute ethanol was added to 400 mg (10 mmole) of H2L3 dissolved in 10 ml of absolute ethanol. The mixture was refluxed at 80°C for 5 h after which it was left at room temperature for 24 h during which green precipitates formed. The precipitate formed was filtered, washed with cold ethanol and then dried over P2O5 in vacuo. Yield: 0.189 g (54.93 %). Elemental Anal. found (Calcd.) (%): Pt, 34.78 (35.43); C, 27.65 (28.35); H, 2.15 (1.83); N, 7.96 (7.63). m = 5.54 BM.

[Ni(H2L3)(Cl)2]H2O: 149 mg (10 mmole) of NiCl2·4H2O dissolved in 10 ml of absolute ethanol was added to 20 ml ethanol solution of H2L3·800 mg, 20 mmole) in a round bottom flask after which two drops of TEA was added. The solution was refluxed at 80°C for 6 h. The precipitate formed was filtered, washed with 20 ml of ethanol and then with 10 ml of ether. The precipitate obtained was dried over P2O5 in vacuo. Elemental Anal. found (Calcd.) (%): Ni, 32.69 (33.88); C, 32.23 (32.55); H, 2.12 (2.59); N, 8.59 (8.98). m = 5.33 BM.

(Mo(H₂L₃)₂(Cl)₃): Equivalent of 10 mmole (171 mg) of MoCl₅ was weighed into an appendorf in a fumes cupboard and transferred directly into the 10 ml of absolute ethanol in a double neck round bottom flask. The appendorf was rinsed into the solution with 5 ml of ethanol. Then solution of (400 mg, 10 mmole) of H₂L₃ in 15 ml of absolute ethanol was added. The mixture was refluxed at 80°C for 5 h under nitrogen gas. The solute obtained was filtered, washed with cold ethanol and dried over P₂O₅ in vacuo. Yield: 0.187 g (57.36%). Elemental Anal found (Calcd.) (%): Mo, 17.95 (18.36); C, 30.36 (29.89); H, 2.43 (1.93); N, 7.97 (8.04). μ = not determined BM.

Antimycobacterial Activity Study

MIC determination

The synthesized hydrazone and metal complexes were evaluated for in vitro anti-mycobacterial activity. The compounds were screened against M. tuberculosis H37Rv in triplicate using broth dilution method (Anna, 2009; Gopalakrishnan, 2008). The compounds were screened against isoniazid (ATCC 35822) resistant strains of M. tuberculosis. The compounds were serially diluted from concentration of 500 μg/mL to 25 μg/mL in DMSO. M. tuberculosis H37Rv strain was used in Middlebrook 7H-9 broth which was inoculated with standard as well test compounds and incubated at 37°C for 4 weeks. The bottles were inspected for growth twice a week for a period of three weeks. Readings were taken at the end of 4 weeks. The appearance of turbidity was considered as growth and indicates resistance to the compound. The growth was confirmed by making a smear from each bottle and performing a ZN stain.

RESULTS AND DISCUSSION

The reaction of nicotinic acid hydrazide with 5-bromosalicylaldehyde (see Scheme 1) gave the desired dissymmetric tridentate Schiff base hydrazone in high
yield and purity. The ESI mass spectrum (Supplementary 1) for the compound confirmed the molecular mass of the compound with molecular ion peak (M + 1) at 320.2. The molecular ions peak observed was supported by micro analysis data obtained.

