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Abstract 

 

     In this paper, a hybrid numerical-analytical technique resulting from the 

combination of the differential transformation method and the Pade 

approximation technique; hereby referred to as differential transformation-Pade 

approximation technique (DTPAT) is introduced and applied for numerical 

solutions to the nonlinear biochemical reaction model. The obtained numerical 

results via the DTPAT are in excellent agreement with those obtained using 

ADM, PIM, RK4, HPM, and MPHM. The DTPAT increases the convergent rate 

of the series solutions obtained via the DTM, is showed to be very effective; it 

requires less computational work, and hence a promising technique for both linear 

and nonlinear systems in other areas of medical and biomedical sciences. 
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1      Introduction 
 

The presence of enzymes being unique catalysts speeds up biochemical reactions 

immensely. This makes the kinetic of the concerned reaction different from that of 

the conventional chemical kinetics. In 1913, Michaelis and Menten [1] were the 

first to observe this, as they developed a quantitative theory for enzyme kinetics 

and as a result, they proposed a simple but powerful structural model in analyzing 

the enzyme processes [2, 3]. 

Thus, in consideration, we shall look at the basic Michaelis-Menten Enzyme 

Kinetic Model (MIC-MENEKM) resulting from the reaction scheme as follows 

[3, 4] as follows: 

 

H U V
 



 
 



                                                              (1) 

 

where    is the enzyme, H  is the substrate, U  is the enzyme-substrate complex, 

V  is the product of H  when metamorphosed,    is the first order rate constant, 

  is the second order rate constant and    is the first order rate for the reverse 

reaction. 

Briggs and Haldane in [5] derived the Michaelis-Menten equation with a version 

in (1). 

Based on the law of mass action, the rate of changes of the various species with 

respect to time t , leads to four differential equations: 

 

dH
H U

dt
                             (2) 

 

d
H cU

dt


                          (3) 

 

dU
H cU

dt
                          (4) 

 

dV
U

dt
                         (5) 
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where  

 c                                                                                  (6) 

with the initial conditions: 

 

0 0 0 0(0) ,  (0) ,  (0) ,  and (0)H H U U V V               (7) 

 

In dimensionless form of substrate concentration, m , and intermediate complex 

between  & ,  ,H n  equations (2)-(5) can be reduced to only two equations for H  

and U  as given below; see [6] for more detail. Thus, 

 

dn
m n mn

dt
                (8) 

 

( )
dm

m n mn
dt

                 (9) 

subject to: 

(0) 1, (0) 0m n            (10) 

 

where  the parameters b ,   and     are dimensionless. 

 

In an attempt to solve the nonlinear system, Sen in [6] applied the ADM for an 

approximate analytical solution for the transient phase of the Michaelis-Menten 

reaction model. Khader introduced Picard-Pade technique (PPT) as a modification 

of Picard iteration method (PIM), he studied the convergence analysis of the 

proposed method, and tested its effectiveness using the basic enzyme kinetic 

model [7].  Batiha and Batiha in [8] applied the differential transformation method 

[DTM] to the MIC-MENEKM and confirmed the reliability and agreement of the 

method with the homotopy perturbation method (HPM). 

 

Meanwhile, the DTM has been noted for both numerical and analytical solutions 

of differential equations [9-11]. Hashim et al converted the standard HPM into a 

hybrid method called the multistage HPM (MHPM), applied the result to the 

nonlinear biochemical reaction model (MIC-MENEKM), and confirmed that the 

numerical solutions are in excellent agreement with those from the classical 

fourth-order Runge-Kutta (RK4) method [12]. The DTM has a wider range of 

applications in dealing with models involving integro-differential equations in 

finance and actuarial sciences [13].  
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In this work, we present a hybrid numerical-analytical method (DTPAT) resulting 

from the modification of the DTM based on Pade approximation. For 

effectiveness and reliability, the method is applied to the MIC-MENEKM, and the 

numerical results obtained are compared with those from other standard methods. 

 

2      The Basic Models 
 

This section takes care of the basic models used in this paper. 

 

2.1      The Differential Transform Method (DTM) 
This subsection introduces the basic concepts and theorems of DTM needed for 

applications in the remaining sections. 

