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Abstract 3

In this paper we present some existence results for a fourth order multipoint boundary value problem at resonance. Our main 4

tools are based on the coincidence degree theory of Mawhin. 5
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1. Introduction 9

In this paper, we shall discuss the solvability of the multipoint boundary value problem 10

x (iv)(t) = f (t, x(t), x ′(t), x ′′(t), x ′′′(t)) (1.1) 11

x(0) =

m−2
i=1

αi x(ξi ) x ′(0) = x ′′(0) = 0, x(1) = x(η) (1.2) 12

where f : [0, 1] × R4
→ R is a continuous function αi (1 ≤ i ≤ m − 2) ∈ R, 0 < ξ1 ≤ ξ2 ≤ · · · < ξm−2 < 1 and 13

η ∈ (0, 1). 14

Multipoint boundary value problems of ordinary differential equations arise in a variety of different areas of 15

Applied Mathematics, Physics and Engineering. For example Bridges of small sizes are often designed with two 16

supported points, which leads to a standard two-point boundary condition and bridges of Large sizes are sometimes 17

contrived with multipoint supports which corresponds to a multipoint boundary condition. 18

Boundary value problem (1.1)–(1.2) is called a problem at resonance if Lx = x (iv)(t) = 0 has non-trivial solutions 19

under the boundary conditions (1.2) that is, when dim ker L ≥ 1. On the interval [0, 1] second order and third order 20

boundary value problems at resonance have been studied by many authors (see [1–4]) and references therein. 21
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Although the existing literature on solutions of multipoint boundary value problems is quite large, to the best of our1

knowledge there are few papers that have investigated the existence of solutions of fourth order multipoint boundary2

value problems at resonance. Our motivation for this paper is derived from these previous results.3

In what follows, we shall use the classical spaces Ck
[0, 1], k = 1, 2, 3. For x ∈ C3

[0, 1] we use the norm4

|x |∞ = maxt∈[0,1] |x(t)|. We denote the norm in L1
[0, 1] by | |1 and on L2

[0, 1] by | |2. We will use the Sobolev5

spaces W 4,1(0, 1) which may be defined byQ26

W 4,1(0, 1) = {x : [0, 1] −→ R : x, x ′, x ′′, x ′′′
}7

are absolutely continuous on [0, 1] with x (iv)
∈ L1

[0, 1].8

2. Preliminaries9

Consider the linear equation10

Lx = x (iv)(t) = 0 (2.1)11

x(0) =

m−2
i=1

αi x(ξi ), x ′(0) = x ′′(0) = 0, x(1) = x(η). (2.2)12

If we consider a solution of the form13

x(t) =

3
i=0

ai t
i , ai ∈ R. (2.3)14

Then this solution exists if and only if15

a3(1 − η3) = 0, η ∈ (0, 1). (2.4)16

In this case (2.1)–(2.2) has non-trivial solutions.17

Hence if Lx = y then L is not invertible. Therefore, the problem is said to be at resonance. We shall prove existence18

results for the boundary value problem (1.1)–(1.2) under the condition (2.4).19

We shall apply the continuation Theorem of Mawhin [5] to get our results. We present some preliminaries needed20

to understand this continuation Theorem.21

Let X and Z be real Banach spaces and L : domL ⊂ X −→ Z be a linear operator which is Fredholm of index22

zero and P : X −→ X, Q : Z −→ Z be continuous projections such that23

I m P = ker L , ker Q = I mL and X = ker L ⊕ ker P24

Z = I mL ⊕ I m Q. It follows that L|domL∩ker P −→ I mL is invertible and we write the inverse of this map by K p.25

Let Ω be an open bounded subset of X such that domL ∩ Ω ≠ Φ and let N : Ω̄ −→ Z be an L-compact mapping,26

that is, the maps QN (Ω̄) is bounded and K p(I − Q)N : Ω̄ −→ X is compact. In order to obtain our existence results27

we shall use the following fixed point Theorem of Mawhin.28

Theorem 2.1 (See [5]). Let L be a Fredholm operator of index zero and let N be L-compact on Ω̄ . Assume that the29

following conditions are satisfied30

(i) Lx ≠ λN x for every (x, λ) ∈ [(domL\ker L) ∩ ∂Ω × (0, 1)]31

(ii) N x ∉ I mL for every x ∈ ker L ∩ ∂Ω32

(iii) deg(J QN |ker L∩∂Ω ;Ω ∩ ker L , 0) ≠ 0 where Q : Z → Z is a continuous projection as above and J : I m Q →33

ker L is an isomorphism. Then the equation Lx = N x has at least one solution in domL ∩ Ω̄ .34