1H NMR spectrum study

The 1H NMR spectrum of the compound in DMSO-d6 (Fig. 1) displayed singlet peak which was assigned to an imine proton, H(1) in the hydrazone at 12.32 ppm. It resonated down the field due to highly deshielding effect from N(2) atom. This assignment was confirmed by deuterium exchange in which the intensity of this band decreased considerably (Devidas et al., 2011; Parekh et al., 2005). The singlet peak at 11.19 ppm corresponded to hydroxyl proton H(2), which was highly de-shielded by attached oxygen atom. In the pyridyl ring, the two adjacent protons, H(3) and H(4), to nitrogen atom N(1) appeared downfield at 9.08 and 8.78 ppm. However, the peak at 9.08 ppm is a doublet peak while the peak at 8.78 ppm appeared as doublet of doublet. The two peaks experienced hydrogen bonding from neighboring nitrogen atom and thus resonated downfield. The multiplet peak at 7.59 ppm which integrated as one proton, was assigned to H(8) protons. The doublet of triplet peak at 8.29 ppm was assigned to H(6) proton. The singlet peak which integrated as one proton at 8.61 ppm was assigned to H(5) proton in the hydrazone. The proton experienced high reduction in the electron density around it from the adjacent nitrogen atom N(3). The two peaks observed at 7.81 and 7.44 ppm were assigned to H(7) and H(9) protons respectively. High δ values for the two protons are based on their ortho position to bromine atom in the phenol ring. H(10) proton in the phenol ring was assigned to a doublet peak that resonated at 6.92 ppm.

13C NMR spectrum study

13C NMR spectrum (Fig. 2) confirmed thirteen carbon atoms in the hydrazone ranging from 110.47 to 161.56 ppm as envisaged. The carbonyl carbon C(1) appeared downfield at 161.56 ppm due to its direct attachment to oxygen that reduced its electron density. The observation was coupled with conjugative effect from N(2)-N(3) core in the hydrazone. The peak at 156.40 ppm was assigned to the carbon C(2) attached to hydroxyl group in the molecule. The downfield position is partially due to inter-hydrogen bonding experienced by the OH group (Pavia et al., 2008). In the pyridyl ring, the two carbon atoms adjacent to N(1), C(3) and C(4), resonate at lower field of δ 152.41 ppm and 148.60 ppm, respectively. The other carbon atoms in the pyridyl ring are C(6), C(8) and C(10). They were assigned to the peak at 135.45, 130.26 and 123.57 ppm respectively. The resonances assigned to the
carbon atoms in the phenol ring are C(7) 133.71, C(9) 128.53, C(11), 121.19, C(12) 118.63 and C(13) 110.47 ppm. The carbon atom attached to Br atom, C(9), appeared at much lower field than other carbon because it experienced much reduction in its electron density than the other carbons. However, C(3) atom was assigned to the peak that resonated downfield at 146.03 ppm. The peak appeared at the lower field due to high de-shielding effect from adjacent N(3)→N(2) core of the hydrazone.

COSY spectrum study

1H-1H correlation spectroscopy confirmed the assignments of proton NMR spectrum. There was no correlation for the peaks at 12.32, 11.19 and 8.61 ppm, which confirmed the absence of coupling interaction for each of these protons with their neighboring protons in the molecule. However, off diagonal contours were observed in the pyridyl ring and phenol ring region. The proton at 7.59 ppm, assigned to H(8), experienced coupling effect from both H(6) at 8.29 ppm and H(4) at 8.78 ppm. Also, the peak at H(6) correlated with the peak at 9.08 ppm, H(3) and this account for the doublet of triplet peak at 8.39 ppm assigned to H(6). The peak at 7.59 ppm appeared as multiplet due to two ortho coupling experienced while the peak at 8.78 ppm appeared as doublet of doublet peak. In the phenol ring region, the proton at 7.44 ppm which was assigned to H(9) proton correlate with both H(7) proton at 7.81 ppm and H(10) at 6.92 ppm. Therefore, this justified doublet of doublet peak observed at 7.44 ppm while both H(7) and H(10)
protons resonated as doublet peaks. Based on this, 1H-1H coupling for the hydrazine is shown in figure 3b.

HSQC spectrum study

The 1H-13C HSQC correlation spectrum which was recorded in DMSO-d$_6$ ascertained both 1H and 13C NMR assignments. The 1H-13C HSQC connectivity in this spectrum is in agreement with both 1H and 13C spectral assignments. From the HSQC spectrum (Fig. 4), the peaks at 161.56, 156.40, 130.26, 121.19 and 110.47 ppm assigned to C(1), C(2), C(8), C(11) and C(13) respectively did not show correlation with any of the proton in the hydrazone. This confirmed that they are non-protonated carbons. However, HSQC spectrum showed 8 protonated carbons as expected for the molecule. All the correlation observed matched the 1H and 13C NMR assignments. Based on the spectrum, the H-C correlation scheme is shown in figure 4.

