
 

 

British Journal of Mathematics & Computer Science  
5(3): 341-348, 2015, Article no.BJMCS.2015.023 

ISSN: 2231-0851 
 

SCIENCEDOMAIN international 
www.sciencedomain.org   

______________________________________________________________________________________________________________________ 

_____________________________________ 

*Corresponding author: kanayo.eke@covenantuniversity.edu.ng; 

  
 

 

Common Fixed Point Results of Weakly Compatible 

Maps in G-metric Spaces 

 
Kanayo Stella Eke

1*
 

 
1
Department of Computer and Information Science-Mathematics Covenant University, Ota,  

Ogun State, Nigeria.  

 
Article Information 

 
DOI: 10.9734/BJMCS/2015/9457 

Editor(s): 

(1) Jaime Rangel-Mondragon, Queretaro´s Institute of Technology, Mexico. 
Reviewers: 

(1) Anonymous, Chongqing University of Posts and Telecommunications, P.R. China. 
(2) Anonymous, Umm Al-Qura University, Saudi Arabia. 

Complete Peer review History: http://www.sciencedomain.org/review-history.php?iid=727&id=6&aid=6755 

 
 
 

Received: 11 February 2014 

Accepted: 13 April 2014 

Published: 04 November 2014 

_______________________________________________________________________ 
 

Abstract 

 
We prove the existence of a unique common fixed point for two weakly compatible maps 

satisfying φ - conditions in G-metric spaces. Our result extends and generalizes some results in 

the literature.  

Keywords: Common fixed point, G-metric spaces, weakly compatible maps, weak-contraction 
maps. 

 

1 Introduction and Preliminary 

 
Frechet [1] introduced the notion of metric spaces and are widely used in fixed point theory and 
applications. Different authors generalized the concept of metric spaces. Eke and Olaleru [2] 
introduced the concept of G-partial metric spaces which generalized the G-metric spaces in the 
context of partial metric spaces. Authors such as Gahler [3], Dhage [4,5,6], Matthew [7] and 
others in the literature also generalized the notion of metric spaces. In this work we are concerned 
with the generalization of the notion of the metric spaces by Mustafa and Sims [8] in which a real 
number is assigned to every triplets of an arbitrary set. The following definitions and motivations 
are found in [8]: 
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Definition 1.1: Let X  be a nonempty set, and let G : X X  X R +× × →  be a function satisfying: 

 

( )1  G  x,y,z   0G = if x  y z= = , 

( )20  G x,  x,  y  x,y XG < ∀ ∈  with x y≠ ,  

( ) ( )3G  G x,  x,  y  G x,  y,  z  x,  y,  z  X≤ ∀ ∈ with z  y≠ , 

( ) ( ) ( )4   G x,  y,  z  G x,  z,  y G y,  z,  xG = = (symmetry in all three variables), 

( )5G   G x,  y,  z ( , , ) ( , , ) a,  x,  y,  z XG x a a G a y z≤ + ∀ ∈  (rectangle inequality). 

 
Then the function G is called a generalized metric, or more specifically a G-metric on X, and the 
pair (X, G) is called G-metric spaces. 
 

Definition 1.2: Let (X, G) be a G-metric space, and let 
{ }nx

 a sequence of points in X , a point '

x ' in X  is said to be the limit of the sequence  
{ }nx

 if
( )

,
lim G x,  x ,  x   0n m

m n→∞
=

, and one says 

that sequence 
{ }nx

  is G-convergent to x . 
 

Proposition 1.3: Let (X, G) be G-metric space, then for a sequence { }x Xn ⊆  and point x  X∈  

the following are equivalent:  
 

{ }( ) x  is G convergent to x.ni −  

( )(ii)  G x ,  x ,x 0 as nn n → → ∞  

( )(iii) G x ,  x,x 0 as nn → → ∞  

( )(iv) G x ,  x ,x 0 as m,  nm n → → ∞  

 
Proposition 1.4: In a G-metric space (X, G), the following are equivalent; 
 

(i)  The sequence { }nx   is a G-Cauchy sequence. 

( )(ii) For every  0,    n  N  G x ,x ,x ,  n,m N.n m mε ε> ∃ ∈ ∋ < ∀ ≥
 

 

Definition 1.5: A G-metric space (X, G) is said to be G-complete if every G-Cauchy sequence in 
(X, G) is G-convergent in (X, G). 
 
Banach contraction map is the basis of all other contractive maps. This map is used to establish 
the existence of unique fixed points for certain contraction maps defined in metric spaces and its 
generalizations. The existence of the fixed point for Banach contraction map was proved by 
Matthew [9] in partial metric spaces. Mustafa et al. [10] proved the existence of unique fixed 
points and common fixed points for certain contractive maps in G-metric spaces. 
 