 

Definition 1. Let  ( )w x  be a given function of one variabe defined at a point 

0x x , then the one-dimensional thk  differential transform of ( )w x  defined as 

( )W k  is: 

                         

0

1 ( )
( )

!

k

k

x x

d w x
W k

k dx


 
  

 
                                                                     (11)         

 

Definition 2. The inverse differential transform of  ( )W k is a Taylor series 

expansion of the function ( )w x about 0 0x x  , defined as : 

 

 
0

( ) ( ) k

k

w x W k x




                                                                                  (12) 

 

 

Combining (11) and (12) yields: 

 

                       
0

( )
( )

!

k k

k
k

d w x x
w x

dx k





 
  

 
                                                                         (13) 

 

2.2 Some Basic Theorems of the Differential Transform Method 

 

The following theorems and properties of the DTM are stated below for the issues 

of applications while their proofs and further properties can be found in standard 

numerical texts and referred journals: see [14,15] and the references therein. 

 

Let 1( )w x , 2 ( )w x  and *( )w x  be differentiable functions with differential 

transforms 1( )W k , 2 ( )W k  and *( )W k  respectively, with 0n  , i  and  a 

kronecker delta, then the following theorems hold: 
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Theorem 1  If 1 1 2 2( ) ( )y w x w x    then 1 1 2 2( ) ( ) ( )Y k W k W k    

Theorem 2 If ny x  then ( ) (k n)Y k    such that: 

 

1 , 

0 , otherwise( ) (k n) k nY k      

 

Theorem 3 If 1 2( ) ( )y w x w x  , then 
1 2

0

( ) ( ) ( )
k

Y k W W k


 


    

Theorem 4 If  *( )
n

n

d
y w x

dx
 , then *

( )!
( ) ( )

!

k n
Y k W k n

n


  . 

 

In particular, we have: 

 

* If  *( )
d

y w x
dx

 , then *( ) ( 1) ( 1)Y k k W k    

 

2.3      Pade Approximant of a Power Series Solution 
 

Most solutions of differential equations- ordinary or partial follow power series 

forms; these solutions become numerical solutions of the associated differential 

equations upon approximation or truncation.  

 

These power series are often approximated by polynomials, nevertheless, 

polynomials tend to exhibit oscillations that may produce error bounds, also, the 

singularities of polynomials cannot be observed clearly in a finite plane [16, 17]; 

hence, the transformation of the power series for numerical approximation using 

Pade approximants. 

 

A Pade approximant of a function is a rational function of two polynomial 

functions where the coefficients of the numerator and the denominator depend on 

the coefficients of the concerned function [17-19]. Thus, the following definitions: 

 

Definition 3: Let ( )g x  be a function defined on the interval [ ,b]I a , with a 

Taylor series expansion 
0

i

i

i

k x




 , such that 

 

0

( ) , 0i

i

i

g x k x k




                                               (14) 

 

Suppose  
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2

0 1 2 0

2

0 1 2

0

( )

j

j

i

i

i

i

A x
A A x A x A x

g x
B B x B x B x

B x





 







   
 

    




                  (15) 

 

Then, the Pade Approximant of ( )g x  is defined as: 

 

 
0

( ) *

0

( )

( )

j

j

j

g x
i

i

i

A x
Q x

P
Q x

B x



 







   




                     (16) 

 

where *( ) and ( )Q x Q x   are polynomials of degree  and    respectively. 

 

Remark 1: For the avoidance of a common factor in (16), we shall set 0 1B  , as 

such, (16) is expressed as: 

 

 

 

2

0 1 2

( ) 2

1 21
g x

A A x A x A x
P

B x B x B x









  
      

                               (17) 

 

It can be seen from (17) that the numerator and the denominator contain 

(1 ) and ( )   coefficients respectively; hence, in computing  [ ]  , a total of 

(1 )  coefficients are to be determined. 

  

Definition 4:  Diagonal Approximant 

 

The Pade approximant in (16)-(17) is said to be a diagonal approximant if the 

numerator and the denominator are of the same degree (i.e. ) . In what 

follows, we shall be using the diagonal approximants for more accuracy and 

efficiency. 

 

3. Applications and the Basic Methodology 
 

3.1      The DTPAT applied to MIC-MENEKM 

In this subsection, the DTM will be applied to the system of differential equations 

in (8) and (9) to obtain  and n m  , and thereafter, the computation of the Pade 

approximants for interpretation. Thus, (8) and (9) becomes: 
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0

( 1) ( 1) ( ) ( ) ( ) ( )
k

r

k N k M k N k M r N k r 


                         (18) 

and 

0

( 1) ( 1) ( ) ( ) ( ) ( ) ( )
k

r

k M k M k N k M r N k r 


                          (19) 

subject to  

 

(0) 1 and (0) 0M N                         (20) 

 

resulting from the initials (0) 1 and (0) 0m n  . 