Analytical data of the metal complexes

The synthesized metal complexes of H_2L^3 possess characteristics colour with high melting point (>300°C) due to the coordination bonds (Table 1). They were found to be sparingly soluble in methanol, DMF and THF but were soluble in DMSO and pyridine. The results of elemental analyses (C, H, N) obtained are in good agreement with the calculated values. The magnetic susceptibility values recorded at room temperature for Mn(II) and Ni(II) complexes compete favorably with the calculated spin only magnetic values. The conductivity values of the metal complexes are very low, thus suggesting non-electrolytic character of the metal complexes.

Infra-red spectra studies

The infrared spectral assignments of H_2L^3 compared to its metal complexes are presented in table 2. The comparison of the infrared spectrum of H_2L^3 with the spectra of the metal complexes, figure 5, showed significant variation in the chromophoric absorption bands due to the effect of coordination. The broad band around 3418 cm$^{-1}$ which was assigned to ν(OH) stretching modes in H_2L^3 was observed in the spectra of Zn(II), Pt(II) and Mo(V) complexes at higher wavenumbers (3419-3456 cm$^{-1}$), coupled with increased broadness. This observation was attributed to the effect of coordination of the oxygen atom of the OH group after deprotonation (Kuriakose et al., 2007). Also, Ni(II) and Mn(II) complexes showed ν(M-O) absorption band at lower wavenumbers with reduction in its intensity due to presence of intra-molecular hydrogen bond in the two complexes.

The strong band at 1675 cm$^{-1}$ attributed to ν(C=O) vibrational stretching mode in H_2L^3 appeared in the spectra of the metal complexes at lower wavenumber from 1606 cm$^{-1}$ in Mn(II) complex to 1655 cm$^{-1}$ in Pt(II) complex. The intensities of the peaks were observed to have reduced as a result of coordination which reduced the vibrational force of CO group upon coordination. This is further supported by variation in the positions of δ(C-O) deformation peaks in the complexes. The δ(C-O) deformation peak in the ligand appeared as a medium peak at 1339 cm$^{-1}$. The peak appeared as a weak peak at higher frequencies in Pt(II), Ni(II) and Mo(V) complexes. However, it appeared as a medium peak with lower frequencies in Mn(II) and Zn(II) complexes.

The azomethine group ν(C=N) band which appeared as a medium peak at 1610 cm$^{-1}$ in the spectrum of the ligand appeared at lower wavenumber in Mn(II), Zn(II) and Mo(V) complexes but at a slightly higher wavenumber in Pt(II) and Ni(II) complexes. However, δ(C-N) deformation mode for all the complexes was affected by coordination effect by shifting to higher wavenumber when compared to that of the ligand due to the coordination. The amide NH vibrational stretching mode appeared as a medium peak at 3266 cm$^{-1}$ in the spectrum of the hydrazine but could not be found in the metal complexes due to conjugation effect of the coordination of azomethine group to the central metal ions in the complexes.
Fig. 5. Infrared spectra for $\text{H}_2\text{L}^\text{3}$, Mn(II) and Pt(II) complex respectively.

Table 2. Infrared data of metal complexes of $\text{H}_2\text{L}^\text{3}$.