The concept of weak contraction was introduced by Alber and Guerre-Delabriere [11] in Hilbert 
space. Rhoades [12] gives a corresponding definition in metric spaces as: 
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A mapping T :  X X,→  where (X, d) is a metric space is said to be weakly contractive if 

 

( ) ( ) ( )d Tx,  Ty  d x,  y   (d x,  y )φ≤ − ,                                                           (1) 

 

where [ )x,y  X and :[0, )  0,φ∈ ∞ → ∞  is continuous and nondecreasing function such that 

( ) 0 if and only if t 0.tφ = =  

  
Aage and Salunke [13] and Shatanawed [14] proved the existence of a unique fixed point for weak 
contraction maps defined on G-metric spaces. The result of Aage and Salunke [13] is stated as 
follows: 
 

Theorem 1.6 [13]: Let (X, G) be a complete G-metric space and let  T :  X  X→ be mappings 

satisfying: 
 

( ) ( ) ( )( )G Tx,  Ty,  Tz  G x,  y,  z G x,  y,  zφ≤ − ,                                          (2) 

 

for all [ ) [ )x,y,z X. If : 0,  0,φ∈ ∞ → ∞  is continuous and nondecreasing mapping with

( ) ( )1 0 0,  ( ) 0 for all t 0,tφ φ−
= > ∈ ∞ . Then T has a unique fixed point in X. 

 
For the fact that two maps have to commute at a point before their common fixed points can be 
established led to the development of some commutative maps (see. [15,16,17,18]) in which 
weakly compatible maps are not left out and is defined below as: 
 
Definition 1.7 [16]: A point x  X∈ is called a coincidence point of a pair of self maps S, T if 

there exist a point w (called a point of coincidence) in X such that w Sx Tx.= =  Self maps S and 

T are said to be weakly compatible if they commute at their coincidence points, that is if Sx Tx=  

for some x  X∈  , then STx TSx.=  

 
Some authors had used the concept of weakly compatibility in proving the common fixed points 
of two maps in metric spaces: see ([18,19,20,21]). 
 
In this work, we prove the common fixed point of two weakly compatible maps satisfying some 
weak contractive conditions in G-metric spaces. Our result generalizes the results of Aage and 
Salunke [13].  
 

2 Results and Discussion 
 
Theorem 2.1: Let (X, G) be G-metric spaces and Y a nonempty subset of X. Let T,S:  Y  X→  

be mappings satisfying: 

 

( ) ( ) ( )( )G Tx,  Ty,  Tz G Sx,  Sy,  Sz G Sx,  Sy,  Szφ≤ −                               (3) 
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for all [ ) [ )x,y,z X. If : 0,  0,φ∈ ∞ → ∞  is continuous and nonincreasing function with 

( ) ( )1 0 0,  ( ) 0 for all t 0,tφ φ−
= > ∈ ∞ . Suppose that T and S are weakly compatible with 

( ) ( )T Y   S Y .⊆  If ( ) ( )T Y  or S Y  is a complete subspace of X, then the mappings T and S 

have a unique common fixed point in X. 

 

Proof: 0 1 0 1Let x X be arbitrary. choose  x X such that Tx = Sx .∈ ∈ Continuing this process, 

we can define the sequence { } { }1
by Tx Sx  for some n  N.n n n

x
+

= ∈
 
Suppose 

{ }1
Tx Tx  for some n N,n n−

= ∈  then we have Tx =Sx .n n  Therefore { }nTx  is a Cauchy 

sequence. We assume that ( ) { }1
Ty Tz in 3  and Tx Tx  n  N.n n−

= ≠ ∀ ∈  From (3), we have 

 

{ }( ) { }( ) { }( )( )1 1 1
G Tx ,  Tx ,  Tx G Sx ,  Sx ,  Sx G Sx ,  S ,  S  n n n n n nn n n

φ
− − −

≤ −       (4) 

 

By property ofφ , (4) gives 

 

{ }( ) { }( )1 1
G Tx ,  Tx ,  Tx G Sx ,  Sx ,  Sxn n n nn n− −

≤                                           (5)  

Similarly, 
 

{ }( ) { } { } { }( ) { } { } { }( )1 2 1 1 2 1 1
G Sx ,  Sx ,  Sx G Tx ,  Tx , Tx G Sx ,  Sx ,  Sx .n nn n n n n n n− − − − − − −

= ≤      (6) 

 

From (5) and (6), this shows that { }( )1
G Tx ,  Tx ,  Txn nn−

 is monotone decreasing and 

consequently there exists K 0≥  such that 

 

{ }( )1
G Tx ,  Tx ,  Tx K as nn nn−

→ → ∞                                                  (7) 

 
Taking n → ∞  in (4), we obtain 

 

( )K K K .φ≤ −                                                                                  (8) 

 

This is a contradiction, unless K 0= . Hence 

 

{ }( )1
G Tx ,Tx ,Tx 0 as n . n nn−

→ → ∞                                                             (9) 

 

Now we show that { }nTx  is a Cauchy sequence. Suppose { }nTx  is not a Cauchy sequence, then 

