Available online at www.sciencedirect.com

Existence results for a fourth order multipoint boundary value problem at resonance

S.A. Iyase
Department of Mathematics, Covenant University, Canaanland P.M.B. 1023, Ota, Ogun State, Nigeria

Received 1 November 2013; received in revised form 22 June 2015; accepted 15 August 2015

Abstract

In this paper we present some existence results for a fourth order multipoint boundary value problem at resonance. Our main tools are based on the coincidence degree theory of Mawhin. © 2015 Production and Hosting by Elsevier B.V. on behalf of Nigerian Mathematical Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Fourth order; Multipoint boundary value problem; Resonance; Coincidence degree

1. Introduction

In this paper, we shall discuss the solvability of the multipoint boundary value problem

$$
\begin{align*}
& x^{(i v)}(t)=f\left(t, x(t), x^{\prime}(t), x^{\prime \prime}(t), x^{\prime \prime \prime}(t)\right) \tag{1.1}\\
& x(0)=\sum_{i=1}^{m-2} \alpha_{i} x\left(\xi_{i}\right) \quad x^{\prime}(0)=x^{\prime \prime}(0)=0, \quad x(1)=x(\eta) \tag{1.2}
\end{align*}
$$

where $f:[0,1] \times \mathbb{R}^{4} \rightarrow \mathbb{R}$ is a continuous function $\alpha_{i}(1 \leq i \leq m-2) \in \mathbb{R}, 0<\xi_{1} \leq \xi_{2} \leq \cdots<\xi_{m-2}<1$ and $\eta \in(0,1)$.

Multipoint boundary value problems of ordinary differential equations arise in a variety of different areas of Applied Mathematics, Physics and Engineering. For example Bridges of small sizes are often designed with two supported points, which leads to a standard two-point boundary condition and bridges of Large sizes are sometimes contrived with multipoint supports which corresponds to a multipoint boundary condition.

Boundary value problem (1.1)-(1.2) is called a problem at resonance if $L x=x^{(i v)}(t)=0$ has non-trivial solutions under the boundary conditions (1.2) that is, when $\operatorname{dim} \operatorname{ker} L \geq 1$. On the interval $[0,1]$ second order and third order boundary value problems at resonance have been studied by many authors (see [1-4]) and references therein.

Peer review under responsibility of Nigerian Mathematical Society.
E-mail address: driyase2011@yahoo.com.

ARTICLE IN PRESS

Although the existing literature on solutions of multipoint boundary value problems is quite large, to the best of our knowledge there are few papers that have investigated the existence of solutions of fourth order multipoint boundary value problems at resonance. Our motivation for this paper is derived from these previous results.

In what follows, we shall use the classical spaces $C^{k}[0,1], k=1,2,3$. For $x \in C^{3}[0,1]$ we use the norm $|x|_{\infty}=\max _{t \in[0,1]}|x(t)|$. We denote the norm in $L^{1}[0,1]$ by $\left.\left|\left.\right|_{1}\right.$ and on $L^{2}[0,1]$ by $|\right|_{2}$. We will use the Sobolev spaces $W^{4,1}(0,1)$ which may be defined by

$$
W^{4,1}(0,1)=\left\{x:[0,1] \longrightarrow \mathbb{R}: x, x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right\}
$$

are absolutely continuous on $[0,1]$ with $x^{(i v)} \in L^{1}[0,1]$.

2. Preliminaries

Consider the linear equation

$$
\begin{align*}
L x & =x^{(i v)}(t)=0 \tag{2.1}\\
x(0) & =\sum_{i=1}^{m-2} \alpha_{i} x\left(\xi_{i}\right), \quad x^{\prime}(0)=x^{\prime \prime}(0)=0, \quad x(1)=x(\eta) . \tag{2.2}
\end{align*}
$$

If we consider a solution of the form

$$
\begin{equation*}
x(t)=\sum_{i=0}^{3} a_{i} t^{i}, \quad a_{i} \in \mathbb{R} \tag{2.3}
\end{equation*}
$$

Then this solution exists if and only if

$$
\begin{equation*}
a_{3}\left(1-\eta^{3}\right)=0, \quad \eta \in(0,1) . \tag{2.4}
\end{equation*}
$$

In this case (2.1)-(2.2) has non-trivial solutions.
Hence if $L x=y$ then L is not invertible. Therefore, the problem is said to be at resonance. We shall prove existence results for the boundary value problem (1.1)-(1.2) under the condition (2.4).