<table>
<thead>
<tr>
<th>Ligands/Complex</th>
<th>$\nu(\text{OH})$ cm$^{-1}$</th>
<th>$\nu(\text{C=O})$ cm$^{-1}$</th>
<th>$\nu(\text{C-N})$ cm$^{-1}$</th>
<th>$\nu(\text{N-N})$ cm$^{-1}$</th>
<th>$\delta(\text{C-O})$ cm$^{-1}$</th>
<th>$\delta(\text{C-N})$ cm$^{-1}$</th>
<th>$\nu(\text{M-N})$ cm$^{-1}$</th>
<th>$\nu(\text{M-O})$ cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{H}_2\text{L}^\text{3}$ (1)</td>
<td>3418 s</td>
<td>1675 w</td>
<td>1610 m</td>
<td>1529 m</td>
<td>1339 m</td>
<td>1147 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Mn(H$_2$L)$\text{[CH}_3\text{COO}]_2$ (2)</td>
<td>3411 m,b</td>
<td>1604 w</td>
<td>1561 w</td>
<td>1467 m</td>
<td>1311 m</td>
<td>1153 m</td>
<td>631 w</td>
<td>520 w</td>
</tr>
<tr>
<td>[Zn(H$_2$L)$\text{[CH}_3\text{COO}]_2\text{H}_2\text{O}]$ (3)</td>
<td>3428 s,b</td>
<td>1611 m</td>
<td>1539 w</td>
<td>1427 w</td>
<td>1269 m</td>
<td>1187 m</td>
<td>662 w</td>
<td>429 w</td>
</tr>
<tr>
<td>(Pt(H$_2$L)[Cl]_2 (4)</td>
<td>3456 s,b</td>
<td>1655 w</td>
<td>1611 w</td>
<td>1470 m</td>
<td>1347 w</td>
<td>1184 m</td>
<td>625 w</td>
<td>455 w</td>
</tr>
<tr>
<td>(Ni(H$_2$L)$\text{[Cl]}_2\text{H}_2\text{O}]$ (5)</td>
<td>3402 s,b</td>
<td>1651 m</td>
<td>1610 w</td>
<td>1566 m</td>
<td>1349 w</td>
<td>1184 m</td>
<td>554 w</td>
<td>477 w</td>
</tr>
<tr>
<td>(Mo(H$_2$L)[Cl]_2 (6)</td>
<td>3419 s,b</td>
<td>1630 s</td>
<td>1538 w</td>
<td>1461 w</td>
<td>1346 w</td>
<td>1187 w</td>
<td>668 w</td>
<td>418 w</td>
</tr>
</tbody>
</table>

The assignment of the proposed coordination sites is further supported by the appearance of new bands between 554-668 cm$^{-1}$ and 418-523 cm$^{-1}$. They were assigned to M-N and M-O bands, respectively.

Electronic Spectra Study

The electronic spectral assignments of the metal complexes in methanol are presented in table 3. The interpretation was done on the basis of comparison of the spectrum of the ligand with the spectral of the metal complexes. In a d^5 high spin Mn(II) complex, spin allowed d-d transition is not expected due to the fact that such transition are Laporte and spin forbidden (Mangalam et al., 2009). Thus, for Mn(II) complex, the intensities of transition from ground state to the state of four-fold multiplicity are very weak as compared the ligand. However, the spectrum of the complex showed three significant intra-ligand transitions at ca. 43478, 36364 and
Table 3. Electronic data of H$_3$L3 and its metal complexes.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Transition cm$^{-1}$</th>
<th>Ground Term Symbol</th>
<th>Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_3$L3(1)</td>
<td>46512, 34722, 29326</td>
<td>n→π* (C=C) ar.</td>
<td>n→π* (C=N)</td>
</tr>
<tr>
<td>[Mn(H$_3$L3)(CH$_3$COO)$_2$] (2)</td>
<td>43478, 36364, 32680, 23095</td>
<td>n→π* (C=C) ar.</td>
<td>n→π* (C=N)</td>
</tr>
<tr>
<td>[Zn(H$_3$L3)(CH$_3$COO)$_2$H$_2$O] (3)</td>
<td>45454, 33557, 25974, 17182</td>
<td>n→π* (C=C) ar.</td>
<td>n→π* (C=N)</td>
</tr>
<tr>
<td>[Pt(H$_3$L3)$_2$Cl] (4)</td>
<td>45662, 34483, 29240</td>
<td>n→π* (C=C) ar.</td>
<td>n→π* (C=N)</td>
</tr>
<tr>
<td>[Ni(H$_3$L3)$_2$Cl]H$_2$O (5)</td>
<td>45871, 34602, 29325, 23981</td>
<td>n→π* (C=C) ar.</td>
<td>n→π* (C=N)</td>
</tr>
<tr>
<td>[Mo(H$_3$L3)$_2$Cl$_2$] (6)</td>
<td>43290, 32258, 24691, 16077</td>
<td>n→π* (C=N)</td>
<td>n→π* (C=O)</td>
</tr>
</tbody>
</table>