We shall prove existence results for the boundary value problem (1.1)-(1.2) when35

m−2
i=1

αiξ
3
i = 0 and

m−2
i=1

αi = 1.36

Let X = C3
[0, 1], Z = L1

[0, 1]. Let L : domL ⊂ X −→ Z be defined by37

Lx = x (iv)
38
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where 1

domL =


x ∈ W 4,1(0, 1), x(0) =

m−2
i=1

αi x(ξi ), x ′(0) = x ′′(0) = 0, x(1) = x(η)


. 2

We define N : X −→ Z by setting N = f (t, x(t), x ′(t), x ′′(t), x ′′′(t)). Then the boundary value problem (1.1)–(1.2) 3

can be put in the form 4

Lx = N x . (2.5) 5

In what follows we shall use the following lemmas. 6

Lemma 2.1. If
m−2

i=1 αi = 1 then there exists l ∈ {0, 1, 2, . . . , m − 4} such that
m−2

i=1 αiξ
l+4
i ≠ 0. 7

Proof. Follows the same procedure as in [1]. � 8

Lemma 2.2. If
m−2

i=1 αi = 1,
m−2

i=1 αiξ
3
i = 0 then 9

(A) I mL =


y ∈ Z :

m−2
i=1 αi

 ξi
0

 s
0

 τ2
0

 τ1
0 y(v)dvdτ1dτ2ds = 0


10

(B) L : domL ⊂ X −→ Z is a Fredholm operator of index zero. 11

Proof. We will show that the problem 12

x (iv)(t) = y for y ∈ Z (2.6) 13

has a solution x(t) satisfying 14

x(0) =

m−2
i=1

αi x(ξi ), x ′(0) = x ′′(0) = 0, x(1) = x(η) (2.7) 15

if and only if 16

m−2
i=1

αi

 ξi

0

 s

0

 τ2

0

 τ1

0
y(v)dvdτ1dτ2ds = 0. (2.8) 17

Suppose (2.6) has a solution x(t) satisfying (2.7) then from (2.6) we have 18

x(t) = x(0) + x ′(0)t +
t2

2
x ′′(0) +

t3

6
x ′′′(0) +

 t

0

 s

0

 τ2

0

 τ1

0
y(v)dvdτ1dτ2ds. 19

Using
m−2

i=1 αi = 1,
m−2

i=1 αiξ
3
i = 0 we obtain 20

m−2
i=1

αi

 ξi

0

 s

0

 τ2

0

 τ1

0
y(v)dvdτ1dτ2ds = 0, for y ∈ Z . 21

Now suppose 22

m−2
i=1

αi

 ξi

0

 s

0

 τ2

0

 τ1

0
y(v)dvdτ1dτ2ds = 0. 23

Let 24

x(t) = c −
t3

1 − η3

 1

η

 s

0

 τ2

0

 τ1

0
y(v)dvdτ1dτ2ds +

 t

0

 s

0

 τ2

0

 τ1

0
y(v)dvdτ1dτ2ds 25

where c is an arbitrary constant. Then x(t) is a solution of (2.6) with 26

m−2
i=1

αi

 ξi

0

 s

0

 τ2

0

 τ1

0
y(v)dvdτ1dτ2ds = 0. 27
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For y ∈ Z , we define the projection Q : Z −→ Z by1