We shall apply the continuation Theorem of Mawhin [5] to get our results. We present some preliminaries needed to understand this continuation Theorem.

Let X and Z be real Banach spaces and $L: \operatorname{dom} L \subset X \longrightarrow Z$ be a linear operator which is Fredholm of index zero and $P: X \longrightarrow X, Q: Z \longrightarrow Z$ be continuous projections such that

$$
\operatorname{Im} P=\operatorname{ker} L, \operatorname{ker} Q=\operatorname{Im} L \quad \text { and } \quad X=\operatorname{ker} L \oplus \operatorname{ker} P
$$

$Z=\operatorname{Im} L \oplus \operatorname{Im} Q$. It follows that $\left.L\right|_{d o m L \cap \mathrm{ker} P} \longrightarrow \operatorname{Im} L$ is invertible and we write the inverse of this map by K_{p}. Let Ω be an open bounded subset of X such that $\operatorname{dom} L \cap \Omega \neq \Phi$ and let $N: \bar{\Omega} \longrightarrow Z$ be an L-compact mapping, that is, the maps $Q N(\bar{\Omega})$ is bounded and $K_{p}(I-Q) N: \bar{\Omega} \longrightarrow X$ is compact. In order to obtain our existence results we shall use the following fixed point Theorem of Mawhin.

Theorem 2.1 (See [5]). Let L be a Fredholm operator of index zero and let N be L-compact on $\bar{\Omega}$. Assume that the following conditions are satisfied
(i) $L x \neq \lambda N x$ for every $(x, \lambda) \in[(\operatorname{dom} L \backslash \operatorname{ker} L) \cap \partial \Omega \times(0,1)]$
(ii) $N x \notin \operatorname{ImL}$ for every $x \in \operatorname{ker} L \cap \partial \Omega$
(iii) $\operatorname{deg}\left(\left.J Q N\right|_{\operatorname{ker} L \cap a \Omega} ; \Omega \cap \operatorname{ker} L, 0\right) \neq 0$ where $Q: Z \rightarrow Z$ is a continuous projection as above and $J: \operatorname{Im} Q \rightarrow$ $\operatorname{ker} L$ is an isomorphism. Then the equation $L x=N x$ has at least one solution in dom $L \cap \bar{\Omega}$.
We shall prove existence results for the boundary value problem (1.1)-(1.2) when

$$
\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}^{3}=0 \quad \text { and } \quad \sum_{i=1}^{m-2} \alpha_{i}=1
$$

Let $X=C^{3}[0,1], Z=L^{1}[0,1]$. Let $L: \operatorname{dom} L \subset X \longrightarrow Z$ be defined by

$$
L x=x^{(i v)}
$$

where

$$
\operatorname{dom} L=\left\{x \in W^{4,1}(0,1), x(0)=\sum_{i=1}^{m-2} \alpha_{i} x\left(\xi_{i}\right), x^{\prime}(0)=x^{\prime \prime}(0)=0, x(1)=x(\eta)\right\}
$$

We define $N: X \longrightarrow Z$ by setting $N=f\left(t, x(t), x^{\prime}(t), x^{\prime \prime}(t), x^{\prime \prime \prime}(t)\right)$. Then the boundary value problem (1.1)-(1.2) can be put in the form

$$
\begin{equation*}
L x=N x \tag{2.5}
\end{equation*}
$$

In what follows we shall use the following lemmas.
Lemma 2.1. If $\sum_{i=1}^{m-2} \alpha_{i}=1$ then there exists $l \in\{0,1,2, \ldots, m-4\}$ such that $\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}^{l+4} \neq 0$.
Proof. Follows the same procedure as in [1].
Lemma 2.2. If $\sum_{i=1}^{m-2} \alpha_{i}=1, \sum_{i=1}^{m-2} \alpha_{i} \xi_{i}^{3}=0$ then
(A) $\operatorname{ImL}=\left\{y \in Z: \sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{s} \int_{0}^{\tau_{2}} \int_{0}^{\tau_{1}} y(v) d v d \tau_{1} d \tau_{2} d s=0\right\}$
(B) $L: \operatorname{dom} L \subset X \longrightarrow Z$ is a Fredholm operator of index zero.