For simplicity and ease of calculation, we re-write the recurrence relations (18) 

and (19) as: 

 

0

1
( 1) ( ) ( ) ( ) ( )

( 1)

k

r

N k M k N k M r N k r
k


 

 
     

  
                               (21) 

 

and  

 

0

1
( 1) ( ) ( ) ( ) ( ) ( )

1

k

r

M k M k N k M r N k r
k

 


 
       

  
                 (22) 

 

with the same initial conditions as in (20). 

For numerical computation and comparison, the case when 1.0   , 3/ 8   and 

1/10   will be considered. Therefore, using (20),(21) and (22), we have: 

 

 0,  (1) 10,  and (1) 1for k N M    ,  

 

 1,  (2) 105,  and (2) 69 / 8for k N M    , 

 

 2,  (3) 9145 /12,  and (3) 757 /12for k N M    , 

 

 3,  (4) 17785 / 4,  and (4) 47767 /128for k N M    , 

 

 4,  (5) 4440661/192,  and (5) 3800401/1920for k N M    , 

 

 5,  (6) 44551057 / 384,  and (6) 156000923/15360for k N M    , 

 

and so on for 6k  . Whence, using the computed coefficients, we have that: 
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0

2 3 4 5 6

( ) ( )

9145 17785 4440661 44551057
      10 105

12 4 192 384

k

k

n t N k t

t t t t t t







      


(23) 

 

and  

            0

2 3 4 5 6

( ) ( )

69 757 47767 3800401 156000923
      1

8 12 128 1920 15360

k

k

m t M k t

t t t t t t







       


(24) 

 

 

 

For simplicity and ease of computation with regard to Pade approximant, we write 

the following in decimal forms: 

 

 
2 3 4 5 6( ) 10 105 762 0 4446 3 23128 4 116018 4n t t t t t t t            (25) 

 

and  

 
2 3 4 5 6( ) 1 8 625 63 1 373 2 1979 4 10156 3m t t t t t t t                 (26) 

 
3.2      The Differential Transform-Pade Approximant Technique (DTPAT) 
The next task is to find the Pade approximant of the results in (25) and (26) 

obtained using the differential transform technique. To do this, we invoke (17) 

and consider a case when 3 , thus, (25) and (26) become: 

 

3

6
0

0( )3
0

0

( ) ( ) 3 3 ,  with 1

j

j

jk

n t
ik

i

i

A t

n t N k t P B

B t







      





                            (27)    

 

 

and  

 

3

6
0

0( )3
0

0

( ) ( ) 3 3 ,  with 1

j

j

jk

m t
ik

i

i

C t

m t M k t P D

D t







      





                  (28) 
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Thus, 

 

2 3
2 3 40 1 2 3

( ) 2 3

1 2 3

5 6

3 3 10 105 762 0 4446 3
1

                                                          23128 4 116018 4

n t

A At A t A t
P t t t t

B t B t B t

t t

  
            

   

 

  

2 3 2 3

0 1 2 3 1 1 2

4

1 2 3

5

1 2 3

0 10 ( 105 10 ) (762 105 10 )

                                     ( 4446 3 762 105 10 )

                                     (23128 4 4446 3 762 105 )

         

A At A t A t t B t B B t

B B B t

B B B t

          

     

     

6

1 2 3                            ( 116018 4 23128 4 4446 3 762 )B B B t         

 
 

So, for comparison of coefficients: 

 

 
6

1 2 3:  116018 4 23128 4 4446 3 762 0t B B B                           (29) 

 
5

1 2 3:  23128 4 4446 3 762 105 0t B B B                          (30) 

 
4

1 2 3:  4446 3 762 105 10 0t B B B                           (31) 

 
3

1 2 3:  762 105 10t B B A                          (32) 

 
2

1 2:  105 10t B A                          (33) 

 
1

1:  10t A                          (34) 

 
0

0:  0t A                          (35) 

Solving the above system of linear equations simultaneously yields the following: 

 

0 1 2 3 0

1 2 3

0,  10,  1 471549,  63 71662,  1,  

10 64715,  41 9669,  and 73 96808

A A A A B

B B B

      

     
  

 

Therefore, 

 