32680 cm$^{-1}$. They were assigned to n→π* of aromatic ring system, n→π* of azomethine group and n→π* of carboxyl group respectively. The complex showed a high intense transition at visible region due to ligand to metal charge transfer (LCMT) transition. It was assigned to 3A$_{1g}$ ← B$_2g$ transition. This observation is of the characteristic of the tetrahedral pyramidal geometry. Zn(II) ion is of d10 configuration, therefore, d-d transitions are not expected in the complexes. The intra-ligand transitions appeared in the complexes at higher wavelength with low intensities due to coordination effect on the chromophoric group. However, a very weak shoulder peak, which is attributed to metal- ligand charge transfer, is observed at ca. 17182 cm$^{-1}$ perhaps, because of the yellow colour of the complex (Mohareb et al., 2011). Pt(II) is of d8 configuration with term symbol 3D. Therefore, only one d-d transition is expected. However, the spectrum of the complex showed only three significant transitions at ca. 45662, 34483 and 29240 cm$^{-1}$ in the region studied. They were assigned to intra- ligand transitions. The transitions experienced slight shift due to coordination effect.

Ni(II) complex spectrum showed three bands attributed to intra-ligand transitions at ca. 45871, 34602 and 29325 cm$^{-1}$. However, absence of peak below 16000 cm$^{-1}$ ruled out the possibility of tetrahedral geometry. The magnetic value, 3.53 BM, obtained supported distorted octahedral geometry. The low intense peak at ca. 23981 cm$^{-1}$ in the visible region of the spectrum is attributed to ligand-metal charge transfer (LCMT) in the complex.

Mo(V) is of d4 configuration with term symbol 5S. The spectrum of the complex consists of weak spin-forbidden bands at ca. 24691 and 16077 cm$^{-1}$. The d-d transition from this high spin d4 configuration complex is possible due to pairing of some electron parallel spins in the complex. Using the Orgel diagram, the bands were assigned to transitions 5T$_{1g}$ ← 7A$_{1g}$ and 5T$_{2g}$(G) ← 7A$_{1g}$ transition. However, the two bands at ca. 43290 and 32258 cm$^{-1}$ were assigned to intra-ligand bands. The band at ca. 46512 cm$^{-1}$ in the spectrum of the ligand could not be traced to metal complex, thus suggesting distorted geometry for the complex.

TGA/DTA Analysis

TGA and DTA curves obtained for Mn(II) and Ni(II) and complexes within the temperature range from ambient temperature up to 700°C in an inert atmosphere are as shown in Fig. 6. The curve for Mn(II) complex shows that the compound was very stable from ambient temperature up to 339°C. However, the compound decomposed in two steps at 348 and 427°C as shown in the DTG peaks. The H$_3$L3 ligand constitute 60% of the complex but only 50% weight loss was observed in the first decomposition step between 339-417 °C. The second decomposition step which occurred between 417-440 °C.
corresponds to 10% (Cald. 9.9%) weight loss. This was attributed to decomposition of CH$_3$CO from the coordinated CH$_3$COO group. The residue at 440°C contained 10% of the H$_2$L1 ligand. Thus, the complex did not fully decompose at the temperature range studied. Nevertheless, the thermogram was useful in predicting the structure of the complex (Munde et al., 2012; Artur et al., 2013). The TG and DTG curves for Ni(II) complex proceeded with five degradation steps which occurred at 82, 197, 288, 341 and 456°C. The first step decomposition occurred with the loss of lattice water outside the coordination sphere at the temperature range of 80-92°C and this corresponded to 4% weight loss. The second and the fourth decomposition steps occurred within the temperature range of 173-205 and 332-352°C and accounted for 8% loss each which is attributed to the loss.