Proof. We will show that the problem

$$
\begin{equation*}
x^{(i v)}(t)=y \quad \text { for } y \in Z \tag{2.6}
\end{equation*}
$$

has a solution $x(t)$ satisfying

$$
\begin{equation*}
x(0)=\sum_{i=1}^{m-2} \alpha_{i} x\left(\xi_{i}\right), \quad x^{\prime}(0)=x^{\prime \prime}(0)=0, \quad x(1)=x(\eta) \tag{2.7}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{s} \int_{0}^{\tau_{2}} \int_{0}^{\tau_{1}} y(v) d v d \tau_{1} d \tau_{2} d s=0 \tag{2.8}
\end{equation*}
$$

Suppose (2.6) has a solution $x(t)$ satisfying (2.7) then from (2.6) we have

$$
x(t)=x(0)+x^{\prime}(0) t+\frac{t^{2}}{2} x^{\prime \prime}(0)+\frac{t^{3}}{6} x^{\prime \prime \prime}(0)+\int_{0}^{t} \int_{0}^{s} \int_{0}^{\tau_{2}} \int_{0}^{\tau_{1}} y(v) d v d \tau_{1} d \tau_{2} d s
$$

$$
x(t)=c-\frac{t^{3}}{1-\eta^{3}} \int_{\eta}^{1} \int_{0}^{s} \int_{0}^{\tau_{2}} \int_{0}^{\tau_{1}} y(v) d v d \tau_{1} d \tau_{2} d s+\int_{0}^{t} \int_{0}^{s} \int_{0}^{\tau_{2}} \int_{0}^{\tau_{1}} y(v) d v d \tau_{1} d \tau_{2} d s
$$

where c is an arbitrary constant. Then $x(t)$ is a solution of (2.6) with

$$
\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{s} \int_{0}^{\tau_{2}} \int_{0}^{\tau_{1}} y(v) d v d \tau_{1} d \tau_{2} d s=0
$$

ARTCEㅡN PRESS

For $y \in Z$, we define the projection $Q: Z \longrightarrow Z$ by

$$
(Q y)(t)=\frac{A}{\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}^{l+4}} t^{l}\left(\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{s} \int_{0}^{\tau_{2}} \int_{0}^{\tau_{1}} y(v) d v d \tau_{1} d \tau_{2} d s\right)
$$

where

$$
\begin{equation*}
A=(l+1)(l+2)(l+3)(l+4) . \tag{2.9}
\end{equation*}
$$

Let $y_{1}=y-Q y$, that is $y_{1} \in \operatorname{ker} Q$. Then by direct calculations we have

$$
\begin{aligned}
& \sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{s} \int_{0}^{\tau_{2}} \int_{0}^{\tau_{1}} y_{1}(v) d v d \tau_{1} d \tau_{2} d s \\
& \quad=\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{s} \int_{0}^{\tau_{2}} \int_{0}^{\tau_{1}} y(v) d v d \tau_{1} d \tau_{2} d s\left(1-\frac{A}{\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}^{l+4}} \int_{0}^{\xi_{i}} \int_{0}^{s} \int_{0}^{\tau_{2}} \int_{0}^{\tau_{1}} v^{l} d v d \tau_{1} d \tau_{2} d s\right)=0
\end{aligned}
$$