(Qy)(t) =
A

m−2
i=1

αiξ
l+4
i

t l


m−2
i=1

αi

 ξi

0

 s

0

 τ2

0

 τ1

0
y(v)dvdτ1dτ2ds


2

where3

A = (l + 1)(l + 2)(l + 3)(l + 4). (2.9)4

Let y1 = y − Qy, that is y1 ∈ ker Q. Then by direct calculations we have5

m−2
i=1

αi

 ξi

0

 s

0

 τ2

0

 τ1

0
y1(v)dvdτ1dτ2ds6

=

m−2
i=1

αi

 ξi

0

 s

0

 τ2

0

 τ1

0
y(v)dvdτ1dτ2ds

1 −
A

m−2
i=1

αiξ
l+4
i

 ξi

0

 s

0

 τ2

0

 τ1

0
vldvdτ1dτ2ds

 = 0.7

So, y1 ∈ I mL . Hence Z = I mL + I m Q. Since I mL ∩ I m Q = {0} we obtain8

Z = I mL ⊕ I m Q.9

Now ker L = {x ∈ domL : x = c, c ∈ R}.10

Hence,11

dim ker L = dim I m Q = 1.12

Hence L is a Fredholm operator of index zero. �13

Let P : X → X be defined by14

Px(t) = x(0), t ∈ [0, 1].15

Lemma 2.3. If
m−2

i=1 αi = 1,
m−2

i=1 αiξ
3
i = 0. Then the generalized inverse K p : I mL −→ domL ∩ ker P can be16

written as17

K p y(t) =
−t3

1 − η3

 1

η

 s

0

 τ1

0

 τ2

0
y(v)dvdτ1dτ2ds +

 t

0

 s

0

 τ1

0

 τ2

0
y(v)dvdτ1dτ2ds.18

Proof. For any y ∈ I mL , we have19

(L K p)y(t) = (K p y(t))(iv)
= y(t)20

and for x ∈ domL ∩ ker P , one has21

(K p L)x(t) = K p(x iv) =
−t3

1 − η3

 1

η

 s

0

 τ2

0

 τ1

0
x (iv)(v)dvdτ1dτ2ds22

+

 t

0

 s

0

 τ2

0

 τ1

0
x (iv)(v)dvdτ1dτ2ds23

=
−t3

1 − η3


x(1) − x(η) − (1 − η3)x ′(0) −

(1 − η2)

2
x ′′(0) −

(1 − η3)

6
x ′′′(0)


24

+ x(t) − x(0) − t x ′(0) −
t2

2
x ′′(0) − t3x ′′′(0).25

Since x ∈ domL ∩ ker P, Px(t) = x(0) = 0. Also x ′(0) = x ′′(0) = 0.26



S.A. Iyase / Journal of the Nigerian Mathematical Society xx (xxxx) xxx–xxx 5

Thus, 1

(K p L)x(t) = x(t). 2

Hence, 3

K p = (L|domL∩ker P )−1 . � 4

3. Main results 5

Theorem 3.1. Let
m−2

i=1 αi = 1,
m−2

i=1 αiξ
3
i = 0 and let f : [0, 1]×R4

→ R be a continuous function and suppose 6

that f has the decomposition 7

f (t, x, y, w, z) = g(t, x, y, w, z) + h(t, x, y, w, z) 8

(H1) Assume there exists M1 > 0 such that for all x ∈ domL\ker L if x(t) > M1, t ∈ [0, 1] then 9