0ε∃ >  for which we can find subsequence 
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( ){ } ( ){ } { } ( ) ( ) and of  with m k  n knn k m k
Tx Tx Tx > such that 

 

( ) ( ) ( )( )G Tx ,  Tx ,Tx .
n k m k m k

ε≥                                                                        (10) 

 
Now, 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 1
G Tx ,  Tx ,  Tx  G Sx ,  Sx ,  Sx .

n k n k n k n k n k n k− + +
=

 
 
This implies that, 
 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( )
1 1 1 2 2

2

G Sx ,  Sx ,  Sx  G Sx ,  Sx ,  Sx  G Sx ,  Sx ,  Sx  

                                               G Sx ,Sx ,Sx .

n k m k m k n k n k n k n k n k n k

n k m k m k

+ + + + +

+

≤ +

+
 

 

Setting K → ∞  in the above inequalities and using (9) we have,  

 

( ) ( ) ( )( )lim G Sx ,  Sx ,  Sx 0.K n k m k m k→∞ =                                                        (11) 

 
From (3) and (10) we obtain, 
 

( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

G Tx ,  Tx , x

G Sx ,  Sx ,  Sx (G Sx ,  Sx ,  Sx )

n k m k m k

n k m k m k n k m k m k

Tε

φ

≤

≤ −

 

 
Hence, 
 

( )-  as k .ε ε φ ε≤ → ∞  
 

Clearly it is a contradiction since 0.ε >  We must have 0.ε =  This shows that { }nTx  is a 

Cauchy sequence in X. Since T(Y) or S(Y) is a complete subspace of X and for the fact that 

( ) ( )T Y S Y ,⊆  there exists a ( )z  T Y  such that Sx   z and Tx  as n ,n n z∈ → → → ∞  hence 

there is x X such that  Sx z.∈ =  
 

From (3) we get, 
 

( ) ( ) ( )

( ) ( )( ) ( )

G Tx,  z,  z  G Tx,  Tx ,  Tx   G Tx ,z,z

 G Sx,  Sx ,  Sx G Sx,  Sx ,  Sx   G Tx ,  z,  z 0.

n n n

n n n n nφ

≤ +

≤ − + =
 

 

But ( )G Tx,  z,  z 0. This implies that Tx z. Thus Sx  Tx z≥ = = = and we have that z is a 

point of coincidence of S and T. 
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Next we show that the point of coincidence is unique. Suppose there is another point of 

coincidence p, and there is a coincidence point q  X such that p Tq Sq.∈ = =  Then by (1) we 

have, 

( ) ( ) ( ) ( )( )G z,p,p  G Tx,  Tq,  Tq   G Sx,  Sq,  Sq   G Sx,  Sq,  Sq .φ= ≤ −  

 

By property of ,φ  this is a contradiction if ( )G z,p,p  0> . Hence we have a unique point of 

coincidence. Since S, T are weakly compatible, then TSx  STx and Tz Sz.= =  Therefore z is a 

coincidence point of S, T and since the point of coincidence is unique, that is 

z p. Hence Sz  Tz z,= = =  therefore z is the unique common fixed point of S, T and the proof 

is complete. 
 

Remarks 2.2: If S  T=  in theorem 2.1 then we have corollary 2.2. Therefore theorem 2.1 is a 

generalization of theorem 2.1 of Aage and Salunke [13]. 
 

Corollary 2.3 [12]: Let (X, G) be complete G-metric space and let T :  X  X→  be a mapping 

satisfying; 
 

( ) ( ) ( )( )G Tx,  Ty,  Tz G x,  y,  z G x,  y,  zφ≤ −  

 

for all x, y,z X.∈  If [ ) [ ): 0, 0,φ ∞ → ∞  is continuous and increasing function with 

( ) ( ) ( )1 0 0,   t 0 t 0, ,φ φ−
= > ∀ ∈ ∞  then T has a unique fixed point in X. 

 

Example 2.4: Let [ ] ( )X 0,1  and G x,y,z  x y   y z  z x= = − + − + −  be a G-metric on X. 

Define ( )
5

S,  T :  X X by Tx  and Sx  with t t 0.
2 3 2

x x t
φ→ = = = ∀ >  

Now, 

( )

( )

G Tx,Ty,Tz     
2 2 2 2 2 2

1
x y   y z  | z x | .

2

x y y z z x
= − + − + −

= − + − + −
 

 

( )

( )

5 5 5 5 5 5
G Sx,Sy,Sz      

3 3 3 3 3 3

5
                     x y   y z  | z x | .

3

x y y z z x
= − + − + −

= − + − + −

 

 

Hence 

( ) ( ) ( )( )G Tx,  Ty,  Tz G Sx,  Sy,  Sz G Sx,  Sy,  Sz .φ≤ −  

 

The common fixed point of S and T is equal to zero and is unique. 
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3 Conclusion 

 
The existence and uniqueness of the common fixed point for a pair of weakly compatible 
mappings satisfying the weak – contraction conditions in a G-metric space is proved. 
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