So, $y_{1} \in \operatorname{Im} L$. Hence $Z=\operatorname{Im} L+\operatorname{Im} Q$. Since $\operatorname{Im} L \cap \operatorname{Im} Q=\{0\}$ we obtain

$$
Z=I m L \oplus \operatorname{Im} Q
$$

Now ker $L=\{x \in \operatorname{dom} L: x=c, c \in \mathbb{R}\}$.
Hence,
$\operatorname{dim} \operatorname{ker} L=\operatorname{dim} \operatorname{Im} Q=1$.
Hence L is a Fredholm operator of index zero.
Let $P: X \rightarrow X$ be defined by

$$
P x(t)=x(0), \quad t \in[0,1] .
$$

Lemma 2.3. If $\sum_{i=1}^{m-2} \alpha_{i}=1, \sum_{i=1}^{m-2} \alpha_{i} \xi_{i}^{3}=0$. Then the generalized inverse $K p: I m L \longrightarrow d o m L \cap \operatorname{ker} P$ can be written as

$$
K_{p} y(t)=\frac{-t^{3}}{1-\eta^{3}} \int_{\eta}^{1} \int_{0}^{s} \int_{0}^{\tau_{1}} \int_{0}^{\tau_{2}} y(v) d v d \tau_{1} d \tau_{2} d s+\int_{0}^{t} \int_{0}^{s} \int_{0}^{\tau_{1}} \int_{0}^{\tau_{2}} y(v) d v d \tau_{1} d \tau_{2} d s .
$$

Proof. For any $y \in \operatorname{Im} L$, we have

$$
\left(L K_{p}\right) y(t)=\left(K_{p} y(t)\right)^{(i v)}=y(t)
$$

and for $x \in d o m L \cap \operatorname{ker} P$, one has

$$
\begin{aligned}
\left(K_{p} L\right) x(t)= & K_{p}\left(x^{i v}\right)=\frac{-t^{3}}{1-\eta^{3}} \int_{\eta}^{1} \int_{0}^{s} \int_{0}^{\tau_{2}} \int_{0}^{\tau_{1}} x^{(i v)}(v) d v d \tau_{1} d \tau_{2} d s \\
& +\int_{0}^{t} \int_{0}^{s} \int_{0}^{\tau_{2}} \int_{0}^{\tau_{1}} x^{(i v)}(v) d v d \tau_{1} d \tau_{2} d s \\
= & \frac{-t^{3}}{1-\eta^{3}}\left[x(1)-x(\eta)-\left(1-\eta^{3}\right) x^{\prime}(0)-\frac{\left(1-\eta^{2}\right)}{2} x^{\prime \prime}(0)-\frac{\left(1-\eta^{3}\right)}{6} x^{\prime \prime \prime}(0)\right] \\
& +x(t)-x(0)-t x^{\prime}(0)-\frac{t^{2}}{2} x^{\prime \prime}(0)-t^{3} x^{\prime \prime \prime}(0) .
\end{aligned}
$$

Since $x \in \operatorname{domL} \cap \operatorname{ker} P, P x(t)=x(0)=0$. Also $x^{\prime}(0)=x^{\prime \prime}(0)=0$.

Thus,

$$
\left(K_{p} L\right) x(t)=x(t)
$$

Hence,

$$
K_{p}=\left(\left.L\right|_{d o m L \cap \operatorname{ker} P}\right)^{-1}
$$

3. Main results

Theorem 3.1. Let $\sum_{i=1}^{m-2} \alpha_{i}=1, \sum_{i=1}^{m-2} \alpha_{i} \xi_{i}^{3}=0$ and let $f:[0,1] \times \mathbb{R}^{4} \rightarrow \mathbb{R}$ be a continuous function and suppose that f has the decomposition

$$
f(t, x, y, w, z)=g(t, x, y, w, z)+h(t, x, y, w, z)
$$

$\left(\mathrm{H}_{1}\right)$ Assume there exists $M_{1}>0$ such that for all $x \in \operatorname{dom} L \backslash \operatorname{ker} L$ if $x(t)>M_{1}, t \in[0,1]$ then

$$
\begin{equation*}
\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{s} \int_{0}^{\tau_{2}} \int_{0}^{\tau_{1}}\left[f\left(v, x(v), x^{\prime}(v), x^{\prime \prime}(v), x^{\prime \prime \prime}(v)\right)\right] d v d \tau_{2} d \tau_{2} d s \neq 0 \tag{3.1}
\end{equation*}
$$