m−2
i=1

αi

 ξi

0

 s

0

 τ2

0

 τ1

0
[ f (v, x(v), x ′(v), x ′′(v), x ′′′(v))]dvdτ2dτ2ds ≠ 0 (3.1) 10

(H2) 11

zg(t, x, y, w, z) ≤ 0 for all (t, x, y, w, z) ∈ [0, 1] × R4 (3.2) 12

(a) 13

|h(t, x, y, w, z)| ≤ M{|x |
r
+ |y| + |w| + |z|θ } for 0 < r, θ < 1 (3.3) 14

(b) 15

z[ f (t, x, y, w, z)] ≤ (|z|2 + 1)[D(t, x, y, w) + m(t)] (3.4) 16

where D(t, x, y, w) is bounded on bounded sets and m(t) ∈ L1
[0, 1]. 17

(H3) There exists N∗ > 0 such that for all c ∈ R, |c| > N∗ then either 18

cA
m−2
i=1

αiξ
l+4
i

· t l
m−2
i=1

αi

 ξi

0

 s

0

 τ2

0

 τ1

0
[ f (v, c, 0, 0, 0)]dvdτ1dτ2ds < 0 (3.5) 19

or 20

cA
m−2
i=1

αiξ
l+4
i

· t l
m−2
i=1

αi

 ξi

0

 s

0

 τ2

0

 τ1

0
[ f (v, c, 0, 0, 0)]dvdτ1dτ2ds > 0 (3.6) 21

Then (1.1)–(1.2) has at least one solution in C3
[0, 1] provided 22

M <
Bπ2

4(B2 + π2 + 4)
23

where B =
√

4 + π2. 24

Proof. Set 25

Ω1 = {x ∈ domK \ker L : Lx = λN x, λ ∈ [0, 1]} 26

for x ∈ Ω1. Since Lx = λN x , then λ ≠ 0, N x ∈ I mL = ker Q hence 27

m−2
i=1

αi

 ξi

0

 s

0

 τ2

0

 τ1

0
{ f (v, x(v), x ′(v), x ′′(v), x ′′′(v))}dvdτ1dτ2ds = 0. 28
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Thus by (H1) there exists t0 ∈ [0, 1] such that |x(t0)| ≤ M1. Therefore,1

|x(t)| ≤ |x(t0)| +

 t

t0
|x ′(s)|ds, t ∈ [0, 1]2

|x |∞ ≤ M1 + |x ′
|∞. (3.7)3

We note that for x(1) = x(η) there exists t1 ∈ (η, 1) such that x ′(t1) = 0 and from x ′(t1) = x ′(0) = 0 there exists4

t2 ∈ (0, t1) such that x ′′(t2) = 0 and x ′′(0) = x ′′(t2) there exists t3 ∈ (0, t2) such that x ′′′(t3) = 0. Hence for x ∈ Ω15

we have6  t

t3
x ′′′(s)x (iv)(s)ds = λ

 t

t3
x ′′′(s)g(s, x, x ′, x ′′, x ′′′)ds + λ

 t

t3
x ′′′(s)h(s, x, x ′, x ′′, x ′′′)ds7

1
2
|x ′′′

|
2
2 ≤

 1

0
|x ′′′

| |h(t, x, x ′, x ′′, x ′′′)|dt.8

Using the Cauchy inequality9

|ab| ≤
εa2

2
+

b2

2ε
for ε > 010

we have11  1

0
|x ′′′

| |h(t, x, x ′, x ′′, x ′′′)|dt ≤
ε

2

 1

0
|x ′′′

|
2dt +

1
2ε

 1

0
|h(t, x, x ′, x ′′, x ′′′)|dt.12

From condition (H2a) we obtain the estimate13

|h(t, x, y, w, z)|2 ≤ 4M2
{|x |

2r
+ |y|

2
+ |w|

2
+ |z|2θ

}.14

Therefore,15

1
2
|x ′′′

|
2
2 −

ε

2
|x ′′′

|
2
2 ≤

2M2

ε
|x |

2r
2 +

2M2

ε
|x ′′′

|
2θ
2 +

2M2

ε
|x ′

|
2
2 +

2M2

ε
|x ′′

|
2
2.16

From Holder’s inequality we get17 
1
2

−
ε

2
−

32M2

επ4 −
8M2

επ2


|x ′′′

|
2
2 ≤

2M2

ε


|x |

2r
2 + |x ′′′

|
2θ
2


1
.18

Since 0 ≤ θ, r < 1 we infer the existence of a constant M2 such that19

|x ′′′
|
2
2 < M2 (3.8)20

provided21

1
2

>
ε

2
+

32M2

επ4 +
8M2

επ2 . (3.9)22

The choice ε =
4M

√
4+π2

π
minimizes the right hand side of (3.9) with a minimum value 2M(B+π2

+4)