3

2 3
0

( ) 3 2 3

0

10 1 471549 63 71662
3 3

1 10 64715 41 96679 73 96808

j

j

j

n t
i

i

i

A t
t t t

P
t t t

B t





   
          




                   (36)  
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Similarly, for (19): 

 

    

2 3

0 1 2 3

( ) 2 3

1 2 3

2 3 4 5 6

3 3
1

                 1 8 625 63 1 373 2 1979 4 10156 3

m t

C C t C t C t
P

D t D t D t

t t t t t t

  
      

           

  

   

 

2 3 2

0 1 2 3 1 1 2

3

1 2

4

1 2 3

1 ( 1 ) (8 625 )

                                     ( 63 1 8 625 )

                                     (373 2 63 1 8 625 )

                                  

C C t C t C t D t D D t

D D t

D D D t

          

     

      

5

1 2 3

6

1 2 3

   ( 1979.4 373 2 63 1 8 625 )

                                     (10156 3 1979 4 373 2 63 1 )

D D D t

D D D t

       

        

  

 

So, by equating the coefficients, we have: 

 
6

1 2 3:  10156 3 1979 4 373 2 63 1 0t D D D                                       (37) 

 
5

1 2 3:  1979 4 373 2 63 1 8 625 0t D D D                                        (38) 

 
4

1 2 3:  373 2 63 1 8 625 0t D D D                                       (39) 

 
3

1 2 3:  63 1 8 625t D D C                                       (40) 

 
2

1 2 2:  8 625t D D C                                       (41) 

 
1

1 1:  1t D C                                      (42) 

 
0

0:  1t C                                      (43) 

 

Solving the above system of linear equations simultaneously gives: 

 

0 1 2 3

0 1 2 3

1,  8 143324,  28 21359,  12 9707,

1,  9 143324,  28 73191,  and 44 069

C C C C

D D D D

       

      
  

 

Thus, 

 

3

2 3

0

( ) 3 2 3

0

1 8 143324 28 21359 12 9707
3 3

1 9 143324 28 73191 44 069

i

i

i

m t
i

i

i

C t
t t t

P
t t t

D t





     
          




                   (44) 
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It is obvious from (22) and (23) that { ( )}lim [3 3] [ 1,1]n t
t

P


   and 

{ ( )}lim [3 3] [ 1,1]m t
t

P


   since Pade approximants fluctuate between the interval 

[ 1,1]I    whenever the dependent variable tends to infinity [16]. 

 

4. Discussion of Results 
 

In this subsection, we shall compare our result with those obtained using other 

numerical methods. As such, the results of the: DTM in (25) and (26), HPM & 

MHPM in [12], and DTPAT in (36) and (44) will be discussed as follows:  

 
   Table 1: for the solutions of the systems 
 

Time t ( )n t  :DTM 

6-iterate 
 ( )

3 3
n t

P     ( )m t : DTM 

6-iterate 
 ( )

3 3
m t

P     

0.0 0.0000 0.000000 1.000000 1.000000 

0.1 0.71200 0.421534 0.950832 0.927764 

0.2 3.89600 0.475679 1.253915 0.843655 

0.3 14.1240 0.486822 5.389471 0.749064 

0.4 35.9680 0.497580 28.82667 0.657679 

0.5 74.0000 0.511581 114.9297 0.575128 

0.6 132.792 0.527443 358.1763 0.502544 

0.7 216.916 0.543796 934.6891 0.439300 

0.8 330.944 0.559808 2140.079 0.384245 

0.9 479.448 0.575049 4434.601 0.336175 

1.0 667.000 0.589332 8495.625 0.294007 

 

 
 

 
        Figure 1: Solution for n(t): DTM 6-iterate     

        (Series 1) & 
 ( )

3 3
n t

P    (Series 2) 

 

 

 
 

     Figure 2: Solution for m(t):  DTM 6- iterate     

      (Series1) & 
 ( )

3 3
n t

P     (Series 2)



414                                                                                                   S. O. Edeki et al. 

 

 

 

Concluding Remarks 
 

In this paper, we have introduced a hybrid numerical-analytical method (DTPAT), 

and applied it to a nonlinear biochemical reaction model (MICMENEKM). The 

numerical solutions obtained are in conformance with those obtained using the 

ADM, PIM, RK4, HPM, and MPHM. The DTPAT is very reliable and 

consistence even in a longer time frame and in a bigger interval; hence, a 

promising technique for both linear and nonlinear differential systems. 
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