$\left(\mathrm{H}_{2}\right)$

$$
\begin{equation*}
z g(t, x, y, w, z) \leq 0 \quad \text { for all }(t, x, y, w, z) \in[0,1] \times \mathbb{R}^{4} \tag{3.2}
\end{equation*}
$$

(a)

$$
\begin{equation*}
|h(t, x, y, w, z)| \leq M\left\{|x|^{r}+|y|+|w|+|z|^{\theta}\right\} \quad \text { for } 0<r, \theta<1 \tag{3.3}
\end{equation*}
$$

(b)

$$
\begin{equation*}
z[f(t, x, y, w, z)] \leq\left(|z|^{2}+1\right)[D(t, x, y, w)+m(t)] \tag{3.4}
\end{equation*}
$$

where $D(t, x, y, w)$ is bounded on bounded sets and $m(t) \in L^{1}[0,1]$.
$\left(\mathrm{H}_{3}\right)$ There exists $N^{*}>0$ such that for all $c \in \mathbb{R},|c|>N^{*}$ then either

$$
\begin{equation*}
\frac{c A}{\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}^{l+4}} \cdot t^{l} \sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{s} \int_{0}^{\tau_{2}} \int_{0}^{\tau_{1}}[f(v, c, 0,0,0)] d v d \tau_{1} d \tau_{2} d s<0 \tag{3.5}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{c A}{\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}^{l+4}} \cdot t^{l} \sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{s} \int_{0}^{\tau_{2}} \int_{0}^{\tau_{1}}[f(v, c, 0,0,0)] d v d \tau_{1} d \tau_{2} d s>0 \tag{3.6}
\end{equation*}
$$

Then (1.1)-(1.2) has at least one solution in $C^{3}[0,1]$ provided

$$
M<\frac{B \pi^{2}}{4\left(B^{2}+\pi^{2}+4\right)}
$$

for $x \in \Omega_{1}$. Since $L x=\lambda N x$, then $\lambda \neq 0, N x \in \operatorname{Im} L=\operatorname{ker} Q$ hence

$$
\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{s} \int_{0}^{\tau_{2}} \int_{0}^{\tau_{1}}\left\{f\left(v, x(v), x^{\prime}(v), x^{\prime \prime}(v), x^{\prime \prime \prime}(v)\right)\right\} d v d \tau_{1} d \tau_{2} d s=0
$$

ARTICLE IN PRESS

Thus by $\left(\mathrm{H}_{1}\right)$ there exists $t_{0} \in[0,1]$ such that $\left|x\left(t_{0}\right)\right| \leq M_{1}$. Therefore,

$$
\begin{align*}
& |x(t)| \leq\left|x\left(t_{0}\right)\right|+\int_{t_{0}}^{t}\left|x^{\prime}(s)\right| d s, \quad t \in[0,1] \\
& |x|_{\infty} \leq M_{1}+\left|x^{\prime}\right|_{\infty} \tag{3.7}
\end{align*}
$$

We note that for $x(1)=x(\eta)$ there exists $t_{1} \in(\eta, 1)$ such that $x^{\prime}\left(t_{1}\right)=0$ and from $x^{\prime}\left(t_{1}\right)=x^{\prime}(0)=0$ there exists $t_{2} \in\left(0, t_{1}\right)$ such that $x^{\prime \prime}\left(t_{2}\right)=0$ and $x^{\prime \prime}(0)=x^{\prime \prime}\left(t_{2}\right)$ there exists $t_{3} \in\left(0, t_{2}\right)$ such that $x^{\prime \prime \prime}\left(t_{3}\right)=0$. Hence for $x \in \Omega_{1}$ we have

$$
\begin{aligned}
& \int_{t_{3}}^{t} x^{\prime \prime \prime}(s) x^{(i v)}(s) d s=\lambda \int_{t_{3}}^{t} x^{\prime \prime \prime}(s) g\left(s, x, x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right) d s+\lambda \int_{t_{3}}^{t} x^{\prime \prime \prime}(s) h\left(s, x, x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right) d s \\
& \frac{1}{2}\left|x^{\prime \prime \prime}\right|_{2}^{2} \leq \int_{0}^{1}\left|x^{\prime \prime \prime}\right|\left|h\left(t, x, x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right)\right| d t .
\end{aligned}
$$