Bπ2 where23

B =
√

4 + π2.24

Hence (3.8) holds provided25

M <
Bπ2

4(B2 + π2 + 4)
.26

From (3.8) and x ′(0) = x ′′(0) = 0 we get27

|x ′
|∞ < M3 for some M3 > 0 (3.10)28

|x ′′
|∞ < M4, M4 > 0 (3.11)29
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and from (3.7) we derive 1

|x |∞ ≤ M1 + |x ′
|∞ < M1 + M3 = M5. (3.12) 2

Now using condition (H2b) of Theorem 3.1 we get 3

x ′′′x iv

|x ′′′|2 + 1
≤ D(t, x, x ′, x ′′) + m(t) 4

and hence 5

loge |x ′′′
| ≤

 t

t3

x ′′′(s)x (iv)(s)

|x ′′′|2 + 1
ds =


1
2

loge(|x
′′′(s)|2 + 1)

t

t3

≤ D + |m|1 (3.13) 6

where the constant D depends on M3, M4 and M5. Since x ′′′(t3) = 0 we infer from (3.13) that 7

|x ′′′
|∞ < eN0 = M6 (3.14) 8

where N0 = D + |m|1. 9

Hence 10

∥x∥ = max{|x |∞, |x ′
|∞, |x ′′

|∞, |x ′′′
|∞ ≤ max{M4, M3, M5, M6}}. 11

Therefore, Ω1 is bounded. 12

Let 13

Ω2 = {x ∈ ker L : N x ∈ I mL}. 14

For x ∈ Ω2, we have x = c ∈ R, thus 15

m−2
i=1

αi

 ξi

0

 s

0

 τ2

0

 τ1

0
[ f (v, x(v), 0, 0, 0)]dvdτ1dτ2ds = 0. (3.15) 16

Then we have by H3 and (3.15) that 17

∥x∥ = c ≤ N∗
18

which shows that Ω2 is bounded. 19

We define the isomorphism J : I m Q −→ ker L by 20

J (c) = c, c ∈ R. 21

If (3.5) holds we set 22

Ω3 = {x ∈ ker L : −λx + (1 − λ)J QN x = 0}, λ ∈ [0, 1] 23

For c0 ∈ Ω3, we obtain 24

λc0 =
(1 − λ)A

m−2
i=0

αiξ
l+4
i

· t l


m−2
i=1

αi

 ξi

0

 s

0

 τ2

0

 τ1

0
[ f (v, c0, 0, 0, 0)]dvdτ1dτ2ds


25

if λ = 1 then c0 = 0 and if |c0| > N∗ then from (3.5) we have 26

λc2
0 =

(1 − λ)c0 A
m−2
i=0

αiξ
l+4
i

· t l


m−2
i=1

αi

 ξi

0

 s

0

 τ2

0

 τ1

0
[ f (v, c0, 0, 0, 0)]dvdτ1dτ2ds


< 0 27

which contradicts λc2
0 ≥ 0. Thus Ω3 is bounded. 28

If (3.6) holds, then let 29

Ω3 = {x ∈ ker L : λx + (1 − λ)J QN x = 0, λ ∈ [0, 1]}. 30

Following the above argument we can show that Ω3 is bounded. 31
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Let Ω be a bounded open subset of X such that ∪
3
i=1 Ωi ⊂ Ω . By the Arzela–Ascoli Theorem we can show that1

K p(I − Q)N : Ω −→ X is compact [5]. So N is L-compact. Thus we have shown that2

(i) Lx ≠ λN x for every (x, λ) ∈ [domL \ker L ∩∂Ω × (0, 1)]3

(ii) N x ∉ I mL for every x ∈ ker L ∩ ∂Ω .4

Finally we shall prove that (iii) of Theorem 2.1 is satisfied.5

Define6

H(x, λ) = ±λx + (1 − λ)QN x,7

we have8

H(x, 1) = ±x, H(x, 0) = QN x .9

Thus H(x, λ) is a homotopy from the identity ±I to QN and is such that H(x, λ) ≠ 0 for every x ∈ ∂Ω ∩ ker L .10

Therefore11

deg(J QN |ker L∩∂Ω , Ω ∩ ker L , 0) = deg(H(·, 0),Ω ∩ ker L , 0)12

= deg(H(·, 1),Ω ∩ ker L , 0)13

= deg(±I,Ω ∩ ker L , 0) ≠ 0.14

Then by Theorem 2.1 Lx = N x has at least one solution in domL ∩ Ω̄ . In other words (1.1)–(1.2) has at least one15

solution in C3
[0, 1]. �16
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