Using the Cauchy inequality

$$
|a b| \leq \frac{\varepsilon a^{2}}{2}+\frac{b^{2}}{2 \varepsilon} \quad \text { for } \varepsilon>0
$$

we have

$$
\int_{0}^{1}\left|x^{\prime \prime \prime}\right|\left|h\left(t, x, x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right)\right| d t \leq \frac{\varepsilon}{2} \int_{0}^{1}\left|x^{\prime \prime \prime}\right|^{2} d t+\frac{1}{2 \varepsilon} \int_{0}^{1}\left|h\left(t, x, x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right)\right| d t
$$

From condition $\left(\mathrm{H}_{2 a}\right)$ we obtain the estimate

$$
|h(t, x, y, w, z)|^{2} \leq 4 M^{2}\left\{|x|^{2 r}+|y|^{2}+|w|^{2}+|z|^{2 \theta}\right\}
$$

Therefore,

$$
\frac{1}{2}\left|x^{\prime \prime \prime}\right|_{2}^{2}-\frac{\varepsilon}{2}\left|x^{\prime \prime \prime}\right|_{2}^{2} \leq \frac{2 M^{2}}{\varepsilon}|x|_{2}^{2 r}+\frac{2 M^{2}}{\varepsilon}\left|x^{\prime \prime \prime}\right|_{2}^{2 \theta}+\frac{2 M^{2}}{\varepsilon}\left|x^{\prime}\right|_{2}^{2}+\frac{2 M^{2}}{\varepsilon}\left|x^{\prime \prime}\right|_{2}^{2}
$$

From Holder's inequality we get

$$
\left(\frac{1}{2}-\frac{\varepsilon}{2}-\frac{32 M^{2}}{\varepsilon \pi^{4}}-\frac{8 M^{2}}{\varepsilon \pi^{2}}\right)\left|x^{\prime \prime \prime}\right|_{2}^{2} \leq \frac{2 M^{2}}{\varepsilon}\left(|x|_{2}^{2 r}+\left|x^{\prime \prime \prime}\right|_{2}^{2 \theta}\right)_{1}
$$

Since $0 \leq \theta, r<1$ we infer the existence of a constant M_{2} such that

$$
\begin{equation*}
\left|x^{\prime \prime \prime}\right|_{2}^{2}<M_{2} \tag{3.8}
\end{equation*}
$$

provided

$$
\begin{equation*}
\frac{1}{2}>\frac{\varepsilon}{2}+\frac{32 M^{2}}{\varepsilon \pi^{4}}+\frac{8 M^{2}}{\varepsilon \pi^{2}} \tag{3.9}
\end{equation*}
$$

The choice $\varepsilon=\frac{4 M \sqrt{4+\pi^{2}}}{\pi}$ minimizes the right hand side of (3.9) with a minimum value $\frac{2 M\left(B+\pi^{2}+4\right)}{B \pi^{2}}$ where $B=\sqrt{4+\pi^{2}}$.

Hence (3.8) holds provided

$$
M<\frac{B \pi^{2}}{4\left(B^{2}+\pi^{2}+4\right)}
$$

From (3.8) and $x^{\prime}(0)=x^{\prime \prime}(0)=0$ we get

$$
\begin{align*}
& \left|x^{\prime}\right|_{\infty}<M_{3} \quad \text { for some } M_{3}>0 \tag{3.10}\\
& \left|x^{\prime \prime}\right|_{\infty}<M_{4}, \quad M_{4}>0 \tag{3.11}
\end{align*}
$$

and from (3.7) we derive

$$
\begin{equation*}
|x|_{\infty} \leq M_{1}+\left|x^{\prime}\right|_{\infty}<M_{1}+M_{3}=M_{5} . \tag{3.12}
\end{equation*}
$$

Now using condition $\left(H_{2 b}\right)$ of Theorem 3.1 we get

$$
\frac{x^{\prime \prime \prime} x^{i v}}{\left|x^{\prime \prime \prime}\right|^{2}+1} \leq D\left(t, x, x^{\prime}, x^{\prime \prime}\right)+m(t)
$$

and hence

$$
\begin{equation*}
\log _{e}\left|x^{\prime \prime \prime \prime}\right| \leq \int_{t_{3}}^{t} \frac{x^{\prime \prime \prime}(s) x^{(i v)}(s)}{\left|x^{\prime \prime \prime}\right|^{2}+1} d s=\left[\frac{1}{2} \log _{e}\left(\left|x^{\prime \prime \prime}(s)\right|^{2}+1\right)\right]_{t_{3}}^{t} \leq D+|m|_{1} \tag{3.13}
\end{equation*}
$$

where the constant D depends on M_{3}, M_{4} and M_{5}. Since $x^{\prime \prime \prime}\left(t_{3}\right)=0$ we infer from (3.13) that

$$
\begin{equation*}
\left|x^{\prime \prime \prime}\right|_{\infty}<e^{N_{0}}=M_{6} \tag{3.14}
\end{equation*}
$$

where $N_{0}=D+|m|_{1}$.
Hence

$$
\|x\|=\max \left\{|x|_{\infty},\left|x^{\prime}\right|_{\infty},\left|x^{\prime \prime}\right|_{\infty},\left|x^{\prime \prime \prime}\right|_{\infty} \leq \max \left\{M_{4}, M_{3}, M_{5}, M_{6}\right\}\right\} .
$$

Therefore, Ω_{1} is bounded.
Let

$$
\Omega_{2}=\{x \in \operatorname{ker} L: N x \in \operatorname{Im} L\} .
$$

For $x \in \Omega_{2}$, we have $x=c \in \mathbb{R}$, thus

$$
\begin{equation*}
\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{s} \int_{0}^{\tau_{2}} \int_{0}^{\tau_{1}}[f(v, x(v), 0,0,0)] d v d \tau_{1} d \tau_{2} d s=0 \tag{3.15}
\end{equation*}
$$

Then we have by H_{3} and (3.15) that

$$
\|x\|=c \leq N^{*}
$$

which shows that Ω_{2} is bounded.
We define the isomorphism $J: \operatorname{Im} Q \longrightarrow \operatorname{ker} L$ by

$$
J(c)=c, \quad c \in \mathbb{R} .
$$

If (3.5) holds we set

$$
\Omega_{3}=\{x \in \operatorname{ker} L:-\lambda x+(1-\lambda) J Q N x=0\}, \lambda \in[0,1]
$$

For $c_{0} \in \Omega_{3}$, we obtain

$$
\lambda c_{0}=\frac{(1-\lambda) A}{\sum_{i=0}^{m-2} \alpha_{i} \xi_{i}^{l+4}} \cdot t^{l}\left(\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{s} \int_{0}^{\tau_{2}} \int_{0}^{\tau_{1}}\left[f\left(v, c_{0}, 0,0,0\right)\right] d v d \tau_{1} d \tau_{2} d s\right)
$$

if $\lambda=1$ then $c_{0}=0$ and if $\left|c_{0}\right|>N^{*}$ then from (3.5) we have

$$
\lambda c_{0}^{2}=\frac{(1-\lambda) c_{0} A}{\sum_{i=0}^{m-2} \alpha_{i} \xi_{i}^{l+4}} \cdot t^{l}\left(\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{s} \int_{0}^{\tau_{2}} \int_{0}^{\tau_{1}}\left[f\left(v, c_{0}, 0,0,0\right)\right] d v d \tau_{1} d \tau_{2} d s\right)<0
$$

Following the above argument we can show that Ω_{3} is bounded.

ARTICLE IN PRESS

Let Ω be a bounded open subset of X such that $\cup_{i=1}^{3} \Omega_{i} \subset \Omega$. By the Arzela-Ascoli Theorem we can show that $K_{p}(I-Q) N: \Omega \longrightarrow X$ is compact [5]. So N is L-compact. Thus we have shown that
(i) $L x \neq \lambda N x$ for every $(x, \lambda) \in\left[\operatorname{dom} L \backslash_{\operatorname{ker} L} \cap \partial \Omega \times(0,1)\right]$
(ii) $N x \notin \operatorname{Im} L$ for every $x \in \operatorname{ker} L \cap \partial \Omega$.

Finally we shall prove that (iii) of Theorem 2.1 is satisfied.
Define

$$
H(x, \lambda)= \pm \lambda x+(1-\lambda) Q N x,
$$

we have

$$
H(x, 1)= \pm x, \quad H(x, 0)=Q N x .
$$

Thus $H(x, \lambda)$ is a homotopy from the identity $\pm I$ to $Q N$ and is such that $H(x, \lambda) \neq 0$ for every $x \in \partial \Omega \cap \operatorname{ker} L$. Therefore

$$
\begin{aligned}
\operatorname{deg}\left(\left.J Q N\right|_{\text {ker } L \cap \partial \Omega}, \Omega \cap \operatorname{ker} L, 0\right) & =\operatorname{deg}(H(\cdot, 0), \Omega \cap \operatorname{ker} L, 0) \\
& =\operatorname{deg}(H(\cdot, 1), \Omega \cap \operatorname{ker} L, 0) \\
& =\operatorname{deg}(\pm I, \Omega \cap \operatorname{ker} L, 0) \neq 0 .
\end{aligned}
$$

Then by Theorem 2.1 $L x=N x$ has at least one solution in $\operatorname{dom} L \cap \bar{\Omega}$. In other words (1.1)-(1.2) has at least one solution in $C^{3}[0,1]$.

Uncited references

References

[1] Du Z, Lin Xiaojie, Ge Weigao. On a third order multipoint boundary value problem at resonance. J. Math. Anal. Appl. 2005;302:217-29.
[2] Feng W, Webb JRL. Solvability of three-point boundary value problems at resonance. Nonlinear Anal. TMA 2001;47:2407-18.
[3] Gupta CP. A second order m-point boundary value problem at resonance. Nonlinear Anal. TMA 1995;24:1483-9.
[4] Nagle RK, Pothoven KL. On a third-order nonlinear bvp at resonance. J. Math. Anal. Appl. 1995;195:148-59.
[5] Mawhin J. Topological degree methods in non-linear bvp. In: NSF CBMS regional conference series in math. 40. Providence: American Math. Soc.; 1979.
[6] Agarwal R. On fourth order bvp arising on beam analysis. Differential Integral Equations 1989;2:91-110.
[7] Aftabizadeh AR. Existence and uniqueness theorems for fourth order boundary value problems. J. Math. Anal. Appl. 1986;116:415-26.
[8] Aftabizadeh A, Gupta CP, Xu J. Existence and uniqueness theorems for three points bvp. SIAM J. Math. Anal. Appl. 1989;20(3):716-26.
[9] Feng W, Webb JR. Solvability of m-point bvp with nonlinear growth. J. Math. Anal. Appl. 1997;212:467-80.
[10] Gupta CP. Existence and uniqueness theorems for the bending of an elastic beam equation. Appl. Anal. 1988;926:289-304.
[11] Iyase SA. Existence and Uniqueness theorems for a class of three point fourth-order boundary value problems. J. Nigerian Math. Soc. 2010; 29:239-50
[12] Iyase SA. Existence and uniqueness of solutions of a fourth order four point bvp. J. Nigerian Math. Soc. 1999;18:31-40.
[13] Liu B. Positive solutions of fourth order two point bvp. Appl. Math. Comput. 2004;148:107-20.

